ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ベクトル空間

索引 ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

303 関係: 加群の圏加法群力 (物理学)基底 (線型代数学)原子原点偏微分方程式ほとんど (数学)半ノルム単射単位元反対称性反数可微分多様体可算集合可換体双対双対ベクトル空間双対問題双線型写像同型定理同型写像同値同値関係向き付け可能性各点収束境界値問題多元体多項式函数多項式環多重線型代数多様体外積代数定符号二次形式実数実数直線完備距離空間対称代数局所性工学常微分方程式三角関数一般相対性理論一様収束平面平行平行四辺形幾何学交換子交換法則...座標代数学代数幾何学代数体代数的閉体代数的数代数的整数論代数方程式位相空間体の拡大体上の多元環余弦定理余積余接空間余接束微分微分可能関数微分作用素微分方程式係数圏 (数学)区間 (数学)ミンコフスキーの不等式ミンコフスキー空間ノルムノルム線型空間マサチューセッツ工科大学像 (数学)ハメル次元ハーン–バナッハの定理バナッハ空間バナッハ環ポントリャーギン双対メビウスの帯ヤコビ恒等式ユークリッド空間ラテン文字リー代数リーマン多様体リーマン積分リーマン曲率テンソルリースの表現定理リース空間リース=フィッシャーの定理リー群ルネ・デカルトルベーグ積分レーダーヘルマン・グラスマンプリンストン大学出版局ヒルベルト空間ピエール・ド・フェルマーツォルンの補題テンソルテンソル代数テンソル積テイラー展開データ圧縮ディジタルフィルタデジタル信号処理フーリエ級数ファイバー (数学)ファイバー束ドーヴァー出版ドット積ドイツ語ニコラ・ブルバキダフィット・ヒルベルトベルナルト・ボルツァーノベクトルのなす角ベクトルの共変性と反変性ベクトル場ベクトル束列 (数学)分配法則周波数スペクトル周期関数アメリカ数学会アンリ・ルベーグアーベル圏アーベル群アーベル群の圏アーサー・ケイリーアフィン多様体アフィン空間アウグスト・フェルディナント・メビウスウィリアム・ローワン・ハミルトンギリシア文字クロス積グラム・シュミットの正規直交化法グリーン関数ゲーム理論コンパクト作用素コンパクト群コーシー列シュレーディンガー方程式シュワルツ超函数シュプリンガー・サイエンス・アンド・ビジネス・メディアジュゼッペ・ペアノジョルダン標準形ジョン・ワイリー・アンド・サンズスペクトル定理ストーン=ワイエルシュトラスの定理ステファン・バナフスカラースカラー (数学)ソボレフ空間タプル円周率円柱 (数学)内積写像写像の合成凸包凸解析凸集合全単射全射公理公理的集合論元 (数学)剰余環剰余類固有多項式固有値固有状態四元数矢印科学空間 (数学)空間ベクトル算術米田の補題級数線型代数学線型位相空間線型包線型写像線型結合線型独立線型計画問題線型近似線型汎函数線型方程式系線型性総和群作用群論群準同型結合法則結晶環 (数学)環のスペクトル環上の加群熱伝導畳み込み特殊相対性理論直交直交座標系直線直線束階数・退化次数の定理音声符号化違いを除いて領域 (解析学)順序対順序体順序集合表現論行列行列の乗法行列式複素平面複素共役複素数解析学解析幾何学角度計量テンソル計量ベクトル空間高速フーリエ変換超越数距離距離空間近傍 (位相空間論)部分集合関数 (数学)関数の台関数空間関数解析学閉包 (位相空間論)閉性量子力学自己準同型自由加群離散フーリエ変換離散コサイン変換零ベクトル零空間集合速度連続写像逆写像逆元逆格子ベクトル虚数単位JPEGK理論Lp空間抽象代数学接ベクトル空間接束恒等写像束 (束論)核 (代数学)標準基底標本化次数付きベクトル空間正弦波正方行列波動関数添字集合準同型滑らかな関数濃度 (数学)指示関数指数関数有理数最小多項式 (体論)最適化断面 (位相幾何学)擬リーマン多様体数学数学的構造数ベクトル空間数列の極限数論曲率曲線普遍代数学普遍性時空1636年17世紀1804年1827年1844年1857年1867年1888年1920年19世紀3次元 インデックスを展開 (253 もっと) »

加群の圏

数学の一分野である圏論において加群の圏(かぐんのけん、category of modules)Mod は、すべての加群を対象としすべての加群準同型を射とする圏である。.

新しい!!: ベクトル空間と加群の圏 · 続きを見る »

加法群

加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。それは通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数全体、ベクトル空間、環の加法群。これは環と体で可逆元全体からなる乗法群を加法群と区別するために特に有用である。.

新しい!!: ベクトル空間と加法群 · 続きを見る »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: ベクトル空間と力 (物理学) · 続きを見る »

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: ベクトル空間と基底 (線型代数学) · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: ベクトル空間と原子 · 続きを見る »

原点

原点(げんてん、, origo)は、物事のはじまりや基(もと)、基準、根拠となるところ。人の人生、企業などの歴史を振り返る際に、出発点という意味で比喩でも用いられる。.

新しい!!: ベクトル空間と原点 · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: ベクトル空間と偏微分方程式 · 続きを見る »

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: ベクトル空間とほとんど (数学) · 続きを見る »

半ノルム

2 の半ノルムになる 数学の特に線型代数学および函数解析学における半ノルム(はんのるむ、semi­norm, semi-norm; セミノルム)は、ベクトル空間上で定義される絶対斉次劣加法的函数で、正定値と制約しないことによるノルムの一般化である。 半ノルムの値は非負かつ符号反転に関して対称であり、函数として かつ凸である。 各半ノルムには、適当な剰余類をとる商構成に誘導されるノルムが付随する。半ノルムからなる族を用いて、局所凸線型空間を定義することができる。.

新しい!!: ベクトル空間と半ノルム · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: ベクトル空間と単射 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: ベクトル空間と単位元 · 続きを見る »

反対称性

反対称性(はんたいしょうせい)とは数学で、ある要素にある変換を施した結果が、元の要素に逆符号を付けたもの(実数でいえば絶対値が同じで正負が逆)と等しくなる、という性質をいう。対象分野によっては交代性(こうたいせい)または歪対称性(わいたいしょうせい)とも呼ばれる。このような要素を「その変換に対して反対称である」という。変換によって変化しない「対称性」に類似した性質であり、対称性・反対称性とも全くない「非対称性」とは異なる。反対称性の要素に変換を複数回施すと、元と同じになる。.

新しい!!: ベクトル空間と反対称性 · 続きを見る »

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

新しい!!: ベクトル空間と反数 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: ベクトル空間と可微分多様体 · 続きを見る »

可算集合

可算集合(かさんしゅうごう、countable set 又は denumerable set)もしくは可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある。そのため、はっきりと区別を付ける必要がある場合には、冒頭の意味での集合を可算無限集合と呼び、可算無限集合と有限集合を合わせて高々可算の集合と呼ぶ。可算でない無限集合を非可算集合という。非可算集合は可算集合よりも「多く」の元を持ち、全ての元に番号を付けることができない。そのような集合の存在は、カントールによって初めて示された。.

新しい!!: ベクトル空間と可算集合 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ベクトル空間と可換体 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: ベクトル空間と双対 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: ベクトル空間と双対ベクトル空間 · 続きを見る »

双対問題

双対問題(そうついもんだい、dual problem)とは、数学において、最適化問題における主問題(primary problem)の補問題を指す。どちらか一方の解法が両方の問題の解法となる。.

新しい!!: ベクトル空間と双対問題 · 続きを見る »

双線型写像

数学において双線型写像(そうせんけいしゃぞう、)とは、二つのベクトル空間それぞれの元の対に対しての第三のベクトル空間の元を割り当てる写像であって、各引数に関して線型となるようなものを言う。その一つの例が、行列の積である。.

新しい!!: ベクトル空間と双線型写像 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: ベクトル空間と同型定理 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: ベクトル空間と同型写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: ベクトル空間と同値 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: ベクトル空間と同値関係 · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: ベクトル空間と向き付け可能性 · 続きを見る »

各点収束

数学において、各点収束 (pointwise convergence) は関数列の収束の概念の1つである。.

新しい!!: ベクトル空間と各点収束 · 続きを見る »

境界値問題

数学の微分方程式の分野における境界値問題(きょうかいちもんだい、Boundary value problem)とは、境界条件と呼ばれる付帯的な制限が与えられている微分方程式のことである。境界値問題の解とは、与えられた境界条件を満たすような微分方程式の解のことである。 境界値問題は、物理学のいくつかの分野によく現れる。「の決定」のような波動方程式を含む問題はしばしば境界値問題として記述される。境界値問題に関する一つの重要な理論としてスツルム=リウヴィル理論がある。その理論における境界値問題の解析には、微分作用素の固有関数の計算が含まれる。 応用上意義のあるものであるために、境界値問題は良設定問題でなければならない。これはすなわち、問題に与えられた入力に対して、その入力に連続的に依存するような解がただ一つ存在することを意味する。 偏微分方程式の分野における多くの理論的な研究は、科学的あるいは工学的な応用上実際に良設定であるような境界値問題の解決を目的としている。最も早い境界値問題の研究として、ラプラス方程式の解である調和関数の発見についてのディリクレ問題が挙げられる。その解はディリクレの原理により与えられた。.

新しい!!: ベクトル空間と境界値問題 · 続きを見る »

多元体

数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。.

新しい!!: ベクトル空間と多元体 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: ベクトル空間と多項式函数 · 続きを見る »

多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

新しい!!: ベクトル空間と多項式環 · 続きを見る »

多重線型代数

数学における多重線型代数(たじゅうせんけいだいすう、multilinear algebra)とは、線型空間における多重線型性 を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。 を –代数とするとき、自然数 に対し、 上で定義された 変数写像 はある変数以外の変数を固定して一変数の写像と見なしたときにK –線型写像を定めている。より一般に 上のベクトル空間 上の 変数写像についてもある変数以外の変数を固定して一変数写像と見なしたときに 線型写像になっているようなものを考えることができるが、このような写像は多重線型写像 とよばれる。多重線型写像は何らかの意味でベクトルの「積」を表していると考えられる。 多重線型性を捉える基本的な対象としてテンソル代数(てんそるだいすう、)、対称代数(たいしょうだいすう、)、外積代数(がいせきだいすう、)が挙げられる。テンソル代数におけるテンソル積によって、ベクトルの積として最も一般的なものが定式化される。また、対称積や外積によって一定の付加的な条件を満たすような積が捉えられる。.

新しい!!: ベクトル空間と多重線型代数 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: ベクトル空間と多様体 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: ベクトル空間と外積代数 · 続きを見る »

定符号二次形式

数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号(positive definite; 正値、正定値)または負の定符号(negative definite; 負値、負定値)に分けられる。 半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて同様に定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite) であると言う。 より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる。.

新しい!!: ベクトル空間と定符号二次形式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: ベクトル空間と実数 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: ベクトル空間と実数直線 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: ベクトル空間と完備距離空間 · 続きを見る »

対称代数

数学において、体 K 上のベクトル空間 V 上で定義される対称代数(たいしょうだいすう、symmetric algebra)S(V) あるいは Sym(V) は、V を含む K 上の自由可換単位的結合代数である。 対称代数の元は、座標の取り方に依らず V の元を不定元とする多項式に対応する。このとき、対称代数の双対 S(V&lowast) の元は V 上の多項式(函数)に対応する。 対称代数と V 上の対称テンソル空間とを混同してはならない。.

新しい!!: ベクトル空間と対称代数 · 続きを見る »

局所性

局所性とは、物理学において、「ある地点で行われた行為や起こった現象によって、遠くの実験結果が直ちに変わることは無い」という性質。 もしこれが破れてしまうと、「原因の結果が光より早く伝播することはない」という相対論的な因果律に反することになり、異なる慣性系から見ると原因と結果の順序が逆転してしまう。よって局所性は物理の最も基本的な要請となっている。.

新しい!!: ベクトル空間と局所性 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: ベクトル空間と工学 · 続きを見る »

常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

新しい!!: ベクトル空間と常微分方程式 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: ベクトル空間と三角関数 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ベクトル空間と一般相対性理論 · 続きを見る »

一様収束

数学の分野である解析学において、一様収束(いちようしゅうそく、uniform convergence)は、各点収束よりも強いの概念である。関数列 が極限関数 f に一様収束する (converge uniformly) とは、fn(x) の f(x) への収束のはやさが x に依らないということである。 関数 fn の連続性やリーマン可積分性といったいくつかの性質は、収束が一様であれば極限 f に引き継がれるが、収束が一様でない場合はそうとは限らないから、一様収束の概念は重要である。 与えられた区間上の関数への一様収束は一様ノルムのことばによって定義できる。 The term uniform convergence was probably first used by Christoph Gudermann, in an 1838 paper on elliptic functions, where he employed the phrase "convergence in a uniform way" when the "mode of convergence" of a series \textstyle is independent of the variables \phi and \psi.

新しい!!: ベクトル空間と一様収束 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: ベクトル空間と平面 · 続きを見る »

平行

初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためにはそれらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはの性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。.

新しい!!: ベクトル空間と平行 · 続きを見る »

平行四辺形

平行四辺形(へいこうしへんけい、英: parallelogram)とは、2組の対辺がそれぞれ平行である四角形のことである。 平行四辺形は、台形の一種である。また、特殊な平行四辺形に長方形,菱形がある。.

新しい!!: ベクトル空間と平行四辺形 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: ベクトル空間と幾何学 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: ベクトル空間と交換子 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: ベクトル空間と交換法則 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: ベクトル空間と座標 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: ベクトル空間と代数学 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: ベクトル空間と代数幾何学 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: ベクトル空間と代数体 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: ベクトル空間と代数的閉体 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: ベクトル空間と代数的数 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: ベクトル空間と代数的整数論 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: ベクトル空間と代数方程式 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: ベクトル空間と位相空間 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: ベクトル空間と体の拡大 · 続きを見る »

体上の多元環

数学において体上の代数あるいは多元環(たげんかん、algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるとを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。.

新しい!!: ベクトル空間と体上の多元環 · 続きを見る »

余弦定理

余弦定理(よげんていり、law of cosines, cosine formula)とは、平面上の三角法において三角形の辺の長さと内角の余弦の間に成り立つ関係を与える定理である。余弦定理を証明するために用いられる補題はときに第一余弦定理と呼ばれ、このとき証明される定理は第二余弦定理と呼ばれ区別されることがある。単に余弦定理と言った場合、第二定理を指す。 三角形の角と辺の関係.

新しい!!: ベクトル空間と余弦定理 · 続きを見る »

余積

圏論において、余積(よせき、双対積、双対直積、coproduct)あるいは圏論的和(わ、直和、sum, direct sum)は、集合の直和、位相空間の直和、群の自由積、加群やベクトル空間の直和などを例として含む圏論的構成である。対象の族の余積は本質的に、族の各対象がそこへの射をもつような「最も固有的でない (least specific)」対象である。それは圏論的(直)積の圏論的双対概念であり、これは定義がすべての矢印を逆にすることを除けば積と同じであることを意味する。名前と表記の一見無害な変化にも関わらず、余積は積と劇的に異なり得るし、典型的にはそうなる。.

新しい!!: ベクトル空間と余積 · 続きを見る »

余接空間

微分幾何学において、滑らかな(あるいは可微分)多様体の各点 x に x における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、x における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。.

新しい!!: ベクトル空間と余接空間 · 続きを見る »

余接束

数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。.

新しい!!: ベクトル空間と余接束 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: ベクトル空間と微分 · 続きを見る »

微分可能関数

数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。.

新しい!!: ベクトル空間と微分可能関数 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: ベクトル空間と微分作用素 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: ベクトル空間と微分方程式 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: ベクトル空間と係数 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: ベクトル空間と圏 (数学) · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: ベクトル空間と区間 (数学) · 続きを見る »

ミンコフスキーの不等式

数学の関数解析学におけるミンコフスキーの不等式(―ふとうしき、英:Minkowski's inequality)とは、 ''L''''p''空間がノルム線型空間であることを述べる、数学の定理である。 三角不等式の一般化とも言える。 数学者ヘルマン・ミンコフスキーに因む。.

新しい!!: ベクトル空間とミンコフスキーの不等式 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: ベクトル空間とミンコフスキー空間 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: ベクトル空間とノルム · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: ベクトル空間とノルム線型空間 · 続きを見る »

マサチューセッツ工科大学

マサチューセッツ工科大学(英語: Massachusetts Institute of Technology)は、アメリカ合衆国マサチューセッツ州ケンブリッジに本部を置く私立工科大学である。1865年に設置された。通称はMIT(エム・アイ・ティー。「ミット」は誤用で主に日本、欧州の極めて一部で用いられる)。 全米屈指のエリート名門校の1つとされ、ノーベル賞受賞者を多数(2014年までの間に1年以上在籍しMITが公式発表したノーベル賞受賞者は81名で、この数はハーバード大学の公式発表受賞者48名を上回る)輩出している。最も古く権威ある世界大学評価機関の英国Quacquarelli Symonds(QS)による世界大学ランキングでは、2012年以来2017年まで、ハーバード大学及びケンブリッジ大学を抑えて6年連続で世界第一位である。 同じくケンブリッジ市にあるハーバード大学とはライバル校であるが、学生達がそれぞれの学校の授業を卒業単位に組み込める単位互換制度(Cross-registration system)が確立されている。このため、ケンブリッジ市は「世界最高の学びのテーマパーク」とさえも称されている。物理学や生物学などの共同研究組織を立ち上げるなど、ハーバード大学との共同研究も盛んである。 MITはランドグラント大学でもある。1865年から1900年の間に約19万4千ドル(これは2008年時点の生活水準でいうところの380万ドルに相当)のグラントを得、また同時期にマサチューセッツ州から更なる約36万ドル(2008年時点の生活水準で換算して700万ドルに相当)の資金を獲得しているD.

新しい!!: ベクトル空間とマサチューセッツ工科大学 · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: ベクトル空間と像 (数学) · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: ベクトル空間とハメル次元 · 続きを見る »

ハーン–バナッハの定理

数学におけるハーン–バナッハの定理(ハーン–バナッハのていり、)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間への拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数が、双対空間の研究を「面白い」ものにするに「十分」なほどたくさんあることがわかる。ハーン-バナッハの定理の別形態のものとして、ハーン–バナッハの分離定理あるいは分離超平面定理と呼ばれるものがあり、の分野で多く用いられている。 定理の名前の由来は、1920年代後半にそれぞれ独立にこの定理を証明したハンス・ハーンとステファン・バナッハである。定理の特別な場合については、より早い段階(1912年)でエードゥアルト・ヘリーによって証明されており、またこの定理が導出されるようなある一般の拡張定理が、1923年にマルツェル・リースによって証明されていた。.

新しい!!: ベクトル空間とハーン–バナッハの定理 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: ベクトル空間とバナッハ空間 · 続きを見る »

バナッハ環

数学の、特に関数解析学の分野におけるバナッハ環(バナッハかん、; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 または 複素数体 )上の結合多元環 であって、バナッハ空間(ノルムが存在し、に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。 上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。 バナッハ環は、乗法単位元を持つとき、単位的(unital)であると言う。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 は適当な単位的バナッハ環(つまり の「単位化」) にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、 を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。 実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。 p-進数体 上のバナッハ代数(-進バナッハ代数)は、p-進解析の一部として研究される。.

新しい!!: ベクトル空間とバナッハ環 · 続きを見る »

ポントリャーギン双対

数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば.

新しい!!: ベクトル空間とポントリャーギン双対 · 続きを見る »

メビウスの帯

メビウスの帯 メビウスの帯(メビウスのおび、Möbius strip, Möbius band)、またはメビウスの輪(メビウスのわ、Möbius loop)は、帯状の長方形の片方の端を180°ひねり、他方の端に貼り合わせた形状の図形(曲面)である。メービウスの帯ともいう。 数学的には向き付け不可能性という特徴を持ち、その形状が化学や工学などに応用されているほか、芸術や文学において題材として取り上げられることもある。.

新しい!!: ベクトル空間とメビウスの帯 · 続きを見る »

ヤコビ恒等式

数学におけるヤコビ恒等式(Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。.

新しい!!: ベクトル空間とヤコビ恒等式 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: ベクトル空間とユークリッド空間 · 続きを見る »

ラテン文字

ラテン文字(ラテンもじ、abecedarium Latinum、Latin alphabet、ラテンアルファベット)は、表音文字(音素文字・アルファベット)の一つである。ローマ文字、ローマ字(alfabeto Romano、Roman alphabet)とも呼ばれる。 文字を右書きで横に並べることで単語を表記し、単語間を分かち書きで区切って並べることで文章を構成する。それぞれの文字は子音か母音を表す。 今日、人類社会で最も解読者人口が多い文字である。 元来ラテン語の文字で、古くから西欧・中欧の諸言語で使われているが、近代以降はこれら以外にも使用言語が多い。ただし発音の文字への表記方法は各言語ごとに異なっており、同じ綴りでも言語によって違う発音をすることはラテン文字においては全く珍しくない。英語など、古い時代に表記法が定められた言語においては表記と発音の間の乖離も大きなものとなってきている。.

新しい!!: ベクトル空間とラテン文字 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: ベクトル空間とリー代数 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: ベクトル空間とリーマン多様体 · 続きを見る »

リーマン積分

数学の実解析の分野において、リーマン積分(リーマンせきぶん、Riemann integral)とは、区間上の関数の積分の最初の厳密な定式化であり、ベルンハルト・リーマンによって創始された。多くの関数や実際的な応用に対しては、リーマン積分は微分積分学の基本定理による計算や数値積分による近似計算が可能である。 リーマン積分は の有界集合上の関数に対して定義されるが、積分範囲にある種の極限を考えることにより、広義リーマン積分が定義される。広義リーマン積分との対比で、通常のリーマン積分を狭義リーマン積分とも呼ぶ。 リーマン積分は積分の多くの性質を示すのに有効であるが、積分と極限との交換に関係する性質を示すには理論的困難を伴うなど、いくつかの技術的欠点がある。この為こうした欠点を補うべくリーマン–スティルチェス積分やルベーグ積分など積分概念の別の定式化方法も提案されている。.

新しい!!: ベクトル空間とリーマン積分 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: ベクトル空間とリーマン曲率テンソル · 続きを見る »

リースの表現定理

リースの表現定理(リースのひょうげんていり、)とは、数学の関数解析学の分野におけるいくつかの有名な定理に対する呼称である。リース・フリジェシュの業績に敬意を表し、そのように名付けられた。.

新しい!!: ベクトル空間とリースの表現定理 · 続きを見る »

リース空間

数学におけるリース空間(リースくうかん、Riesz space)、線型束空間あるいは束線型空間 (lattice-ordered vector space)、またはベクトル束 (vector lattice)微分幾何学等で扱われるベクトル束 (vector bundle) とは異なることに注意。 とは、順序構造が束を成す順序線型空間のことである。リース空間の名はリース・フリジェシュの論文 に因む。 リース空間の概念は測度論において重要で、ラドン-ニコディムの定理がフロイデンタールのスペクトル定理の特別な場合であるといったように、測度論における主要な結果はリース空間における結果として一般化して定式化できる。.

新しい!!: ベクトル空間とリース空間 · 続きを見る »

リース=フィッシャーの定理

数学の実解析の分野におけるリース=フィッシャーの定理(リース=フィッシャーのていり、)は、自乗可積分函数からなる ''L''2 空間の性質に関する、いくつかの密接に関連する結果である。1907年にリース・フリジェシュとによってそれぞれ独自に証明された。 多くの研究者にとって、リース=フィッシャーの定理とは、ルベーグ積分の理論による ''L''''p'' 空間が完備であるという事実を指す。.

新しい!!: ベクトル空間とリース=フィッシャーの定理 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: ベクトル空間とリー群 · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: ベクトル空間とルネ・デカルト · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: ベクトル空間とルベーグ積分 · 続きを見る »

レーダー

レーダー用パラボラアンテナ(直径40m) レーダー(Radar)とは、電波を対象物に向けて発射し、その反射波を測定することにより、対象物までの距離や方向を測る装置である。.

新しい!!: ベクトル空間とレーダー · 続きを見る »

ヘルマン・グラスマン

ヘルマン・ギュンター・グラスマン(Hermann Günther Graßmann, 1809年4月15日 - 1877年9月26日)はドイツの数学者・物理学者・言語学者。 まず数学を研究し、現在グラスマン代数と呼ばれる成果をあげたが、時代に先んじていたため認められなかった。しかし他の分野でも才能を開花させ、色彩論および言語学においてそれぞれグラスマンの法則と呼ばれる業績を残した。.

新しい!!: ベクトル空間とヘルマン・グラスマン · 続きを見る »

プリンストン大学出版局

プリンストン大学出版局(Princeton University Press)とは、独立系の出版社でプリンストン大学と近い関係を持っている。広大なや社会においてスカラーシップを広めることを目的にしている。 1905年にホイットニー・ダローによって設立された。その際にプリンストンコミュニティに印刷機を納品する形でチャールズ・スクリブナーが金融面で支援した。最初に出版した本はジョン・ウィザースプーン著「Lectures on Moral Philosophy」の新たな1912年版だった。.

新しい!!: ベクトル空間とプリンストン大学出版局 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ベクトル空間とヒルベルト空間 · 続きを見る »

ピエール・ド・フェルマー

ピエール・ド・フェルマー ピエール・ド・フェルマー(Pierre de Fermat、1607年末または1608年初頭 - 1665年1月12日)はフランスの数学者。「数論の父」とも呼ばれる。ただし、職業は弁護士であり、数学は余暇に行ったものである。.

新しい!!: ベクトル空間とピエール・ド・フェルマー · 続きを見る »

ツォルンの補題

集合論においてツォルンの補題(ツォルンのほだい、Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。; 命題 (Zorn の補題) この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。.

新しい!!: ベクトル空間とツォルンの補題 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ベクトル空間とテンソル · 続きを見る »

テンソル代数

数学におけるベクトル空間 上のテンソル代数(テンソルだいすう、tensor algebra) または は 上の任意階のテンソル全体がテンソル積を乗法として成す体上の多元環である。これは多元環をベクトル空間とみなすの左随伴となるという意味において 上の自由多元環、すなわち普遍性を満たすという意味で を含む多元環として「最も一般」のものである。 テンソル代数はまた二種類の余代数構造を持つ。一つは簡素で双代数を定めないが、もう一つはより複雑なもので双代数を導き、さらに対蹠射を以ってホップ代数へ拡張することができる。; 注意: 本項において多元環(代数)は単位的かつ結合的なものと仮定する。.

新しい!!: ベクトル空間とテンソル代数 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: ベクトル空間とテンソル積 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: ベクトル空間とテイラー展開 · 続きを見る »

データ圧縮

データ圧縮(データあっしゅく)とは、あるデータをそのデータの実質的な性質(専門用語では「情報量」)を保ったまま、データ量を減らした別のデータに変換すること。高効率符号化ともいう-->。アナログ技術を用いた通信技術においては通信路の帯域幅を削減する効果を得るための圧縮ということで帯域圧縮ともいわれた。デジタル技術では、情報を元の表現よりも少ないビット数で符号化することを意味する。 データ圧縮には大きく分けて可逆圧縮と非可逆圧縮がある。というより正確には非可逆圧縮はデータ圧縮ではない。可逆圧縮は統計的冗長性を特定・除去することでビット数を削減する。可逆圧縮では情報が失われない。非可逆圧縮は不必要な情報を特定・除去することでビット数を削減する。しかしここで「不必要な」とは、例えばMP3オーディオの場合「ヒトの聴覚では通常は識別できない」という意味であり、冒頭の「情報量を保ったまま」という定義を破っている。データファイルのサイズを小さくする処理は一般にデータ圧縮と呼ばれるが、データを記録または転送する前に符号化するという意味では情報源符号化である。 圧縮は、データ転送におけるトラフィックやデータ蓄積に必要な記憶容量の削減といった面で有効である。しかし圧縮されたデータは、利用する前に伸長(解凍)するという追加の処理を必要とする。つまりデータ圧縮は、空間計算量を時間計算量に変換することに他ならない。例えば映像の圧縮においては、それをスムースに再生するために高速に伸長(解凍)する高価なハードウェアが必要となるかもしれないが、圧縮しなければ大容量の記憶装置を必要とするかもしれない。データ圧縮方式の設計には様々な要因のトレードオフがからんでおり、圧縮率をどうするか、(非可逆圧縮の場合)歪みをどの程度許容するか、データの圧縮伸長に必要とされる計算リソースの量などを考慮する。 新たな代替技法として、圧縮センシングの原理を使ったリソース効率のよい技法が登場している。圧縮センシング技法は注意深くサンプリングすることでデータ圧縮の必要性を避けることができる。.

新しい!!: ベクトル空間とデータ圧縮 · 続きを見る »

ディジタルフィルタ

電子工学において、デジタルフィルタ()は量子化および標本化してAD変換した信号(離散時間信号)をデジタル信号処理することにより働く、フィルタ回路の一つである。.

新しい!!: ベクトル空間とディジタルフィルタ · 続きを見る »

デジタル信号処理

デジタル信号処理(デジタルしんごうしょり、Digital Signal Processing、DSPと略されることもある)とは、デジタル化された信号すなわちデジタル信号の信号処理のことである。分野としては、これとアナログ信号処理は信号処理の一部である。この分野の大きな研究・応用領域に音響信号処理、デジタル画像処理、音声処理の三つがある。 目的は実世界の連続的なアナログ信号を計測し、選別することである。その第一段階は一般にアナログ-デジタル変換回路を使って信号をアナログからデジタルに変換することである。また、最終的な出力は別のアナログ信号であることが多く、そこではデジタル-アナログ変換回路が使用される。 処理可能な信号のサンプリングレートを稼ぐ目的に特化したプロセッサを使うことが多い。デジタルシグナルプロセッサという特化型のマイクロプロセッサが使われ、よくDSPと略される。このプロセッサは、典型的な汎用プロセッサに見られる多種多様な機能の内の幾つかを除外し、新たに高速乗算器、積和演算器を搭載している。従って、同程度のトランジスタ個数の汎用プロセッサと比較した場合、条件分岐等の処理では効率が悪化するが、信号を構成するサンプルデータは高効率で処理する事が可能になる。.

新しい!!: ベクトル空間とデジタル信号処理 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: ベクトル空間とフーリエ級数 · 続きを見る »

ファイバー (数学)

数学において、用語ファイバー (fiber, fibre) は文脈によって次の2つの意味を持つ:.

新しい!!: ベクトル空間とファイバー (数学) · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: ベクトル空間とファイバー束 · 続きを見る »

ドーヴァー出版

ドーヴァー出版(英:Dover Publications)は、アメリカの出版社。本社はニューヨーク市にある。1941年設立。 元の出版元で絶版になった本の再出版で有名である。再出版する書籍にはパブリックドメインのものも多い。歴史的に意義深く質の高い本を丈夫な製本と安い値段で提供する方針のもとに、現在までに9,000タイトル以上の書籍を出版している。 古典文学、クラシック音楽の楽譜、18-19世紀の図版の再出版が特に有名である。また、学生から一般読者向けの数学・科学関連書籍や、軍事史、アメリカ史、奇術、チェスなど特定の分野の本の出版もしている。 著作権使用料無料(royalty-free)のデザイン・イラスト集を多く出版しており、画集的なものから、そのままコピーして使う素材集まで存在する。題材は19世紀以前のイラスト、アールヌーボーの意匠、伝統的な民族文様など多様である。CD-ROM付きのシリーズもある。コンピューター関連メディア企業オライリー社の初期の書籍表紙の動物の絵は、ドーヴァー出版の19世紀の版画図版から採用されたものである。.

新しい!!: ベクトル空間とドーヴァー出版 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: ベクトル空間とドット積 · 続きを見る »

ドイツ語

ドイツ語(ドイツご、独:Deutsch、deutsche Sprache)は、インド・ヨーロッパ語族・ゲルマン語派の西ゲルマン語群に属する言語である。 話者人口は約1億3000万人、そのうち約1億人が第一言語としている。漢字では独逸語と書き、一般に独語あるいは独と略す。ISO 639による言語コードは2字が de、3字が deu である。 現在インターネットの使用人口の全体の約3パーセントがドイツ語であり、英語、中国語、スペイン語、日本語、ポルトガル語に次ぐ第6の言語である。ウェブページ数においては全サイトのうち約6パーセントがドイツ語のページであり、英語に次ぐ第2の言語である。EU圏内では、母語人口は域内最大(ヨーロッパ全土ではロシア語に次いで多い)であり、話者人口は、英語に次いで2番目に多い。 しかし、歴史的にドイツ、オーストリアの拡張政策が主に欧州本土内で行われたこともあり、英語、フランス語、スペイン語のように世界語化はしておらず、基本的に同一民族による母語地域と、これに隣接した旧支配民族の使用地域がほとんどを占めている。上記の事情と、両国の大幅な領土縮小も影響して、欧州では非常に多くの国で母語使用されているのも特徴である。.

新しい!!: ベクトル空間とドイツ語 · 続きを見る »

ニコラ・ブルバキ

ニコラ・ブルバキ(Nicolas Bourbaki, ブールバキとも)は架空の数学者であり、主にフランスの若手の数学者集団のペンネームである。当初この数学者集団は秘密結社として活動し、ブルバキを一個人として活動させ続けた。日本で出版された38冊に及ぶ数学原論や、定期的に開催されるで有名。.

新しい!!: ベクトル空間とニコラ・ブルバキ · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ベクトル空間とダフィット・ヒルベルト · 続きを見る »

ベルナルト・ボルツァーノ

ベルナルト・ボルツァーノ(Bernard Placidus Johann Nepomuk Bolzano,1781年10月5日 - 1848年12月18日)は、チェコの哲学者、数学者、論理学者、宗教学者。ライプニッツの哲学に影響を受け、反カント哲学の立場から、客観主義的な論理学や哲学を打ち立てた。その成果は、フランツ・ブレンターノやエトムント・フッサールらに影響を与えた。彼の名前は、ベルナルド・ボルツァーノやドイツ語圏ではベルンハルト・ボルツァーノとも呼ばれている。.

新しい!!: ベクトル空間とベルナルト・ボルツァーノ · 続きを見る »

ベクトルのなす角

平面や空間上では、ふたつのベクトルのなす角は図形的に求めることができる。 そしてベクトルはさらに、図形とは無関係なベクトルに一般化されるが、この一般的なベクトルでも二つのベクトルのなす角を定義することができ、それにはベクトルの長さと内積を用いる。.

新しい!!: ベクトル空間とベクトルのなす角 · 続きを見る »

ベクトルの共変性と反変性

多重線型代数やテンソル解析における共変性(covariance)と反変性(contravariance)とは、ある幾何学的または物理的な対象に基底変換を施した際に、それがどのように変化をするかを表す。物理学では、基底は基準とする座標系の軸としばしば同一視される。 座標系のスケール変換は単位系の変更に関連する。たとえば、メートル m からセンチメートル cm にスケールを変更すると(つまり長さのスケールを 100 で割ると)、速度ベクトルの成分は 倍される。このように、座標系のスケール変換をしたとき、それとは逆 にベクトルのスケールが変換される振る舞いを示すことを反変性という。結果として、ベクトルは長さや長さと他の次元の積の次元を持つ。対照的にその双対ベクトル(余ベクトルと呼ばれる)の次元は一般に、長さの逆かそれに別の次元を掛けたものになる。 双対ベクトルの例としては勾配が挙げられる。勾配は空間微分によって定義され、長さの逆の次元を持つ。双対ベクトルの成分は座標系のスケールと同様に 変換される。このような振る舞いを共変性という。ベクトルおよび余ベクトルの成分は、一般の基底の変換に対しても同じような規則で変換される。.

新しい!!: ベクトル空間とベクトルの共変性と反変性 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: ベクトル空間とベクトル場 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: ベクトル空間とベクトル束 · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: ベクトル空間と列 (数学) · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: ベクトル空間と分配法則 · 続きを見る »

周波数スペクトル

鉄の輝線スペクトル 周波数スペクトル(しゅうはすうスペクトル、Frequency spectrum)とは、周波数、色、音声や電磁波の信号などと関係の深い概念である。光源は様々な色の混合であり、それぞれの色の強さは異なる。プリズムを使うと、光が周波数によって別々の方向に屈折し、虹のような色の帯が現れる。周波数を横軸として、それぞれの成分の強さをグラフに示したものが、光の周波数スペクトルである。可視光がどの周波数についても同じ強さであれば、その光は白く見え、スペクトルは平坦な線となる。 音源も同様に様々な周波数の成分の混合である。周波数が異なれば、人間の耳には違った音として聞こえ、特定の周波数の音だけが聞こえる場合、それが何らかの音符の音として識別される。雑音は一般に様々な周波数の音を含んでいる。このため、スペクトルが平坦な線となるノイズを(光の場合からのアナロジーで)ホワイトノイズと呼ぶ。ホワイトノイズという用語は、音声以外のスペクトルについても使用される。 ラジオやテレビの放送は、割り当てられた周波数の電磁波(チャンネル)を使用する。受信機のアンテナは、それらを周波数に関係なく受信し、チューナー部がそこから1つのチャンネルを選択する。アンテナの受信した全周波数について、周波数毎の強さをグラフに表せば、それが信号の周波数スペクトルとなる。.

新しい!!: ベクトル空間と周波数スペクトル · 続きを見る »

周期関数

数学における周期関数(しゅうきかんすう、periodic function)は、一定の間隔あるいは周期ごとに取る値が繰り返す関数を言う。最も重要な例として、 ラジアンの間隔で値の繰り返す三角関数を挙げることができる。周期関数は振動や波動などの周期性を示す現象を記述するものとして自然科学の各分野において利用される。周期的でない任意の関数は非周期的(ひしゅうきてき、aperiodic)であるという。.

新しい!!: ベクトル空間と周期関数 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: ベクトル空間とアメリカ数学会 · 続きを見る »

アンリ・ルベーグ

アンリ・レオン・ルベーグ(Henri Leon Lebesgue、1875年6月28日 ボーヴェ生まれ - 1941年7月26日 パリ没)は、フランスの数学者。17世紀以来の積分の概念の一般化を与えたルベーグ積分の理論で知られる。この理論は1902年にナンシー大学に提出した博士論文の中で構築された。.

新しい!!: ベクトル空間とアンリ・ルベーグ · 続きを見る »

アーベル圏

アーベル圏(アーベルけん、Abelian category)とはアレクサンドル・グロタンディークによって考案された、ホモロジー代数が展開できるよういくつかの公理を満たす圏である。元来、層係数のコホモロジー理論(層コホモロジー)と定数係数のコホモロジー理論は、定義および構成方法がまったくといっていいほど異なるにもかかわらず、理論の構造は酷似していた。そのため両者を統一的な観点から記述するために考案された。しかしながら知られているすべてのコホモロジー理論がアーベル圏上で展開できるわけではない。.

新しい!!: ベクトル空間とアーベル圏 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: ベクトル空間とアーベル群 · 続きを見る »

アーベル群の圏

数学の一分野である圏論におけるアーベル群の圏(あーべるぐんのけん、category of abelian groups) は、アーベル群を対象とし群準同型を射とする圏である。アーベル群の圏はアーベル圏の原型であり、実際に任意の小さいアーベル圏は に埋め込める。.

新しい!!: ベクトル空間とアーベル群の圏 · 続きを見る »

アーサー・ケイリー

アーサー・ケイリー(、、1821年8月16日 - 1895年1月26日)は、イギリスの数学者、弁護士。行列に関するケイリー・ハミルトンの定理で有名。.

新しい!!: ベクトル空間とアーサー・ケイリー · 続きを見る »

アフィン多様体

代数幾何学において,代数閉体 上のアフィン多様体とは, 次元アフィン空間 において, 係数の 変数の多項式の素イデアルを生成する有限族の零点集合である.素イデアルを生成するという条件を外したときの集合は(アフィン)代数的集合と呼ばれる.アフィン多様体のザリスキ開部分多様体はと呼ばれる. が素イデアル によって定義されるアフィン多様体のとき,商環 は の座標環と呼ばれる.この環はちょうど 上のすべての体の射|正則関数がなす集合である.言い換えると, の構造層の大域切断の空間である.はアフィン多様体のコホモロジー的特徴づけを与える.定理により代数多様体がアフィンであることと がすべての と 上のすべての準連接層 に対して成り立つことは同値である(cf.

新しい!!: ベクトル空間とアフィン多様体 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: ベクトル空間とアフィン空間 · 続きを見る »

アウグスト・フェルディナント・メビウス

アウグスト・フェルディナント・メビウス(August Ferdinand Möbius、1790年11月17日 - 1868年9月26日)は、ドイツの数学者(専門はトポロジー、整数論など)、理論天文学者。ザクセン=アンハルト地方生まれ。ライプツィヒ大学教授。カール・フリードリヒ・ガウスに師事した。 「メビウスの帯」(Möbius band、メビウスの輪ともいう)の発見で有名。実際にはドイツのフランクフルトの数学者ヨハン・ベネディクト・リスティング(Johann Benedict Listing)も同時期に発見している。論文の出版はリスティングのほうが4年早く、。 また彼の名をとったメビウス関数は、数論の重要な関数のひとつである。 世界で初めて四色問題を提出したといわれることがあるが、誤りである。メビウスが1840年に提出したのは「5つの国が互いに隣り合うことができるか?」という趣旨のパズルで、これは四色問題よりもはるかに易しい。四色問題の定式化は、1852年にフランシス・ガスリーが行った。 彼の名をとった小惑星もある(28516 Möbius)。.

新しい!!: ベクトル空間とアウグスト・フェルディナント・メビウス · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: ベクトル空間とウィリアム・ローワン・ハミルトン · 続きを見る »

ギリシア文字

リシア文字(ギリシアもじ)とは、ギリシア語を書き表すために用いられる文字である。現代ギリシア語では24文字からなる。.

新しい!!: ベクトル空間とギリシア文字 · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: ベクトル空間とクロス積 · 続きを見る »

グラム・シュミットの正規直交化法

ラム・シュミットの正規直交化法(グラム・シュミットのせいきちょっこうかほう、Gram–Schmidt orthonormalization)とは、計量ベクトル空間に属する線型独立な有限個のベクトルが与えられたとき、それらと同じ部分空間を張る正規直交系を作り出すアルゴリズムの一種。シュミットの直交化(ちょっこうか、orthogonalization)ともいう。Jørgen Pedersen Gramおよびエルハルト・シュミットにより名付けられた。変換行列は上三角行列に取ることができる。正規化する工程を省略すると、必ずしも正規でない直交系を得ることができる。.

新しい!!: ベクトル空間とグラム・シュミットの正規直交化法 · 続きを見る »

グリーン関数

リーン関数(グリーンかんすう)は.

新しい!!: ベクトル空間とグリーン関数 · 続きを見る »

ゲーム理論

2007a。 ゲーム理論(ゲームりろん、)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した 。元来は主流派経済学(新古典派経済学)への批判を目的として生まれた理論であったが、1980年代の「ゲーム理論による経済学の静かな革命」を経て、現代では経済学の中心的役割を担うようになった。 ゲーム理論の対象はあらゆる戦略的状況 (strategic situations)である。「戦略的状況」とは自分の利得が自分の行動の他、他者の行動にも依存する状況を意味し、経済学で扱う状況の中でも完全競争市場や独占市場を除くほとんどすべてはこれに該当する。さらにこの戦略的状況は経済学だけでなく経営学、政治学、法学、社会学、人類学、心理学、生物学、工学、コンピュータ科学などのさまざまな学問分野にも見られるため、ゲーム理論はこれらにも応用されている。 ゲーム理論の研究者やエンジニアはゲーム理論家(game theorist)と呼ばれる。.

新しい!!: ベクトル空間とゲーム理論 · 続きを見る »

コンパクト作用素

数学の一分野函数解析学においてコンパクト作用素(コンパクトさようそ、compact operator)とは、バナッハ空間 X から別のバナッハ空間 Y への線型作用素 L であって、X の任意の有界集合を Y の相対コンパクト集合へ写すようなもののことを言う。このような作用素は有界作用素、つまり連続写像でなければならない。 有界作用素 L で階数が有限なものは全てコンパクト作用素である。実際、無限次元空間上のコンパクト作用素のクラスは階数有限な作用素のクラスの自然な一般化である。X.

新しい!!: ベクトル空間とコンパクト作用素 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: ベクトル空間とコンパクト群 · 続きを見る »

コーシー列

解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。基本列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)、自己漸近列(じこぜんきんれつ)などとも呼ばれる。実数論において最も基本となる重要な概念の一つである。 各 ''n'' に対して順番に縦軸上にプロットしたコーシー列の例。 ''x''''n''.

新しい!!: ベクトル空間とコーシー列 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: ベクトル空間とシュレーディンガー方程式 · 続きを見る »

シュワルツ超函数

解析学におけるシュワルツ超函数(シュワルツちょうかんすう、distribution; 分布)あるいは超函数(generalized function; 広義の函数)は、函数の一般化となる数学的対象である。シュワルツ超函数の概念は、古典的な意味での導函数を持たない函数に対しても微分を可能とする。特に、任意の局所可積分函数は超函数の意味で微分可能である。シュワルツ超函数は偏微分方程式の弱解(広義の解)の定式化に広く用いられる。古典的な意味での解(真の解)が存在しないか構成が非常に困難であるような場合でも、その微分方程式の超函数解はしばしばより容易に求まる。シュワルツ超函数の概念は、多くの問題が自然に解や初期条件がディラック・デルタのような超函数となるような偏微分方程式として定式化される物理学や工学においても重要である。 広義の函数としての超函数 (generalized function) は1935年セルゲイ・ソボレフによって導入されたが、その後1940年代になって一貫した超函数論を展開するローラン・シュヴァルツによって再導入される。 超函数(distribution)の拡張の一つとして、佐藤超函数があるとみなすことができる。.

新しい!!: ベクトル空間とシュワルツ超函数 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ベクトル空間とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

新しい!!: ベクトル空間とジュゼッペ・ペアノ · 続きを見る »

ジョルダン標準形

ョルダン標準形(ジョルダンひょうじゅんけい、Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ一つのジョルダン標準形と相似である。名前はカミーユ・ジョルダンにちなむ。.

新しい!!: ベクトル空間とジョルダン標準形 · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: ベクトル空間とジョン・ワイリー・アンド・サンズ · 続きを見る »

スペクトル定理

数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。この対角化の概念は、有限次元空間上の作用素については比較的直ちに従うものであるが、無限次元空間上の作用素についてはいくつかの修正が必要となる。一般にスペクトル定理は、乗算作用素によって出来る限り簡単にモデル化される線型作用素のクラスを明らかにするものである。より抽象的に、スペクトル定理は可換なC*-環に関して述べたものである。その歴史的観点については、スペクトル理論を参照されたい。 スペクトル定理が適用できる作用素の例として、自己共役作用素や、より一般のヒルベルト空間上の正規作用素などがある。 スペクトル定理はまた、スペクトル分解(spectral decomposition)や固有値分解(eigenvalue decomposition)、(eigendecomposition)と呼ばれるような、作用素の定義されるベクトル空間のを与えるものである。 オーギュスタン=ルイ・コーシーは、自己随伴行列に関するスペクトル定理を証明した。すなわち、すべての実対称行列は対角化可能であることを証明した。その定理のジョン・フォン・ノイマンによる一般化は、今日の作用素論におけるもっとも重要な結果となっている。またコーシーは、行列式に関する系統的な理論を構築した第一人者である。 この記事では主に、ヒルベルト空間上の自己共役作用素に関する、最も簡単な種類のスペクトル定理について述べる。しかし、上記のように、スペクトル定理はヒルベルト空間上の正規作用素についても成立するものである。.

新しい!!: ベクトル空間とスペクトル定理 · 続きを見る »

ストーン=ワイエルシュトラスの定理

数学におけるストーン・ワイエルシュトラスの定理とは、局所コンパクト空間上の連続関数の代数系における部分代数の稠密性に関する定理である。カール・ワイエルシュトラスによって1885年に示されたワイエルシュトラスの近似定理がその原型であり、1937年にマーシャル・ストーンによって大幅に一般化された現在の形の結果が得られた。 ワイエルシュトラスの近似定理は、閉区間上のどんな連続関数も多項式関数によって任意の精度で一様に近似できることを述べている。 ストーン・ワイエルシュトラスの定理は、局所コンパクトハウスドルフ空間 X 上定められた複素数値の連続関数の代数系 C(X) の部分代数 A が一様収束の位相に関して稠密になるための十分条件として、.

新しい!!: ベクトル空間とストーン=ワイエルシュトラスの定理 · 続きを見る »

ステファン・バナフ

テファン・バナフ(Stefan Banach, 1892年3月30日 - 1945年8月31日)はポーランドの数学者。バナッハ空間論、実解析論、数学基礎論などで多大な業績をのこした。ワルシャワ学派、クラクフ学派、ルヴフ学派の3派で構成されるポーランド学派のうち、ルヴフ学派のオリジナルメンバーの一人。.

新しい!!: ベクトル空間とステファン・バナフ · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: ベクトル空間とスカラー · 続きを見る »

スカラー (数学)

線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー乗法(スカラー倍)が定義される。より一般に、実数全体に替えて任意の体、例えば複素数全体を用いてベクトル空間を定義することができるが、そのときのベクトル空間のスカラーとはその体の元のことを示すものということになる。 ベクトル空間の上にスカラー積演算(スカラー倍と混同してはいけない)が定義されれば、二つのベクトルを掛けてスカラーを得ることができる。スカラー積を備えたベクトル空間は内積空間と呼ばれる。 四元数の実部(実成分)のことをスカラー部(スカラー成分)とも呼ぶ。 厳密な言い方ではないが、例えばベクトルや行列、テンソルなどの一般には「複合的」な値で決まる量が、実際には一つの成分に還元されてしまうとき、例えば 1 × n 行列と n × 1 行列の積は厳密には 1 × 1 行列となるが、これをスカラーと見做すことがよく行われる。 行列のスカラー倍を行列の積として実現する「スカラー行列」は、単位行列の適当なスカラー k-倍 kI の形に書ける行列の総称として用いられる。.

新しい!!: ベクトル空間とスカラー (数学) · 続きを見る »

ソボレフ空間

数学においてソボレフ空間(ソボレフくうかん、Sobolev space)は、函数からなるベクトル空間で、函数それ自身とその与えられた階数までの導函数の ''Lp''-ノルムを組み合わせて得られるノルムを備えたものである。ここでいう微分を適当な弱い意味での微分と解釈することにより、ソボレフ空間は完備距離空間、したがってバナッハ空間を成す。直観的には、ソボレフ空間は(偏微分方程式のような応用範囲に対して)十分多くの導函数を持つ函数からなるバナッハ空間あるいはヒルベルト空間であって、函数の大きさと滑らかさの両方を測るようなノルムを備えたものということである。 ソボレフ空間の名称はロシア人数学者のセルゲイ・ソボレフに因む。ソボレフ空間の重要性は、偏微分方程式の解というものは古典的な意味での導函数を備える連続函数からなる古典的な空間の中ではなく、むしろソボレフ空間の中にあるとして捉えたほうが自然であるという事実にある。.

新しい!!: ベクトル空間とソボレフ空間 · 続きを見る »

タプル

タプルまたはチュープル(tuple)とは、複数の構成要素からなる組を総称する一般概念。 数学や計算機科学などでは通常、順序付けられた対象の並びを表すために用いられる。個別的には、n 個でできた組を英語で「n-tuple」と書き、日本語に訳す場合は通常「n 組」としている。タプルの概念そのものも組と呼ばれる場合がある。なお、 n-tuple は数学のタプルを意味するほか、同様に double、triple などの拡張として倍数詞の表現にも利用される(詳細は「倍#西洋数学における n 倍を表す表現」を参照)。.

新しい!!: ベクトル空間とタプル · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: ベクトル空間と円周率 · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: ベクトル空間と円柱 (数学) · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: ベクトル空間と内積 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: ベクトル空間と写像 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: ベクトル空間と写像の合成 · 続きを見る »

凸包

数学における凸包(とつほう、convex hull)または凸包絡(とつほうらく、convex envelope)は、与えられた集合を含む最小の凸集合である。例えば がユークリッド平面内の有界な点集合のとき、その凸包は直観的には をゴム膜で包んだときにゴム膜が作る図形として視認することができる。 精確に言えば、 の凸包は を含む全ての凸集合の交わり、あるいは同じことだが に属する点の凸結合全体の成す集合として定義される。後者の定式化であれば、凸包をユークリッド空間だけでなく任意の実線型空間や、より一般にに対して考えることができる。 平面上あるいは低次元ユークリッド空間内の有限点集合に対してその凸包を計算するアルゴリズム問題は、計算幾何学の基本的問題の一つである。.

新しい!!: ベクトル空間と凸包 · 続きを見る »

凸解析

凸解析 (とつかいせき) は、凸関数および凸集合を研究する数学の一分野である。最適化理論の領域の中の凸最小化によく応用される。.

新しい!!: ベクトル空間と凸解析 · 続きを見る »

凸集合

ユークリッド空間における物体が凸(とつ、convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。.

新しい!!: ベクトル空間と凸集合 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: ベクトル空間と全単射 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: ベクトル空間と全射 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: ベクトル空間と公理 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: ベクトル空間と公理的集合論 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: ベクトル空間と元 (数学) · 続きを見る »

剰余環

数学の一分野、環論における商環(しょうかん、quotient ring)、剰余環(じょうよかん、factor ring)あるいは剰余類環(じょうよるいかん、residue class ring)とは、群論における剰余群や線型代数学における商線型空間に類似した環の構成法およびその構成物である。すなわち、はじめに環 R とその両側イデアル I が与えられたとき、剰余環 R/I と呼ばれる新しい環が、I の全ての元が零元に潰れる(I による違いを「無視」するともいえる)ことで得られる。 注意: 剰余環は商環とも呼ばれるけれども、整域に対する商体(分数の体)と呼ばれる構成とは異なるし、全商環(商の環、これは環の局所化の一種)とも異なる。.

新しい!!: ベクトル空間と剰余環 · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: ベクトル空間と剰余類 · 続きを見る »

固有多項式

線型代数学において、固有多項式(こゆうたこうしき、characteristic polynomial)あるいは特性多項式(とくせいたこうしき)とは、正方行列に付随して得られるある多項式を指し、その行列の固有値、行列式、トレース、最小多項式といった重要な量と関連している。相似な行列に対しては同じ固有多項式が定まる。 またグラフ理論において、グラフの固有多項式とは、グラフの隣接行列の固有多項式のことを指す。この多項式はグラフの不変量となっている。すなわち同型なグラフは同じ固有多項式を持つ。.

新しい!!: ベクトル空間と固有多項式 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: ベクトル空間と固有値 · 続きを見る »

固有状態

量子力学において、ある物理量 の固有状態 (eigenstate) とは、その物理量(オブザーバブル)を表すエルミート演算子 \hat の固有ベクトル \ \ のことである。 よって物理量 の固有状態 \ \ は以下の固有値方程式を満たす。 一般に、量子系について物理量の測定を行った時、どんなに同じように状態を用意して同じように測定をしても、測定値は測定によってバラバラである。しかし系が\hatの固有値 a_n \ に属する固有状態 |a_n\rangle \ であるときは、物理量 \hat を観測すれば必ず a_n \ という値を得る(オブザーバブルを参照)。よって「物理量 \hat の固有状態 |a_n\rangle \ は、物理量 \hat が確定した値 a_n を持っている状態である」と解釈できる。 また \hat はエルミート演算子なので、その固有値はすべて実数である。.

新しい!!: ベクトル空間と固有状態 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: ベクトル空間と四元数 · 続きを見る »

矢印

印(やじるし)とは主に方向を指し示すのに使われる記号。 代表的なものに←、↑、→、↓があり、それぞれ左、上、右、下を表す。 信号機で使われている矢印 矢印という名前は読んで字のごとく、矢を表している。これは矢の、一度特定の方向に放たれたら地面に落ちるまで真っ直ぐに進む性質を想起させるため、世界中で一般的に使われている。.

新しい!!: ベクトル空間と矢印 · 続きを見る »

科学

科学(かがく、scientia、 仏:英:science、Wissenschaft)という語は文脈に応じて多様な意味をもつが、おおむね以下のような意味で用いられている。.

新しい!!: ベクトル空間と科学 · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: ベクトル空間と空間 (数学) · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: ベクトル空間と空間ベクトル · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: ベクトル空間と算術 · 続きを見る »

米田の補題

米田の補題(よねだのほだい、Yoneda lemma)とは、小さなhom集合をもつ圏 C について、共変hom関手 hom(A, -): C → Set から集合値関手 F: C → Set への自然変換と、集合である対象 F(A) の要素との間に一対一対応が存在するという定理である。名称は米田信夫に因む。.

新しい!!: ベクトル空間と米田の補題 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: ベクトル空間と級数 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: ベクトル空間と線型代数学 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: ベクトル空間と線型位相空間 · 続きを見る »

線型包

数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、linear hull; 線型苞)もしくは生成する (generated, spanned) 部分空間は、その集合を含む線型部分空間すべての交わりである。したがって、その集合を含む最小の部分空間である。また、それはその集合に属するベクトルのすべての線型結合からなる集合として実現される。.

新しい!!: ベクトル空間と線型包 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ベクトル空間と線型写像 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: ベクトル空間と線型結合 · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

新しい!!: ベクトル空間と線型独立 · 続きを見る »

線型計画問題

線型計画問題 (せんけいけいかくもんだい、英語:linear programming problem) とは、最適化問題において、目的関数が線型関数で、なおかつ線型関数の等式と不等式で制約条件が記述できる問題である。この問題を解く手法を線型計画法という。.

新しい!!: ベクトル空間と線型計画問題 · 続きを見る »

線型近似

数学における線型近似(せんけいきんじ、linear approximation)とは、一般の関数を一次関数を用いて(より正確に言えばアフィン写像を用いて)近似することである。 例えば、2回微分可能な一変数関数 f は、テイラーの定理の n.

新しい!!: ベクトル空間と線型近似 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

新しい!!: ベクトル空間と線型汎函数 · 続きを見る »

線型方程式系

数学において、線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式等とも呼ぶこともある。.

新しい!!: ベクトル空間と線型方程式系 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: ベクトル空間と線型性 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: ベクトル空間と総和 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: ベクトル空間と群作用 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: ベクトル空間と群論 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: ベクトル空間と群準同型 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: ベクトル空間と結合法則 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: ベクトル空間と結晶 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: ベクトル空間と環 (数学) · 続きを見る »

環のスペクトル

抽象代数学と代数幾何学において,可換環 のスペクトル とは, のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる..

新しい!!: ベクトル空間と環のスペクトル · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: ベクトル空間と環上の加群 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: ベクトル空間と熱伝導 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: ベクトル空間と畳み込み · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ベクトル空間と特殊相対性理論 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: ベクトル空間と直交 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: ベクトル空間と直交座標系 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: ベクトル空間と直線 · 続きを見る »

直線束

数学における直線束(ちょくせんそく、line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。.

新しい!!: ベクトル空間と直線束 · 続きを見る »

階数・退化次数の定理

数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、)とは、最も簡単な場合、ある行列の階数(rank)と退化次数(nullity)の和は、その行列の列の数に等しいということを述べた定理である。特に、A がある体上の m×n 行列(行の数が m で、列の数が n)であるなら、 が成立する。 この定理は線型写像に対しても同様に適用される。V と W をある体上のベクトル空間とし、T: V → W をある線型写像とする。このとき、T の階数は T の像の次元であり、T の退化次数は T の核の次元である。したがって、 が成立する。あるいは、同値であるが が成立する。これは実際、V と W が無限次元であることも許しているため、前述の行列の場合よりもより一般的な定理となっている。 この定理の内容は、あるいは後述の証明を用いることで、次元のみならず、空間の間の同型写像に関する内容へと精練することが出来る。 より一般的に、線型代数学の基本定理によって関連付けられる像、核、余像、余核について考えることが出来る。.

新しい!!: ベクトル空間と階数・退化次数の定理 · 続きを見る »

音声符号化

音声符号化(おんせいふごうか、speech coding)は、アナログの音声信号をデジタル符号化するための技術で、音声の性質を使ってデータ圧縮を行うことに特徴がある。音楽などの一般的なオーディオ信号を対象とするMP3などのオーディオ圧縮技術は、人間の聴覚心理学上の特性やデータの冗長性を利用して不要なデータの除去を行うが、音声符号化ではそれに加えて音声固有のモデル化を行うことができるため、さらにビットレートを下げることが可能である。 音声符号化の技術は異なった多くの分野で使われている。代表的なのは、携帯電話、衛星電話、VoIPなど通信の分野だが、暗号化、放送、記録(Blu-ray Discなど)の分野や音声応答システムなどの音声処理の分野などで使用されている。.

新しい!!: ベクトル空間と音声符号化 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: ベクトル空間と違いを除いて · 続きを見る »

領域 (解析学)

数学の解析学の分野における領域(りょういき、)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。 領域の境界の滑らかさについては、その領域上で定義される関数が満足する様々な性質に応じて、様々な要求がなされる。例えば、積分定理(グリーンの定理やストークスの定理)やソボレフ空間の性質、あるいは境界上の測度やの空間(境界上で定義される滑らかな関数の空間)を定義するために、そのような要求がなされる。広く扱われている領域としては、連続な境界を備える領域、リプシッツ領域、''C''1-級の境界を備える領域などがある。 有界領域(bounded domain)とは有界集合であるような領域のことを言い、対して有界領域の補集合の内部のことを外部(exterior)あるいは外部領域(external domain)と言う。 複素解析の分野における複素領域(complex domain)あるいは単純に領域(domain)とは、複素平面 内の任意の連結開部分集合のことを言う。例えば、複素平面全体も複素領域であり、開単位円や開上半平面なども複素領域である。正則関数に対しては、しばしば、複素領域が定義域の役割を担うことがある。 多変数複素関数の研究においては、 の任意の連結開部分集合を含むように、定義域の拡張が行われる。.

新しい!!: ベクトル空間と領域 (解析学) · 続きを見る »

順序対

数学における順序対(じゅんじょつい、ordered pair)は、座標 (coordinate) や射影 (projection) とも呼ばれるふたつの成分 (entry) を持つ対象を総称するものである。順序対では常に、第一成分(第一座標、左射影)と第二成分(第二座標、右射影)の対によって対象が一意に決定される。第一座標が a で第二座標が b であるような順序対は通常、(a, b) で表される。「順序」対という呼称は、a.

新しい!!: ベクトル空間と順序対 · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: ベクトル空間と順序体 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: ベクトル空間と順序集合 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: ベクトル空間と表現論 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: ベクトル空間と行列 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: ベクトル空間と行列の乗法 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: ベクトル空間と行列式 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: ベクトル空間と複素平面 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: ベクトル空間と複素共役 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ベクトル空間と複素数 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: ベクトル空間と解析学 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: ベクトル空間と解析幾何学 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: ベクトル空間と角度 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: ベクトル空間と計量テンソル · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: ベクトル空間と計量ベクトル空間 · 続きを見る »

高速フーリエ変換

速フーリエ変換(こうそくフーリエへんかん、fast Fourier transform, FFT)は、離散フーリエ変換(discrete Fourier transform, DFT)を計算機上で高速に計算するアルゴリズムである。高速フーリエ変換の逆変換を逆高速フーリエ変換(inverse fast Fourier transform, IFFT)と呼ぶ。.

新しい!!: ベクトル空間と高速フーリエ変換 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: ベクトル空間と超越数 · 続きを見る »

距離

距離(きょり、Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。.

新しい!!: ベクトル空間と距離 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: ベクトル空間と距離空間 · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: ベクトル空間と近傍 (位相空間論) · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: ベクトル空間と部分集合 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: ベクトル空間と関数 (数学) · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: ベクトル空間と関数の台 · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: ベクトル空間と関数空間 · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: ベクトル空間と関数解析学 · 続きを見る »

閉包 (位相空間論)

数学において、位相空間の部分集合の閉包(へいほう、closure)は、その部分集合の触点(部分集合の点とそれらの集積点)を全て集めて得られる集合である。直観的には、部分集合の触点とはその部分集合の「いくらでも近く」にある点と考えられる。閉包の概念は様々な意味で開核の概念の双対になっている。.

新しい!!: ベクトル空間と閉包 (位相空間論) · 続きを見る »

閉性

数学において、与えられた集合がある演算あるいは特定の性質を満たす関係について閉じている (closed) あるいはその演算がその集合上で閉性(へいせい、closure property; 包性)を持つとは、その集合の元に対して演算を施した結果がふたたびもとの集合に属することを言う。複数の演算からなる集まりが与えられた場合も、それら演算の族に関して閉じているとは、それが個々の演算すべてに関して閉じていることを言う。.

新しい!!: ベクトル空間と閉性 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ベクトル空間と量子力学 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: ベクトル空間と自己準同型 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: ベクトル空間と自由加群 · 続きを見る »

離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

新しい!!: ベクトル空間と離散フーリエ変換 · 続きを見る »

離散コサイン変換

DFTとの比較。左はスペクトル、右はヒストグラム。低周波域での相違を示すため、スペクトルは 1/4 だけ示してある。DCTでは、パワーのほとんどが低周波領域に集中していることがわかる。 離散コサイン変換(りさんコサインへんかん)は、離散信号を周波数領域へ変換する方法の一つであり、信号圧縮に広く用いられている。英語の discrete cosine transform の頭文字から DCT と呼ばれる。以下DCTと略す。.

新しい!!: ベクトル空間と離散コサイン変換 · 続きを見る »

零ベクトル

零ベクトルあるいはゼロベクトルとは、ベクトルの加法においての単位元。直感的な理解においては大きさが0で向きを持たないベクトル。 太字で0(あるいは黒板太字)と表される。主に高校数学においては\vecのように上に矢印を置いて表されることがある。もちろん通常のベクトルのように要素を直接表記する場合もあり、例えば(1 -1)T+(-1 1)Tの解である(0 0)Tは零ベクトルの一つ。 Category:線型代数学 Category:数学に関する記事 Category:ベクトル.

新しい!!: ベクトル空間と零ベクトル · 続きを見る »

零空間

数学、とくに関数解析学において、線型作用素 A: V → W の零空間(ぜろくうかん、れいくうかん、null space)あるいは核空間(かくくうかん、kernel space)とは、 のことである。Nul(A) は N(A) や Ker(A) などとも書かれる。とくに Ker は零空間が線型写像としての A の核 (kernel) にあたることを意味するのであるが、零空間という語を用いる文脈においては、核ということばを熱核 などの積分核に対して用いていることがほとんどであろうから注意されたい。 また、零空間という語をもちいる文脈においては、線型写像の像 は値域 と呼ばれ、線型作用素 A の値域は Ran(A) や R(A) と綴るのが通例のようである。 零空間は、ベクトル空間 V の部分空間である。さらに、 商空間 V/(Ker A) は、 A の像 Ran(A) に同型である; 特に次元について が成り立つ。 Nul A.

新しい!!: ベクトル空間と零空間 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ベクトル空間と集合 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: ベクトル空間と速度 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: ベクトル空間と連続写像 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: ベクトル空間と逆写像 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: ベクトル空間と逆元 · 続きを見る »

逆格子ベクトル

逆格子ベクトル(ぎゃくこうしべくとる、Reciprocal lattice vector)とは、物性物理における問題、特に結晶構造の解析やバンド計算等に用いる数学的な概念の一つで、波数の概念の一般化である。.

新しい!!: ベクトル空間と逆格子ベクトル · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: ベクトル空間と虚数単位 · 続きを見る »

JPEG

JPEG(ジェイペグ、Joint Photographic Experts Group)は、コンピュータなどで扱われる静止画像のデジタルデータを圧縮する方式のひとつ。またはそれをつくった組織 (ISO/IEC JTC 1/SC 29/WG 1, Joint Photographic Experts Group) の略称であり、アクロニムである。JPEG方式による画像ファイルにつけられる拡張子はjpgが多く使われるほか、jpeg等が使われる場合もある。 一般的に非可逆圧縮の画像フォーマットとして知られている。可逆圧縮形式もサポートしているが、可逆圧縮は特許などの関係でほとんど利用されていない。1992年9月18日に最初のリリースが行われた比較的古いフォーマットであり、欠点を克服すべく数々の後継規格が提案されてきたが、企業間の思惑なども絡み、いずれも主流になるには至らず、JPEGが現在も静止画像規格の主流である。 標準では、特定の種類の画像の正式なフォーマットがなく、JFIF形式(マジックナンバー上は、6バイト目から始まる形式部分にJFIFと記されているもの)が事実上の標準ファイルフォーマットとなっている。動画を記録可能にしたものにMotion JPEGがある。立体視 (3D) 用には、ステレオJPEG (JPS) フォーマットがある。 デジタルカメラの記録方式としてもよく利用されているが、デジタルカメラでは様々なオプション機能を使い、JFIFを拡張したExchangeable image file format (EXIF) などのフォーマットとしてまとめられている。.

新しい!!: ベクトル空間とJPEG · 続きを見る »

K理論

K-理論(Kりろん、K-theory)は、大まかには、大きな行列を用いて定まる空間の不変量についての理論である。位相空間やスキーム上で定義されたベクトル束で生成される環の研究に端を発する。代数トポロジーにおける K-理論は、位相的 K-理論と呼ばれる一種のである。代数学や代数幾何学における K-理論は代数的 K-理論と呼ばれる。また、K-理論は作用素環論においても基本的な道具である。 K-理論は、位相空間やスキームに対して環を対応させる K-函手の族を構成する。これらの環は、元の空間やスキームの構造のいくつかの側面を反映している。代数トポロジーにおいてホモロジーやコホモロジーといった群への函手を考えるのと同様に、元の空間やスキームを直接調べるよりもこのような環の方が容易に種々の性質をしらべることができる。K-理論のアプローチから得られる結果の例としては、(Bott periodicity)やアティヤ=シンガーの指数定理や(Adams operation)がある。 高エネルギー物理学では、K-理論、特に(twisted K-theory)は、II-型弦理論に現れる。そこでは、K-理論が、Dブレーンや(Ramond–Ramond field)の強さ、一般化された複素多様体上のスピノルを分類すると予想されている。物性物理学では、K-理論は、トポロジカル絶縁体、超伝導や安定フェルミ面を分類することに使われる。詳細は(K-theory (physics))の項を参照。.

新しい!!: ベクトル空間とK理論 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ベクトル空間とLp空間 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: ベクトル空間と抽象代数学 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: ベクトル空間と接ベクトル空間 · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: ベクトル空間と接束 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: ベクトル空間と恒等写像 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: ベクトル空間と束 (束論) · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: ベクトル空間と核 (代数学) · 続きを見る »

標準基底

線型代数学における標準基底(ひょうじゅんきてい、standard basis, canonical basis)または自然基底 (natural basis) は直交座標系の各軸方向に向かう単位ベクトルからなるユークリッド空間の基底を言う。例えばユークリッド平面の標準基底は であり、三次元ユークリッド空間の標準基底は で与えられる。ここで、各ベクトル ex, ey, ez はそれぞれ x-軸方向、y-軸方向、z-軸方向を向いている。この基底を表すのによく用いられる記法として、,,, などを挙げることができる。単位ベクトルであることを強調するためにサーカムフレックス(キャレット)を載せることもある。 ここでいう基底は、それらのベクトルの線型結合として、任意のベクトルがそれぞれただ一通りに表されるという意味においていう。例えば三次元ベクトル v は必ず なる形に書くことができて、スカラー vx, vy, vz は v の座標成分になる。.

新しい!!: ベクトル空間と標準基底 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: ベクトル空間と標本化 · 続きを見る »

次数付きベクトル空間

数学における次数付きベクトル空間(じすうつき­ベクトル­くうかん、graded vector space; 次数ベクトル空間、次数付き線型空間、次数線型空間)は、 (grading) と呼ばれる追加の構造を持つベクトル空間であり、次数付けにより適当な線型部分空間の直和として記述される。.

新しい!!: ベクトル空間と次数付きベクトル空間 · 続きを見る »

正弦波

正弦波(赤色)と余弦波(青色)の関数グラフ 正弦波(せいげんは、sine wave、sinusoidal wave)は、正弦関数として観測可能な周期的変化を示す波動のことである。その波形は正弦曲線(せいげんきょくせん、sine curve)もしくはシヌソイド (Sinusoid) と呼ばれ、数学、信号処理、電気工学およびその他の分野において重要な働きをする。.

新しい!!: ベクトル空間と正弦波 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: ベクトル空間と正方行列 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: ベクトル空間と波動関数 · 続きを見る »

添字集合

数学における添字集合(そえじしゅうごう、index set)は、別の集合の元に対して「ラベル」付けを行うときの、「ラベル」の集合を言う。 各「ラベル」は指数、添数、添字 (index) などと呼ばれる。添字となるものは、列の項の番号であったり、媒介変数であったりと様々である。添字付けられた族のラベル付けや次数付き代数系の次数付けの添字として使うものは、数学的には種類はなんでもよく、適当な集合 Λ を選んで、その元 λ ∈ Λ を添字にすることができる。添字付けの数学的な意味は、添字集合からの写像である。 多くの場合、添字は添字記法と呼ばれる、典型的には記号の上方や下方に置かれ、本文に用いられる文字よりやや小さな文字や数字を用いる記法に従って書かれる。添字が、上方に置かれるとき上付き添字(うえつきそえじ、superscript)、下方に置かれるとき下付き添字(したつきそえじ、subscript)と呼ばれる。 特定の添字集合による添字付けには、特別な呼び方をすることがある。たとえば、I が自然数からなる(つまり I ⊂ N となる)とき、集合 S の元の I による添字付け は S の元への賦番、あるいは S の元の数え上げといい、集合 S の元がこのような添字付けによって尽くされるならば、S は可賦番であるという。 有向集合による添字付けは有向点族(ネット)の概念に用いられる。.

新しい!!: ベクトル空間と添字集合 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: ベクトル空間と準同型 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: ベクトル空間と滑らかな関数 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: ベクトル空間と濃度 (数学) · 続きを見る »

指示関数

数学において指示関数(しじかんすう、indicator function)、集合の定義関数、特性関数(とくせいかんすう、characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である。.

新しい!!: ベクトル空間と指示関数 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: ベクトル空間と指数関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: ベクトル空間と有理数 · 続きを見る »

最小多項式 (体論)

数学の分野である体論において、最小多項式(さいしょうたこうしき、minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F の元である。E の元 α が与えられたとき、Jα を f(α).

新しい!!: ベクトル空間と最小多項式 (体論) · 続きを見る »

最適化

最適化(さいてきか、Optimization)とは、関数・プログラム・製造物などを最適な状態に近づけることをいう。具体的には次のような操作を意味する。.

新しい!!: ベクトル空間と最適化 · 続きを見る »

断面 (位相幾何学)

位相幾何学の分野におけるファイバー束の断面(だんめん)あるいは切断(せつだん、section)若しくは横断面 (cross-section) とは、底空間をファイバー束の中に実現する写像或いはその像をいう。.

新しい!!: ベクトル空間と断面 (位相幾何学) · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: ベクトル空間と擬リーマン多様体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ベクトル空間と数学 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: ベクトル空間と数学的構造 · 続きを見る »

数ベクトル空間

数ベクトル空間(すうべくとるくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間数空間のことを座標空間と呼ぶこともあるが、「座標系を備えた空間」という意味で座標空間と呼ぶこともあるので紛らわしい(の項も参照)。)を自然にベクトル空間と見たものである。.

新しい!!: ベクトル空間と数ベクトル空間 · 続きを見る »

数列の極限

正整数 が大きくなるにつれて、値 は にいくらでも近くなる。「数列 の極限は である」という。 数学において、数列や点列の極限(limit of a sequence)は数列や点列の項が「近づく」値であるCourant (1961), p. 29.

新しい!!: ベクトル空間と数列の極限 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: ベクトル空間と数論 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: ベクトル空間と曲率 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: ベクトル空間と曲線 · 続きを見る »

普遍代数学

数学の一分野としての普遍代数学(ふへんだいすうがく、Universal algebra)あるいは一般代数学(いっぱんだいすうがく、general algebra)は、構造の「モデル」となる例についてではなく代数的構造そのものについて研究する分野である。例えば、その研究対象として個々の群を考えるのではなく群論そのものをその研究対象とするのである。.

新しい!!: ベクトル空間と普遍代数学 · 続きを見る »

普遍性

数学の様々な分野において、ある特定の状況下にて一意に射を定めるような抽象的性質が、特定の構成を定義、あるいは特徴づけたりする事がしばしばある。このような性質を普遍性(universal property)と呼ぶ。普遍性は圏論を用いて抽象的に論考される。 結果として、我々は普遍性の一般的な扱い方を得ることになる。例えば、群の直積や直和、自由群、積位相, ストーン-チェックのコンパクト化, テンソル積, 逆極限 と 順極限, 核と余核, 引き戻し, 押し出し および イコライザ、など。.

新しい!!: ベクトル空間と普遍性 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: ベクトル空間と時空 · 続きを見る »

1636年

記載なし。

新しい!!: ベクトル空間と1636年 · 続きを見る »

17世紀

ルイ14世の世紀。フランスの権勢と威信を示すために王の命で壮麗なヴェルサイユ宮殿が建てられた。画像は宮殿の「鏡の間」。 スペインの没落。国王フェリペ4世の時代に「スペイン黄金時代」は最盛期を過ぎ国勢は傾いた。画像は国王夫妻とマルガリータ王女を取り巻く宮廷の女官たちを描いたディエゴ・ベラスケスの「ラス・メニーナス」。 ルネ・デカルト。「我思う故に我あり」で知られる『方法序説』が述べた合理主義哲学は世界の見方を大きく変えた。画像はデカルトとその庇護者であったスウェーデン女王クリスティナ。 プリンキピア』で万有引力と絶対空間・絶対時間を基盤とするニュートン力学を構築した。 オランダの黄金時代であり数多くの画家を輩出した。またこの絵にみられる実験や観察は医学に大きな発展をもたらした。 チューリップ・バブル。オスマン帝国からもたらされたチューリップはオランダで愛好され、その商取引はいつしか過熱し世界初のバブル経済を生み出した。画像は画家であり園芸家でもあったエマヌエル・スウェールツ『花譜(初版は1612年刊行)』の挿絵。 三十年戦争の終結のために開かれたミュンスターでの会議の様子。以後ヨーロッパの国際関係はヴェストファーレン体制と呼ばれる主権国家を軸とする体制へと移行する。 チャールズ1世の三面肖像画」。 ベルニーニの「聖テレジアの法悦」。 第二次ウィーン包囲。オスマン帝国と神聖ローマ帝国・ポーランド王国が激突する大規模な戦争となった。この敗北に続いてオスマン帝国はハンガリーを喪失し中央ヨーロッパでの優位は揺らぐことになる。 モスクワ総主教ニーコンの改革。この改革で奉神礼や祈祷の多くが変更され、反対した人々は「古儀式派」と呼ばれ弾圧された。画像はワシーリー・スリコフの歴史画「貴族夫人モローゾヴァ」で古儀式派の信仰を守り致命者(殉教者)となる貴族夫人を描いている。 スチェパン・ラージン。ロシアではロマノフ朝の成立とともに農民に対する統制が強化されたが、それに抵抗したドン・コサックの反乱を率いたのがスチェパン・ラージンである。画像はカスピ海を渡るラージンと一行を描いたワシーリー・スリコフの歴史画。 エスファハーンの栄華。サファヴィー朝のシャー・アッバース1世が造営したこの都市は「世界の半分(エスファハーン・ネスフェ・ジャハーン・アスト)」と讃えられた。画像はエスファハーンに建てられたシェイク・ロトフォラー・モスクの内部。 タージ・マハル。ムガル皇帝シャー・ジャハーンが絶世の美女と称えられた愛妃ムムターズ・マハルを偲んでアーグラに建てた白亜の霊廟。 アユタヤ朝の最盛期。タイでは中国・日本のみならずイギリスやオランダの貿易船も来訪し活況を呈した。画像はナーラーイ王のもとで交渉をするフランス人使節団(ロッブリーのプラ・ナーライ・ラーチャニーウエート宮殿遺跡記念碑)。 イエズス会の中国宣教。イエズス会宣教師は異文化に対する順応主義を採用し、中国の古典教養を尊重する漢人士大夫の支持を得た。画像は『幾何原本』に描かれたマテオ・リッチ(利瑪竇)と徐光啓。 ブーヴェの『康熙帝伝』でもその様子は窺える。画像は1699年に描かれた読書する40代の康熙帝の肖像。 紫禁城太和殿。明清交代の戦火で紫禁城の多くが焼亡したが、康熙帝の時代に再建がなされ現在もその姿をとどめている。 台湾の鄭成功。北京失陥後も「反清復明」を唱え、オランダ人を駆逐した台湾を根拠地に独立政権を打ち立てた。その母が日本人だったこともあり近松門左衛門の「国姓爺合戦」などを通じて日本人にも広く知られた。 江戸幕府の成立。徳川家康は関ヶ原の戦いで勝利して征夷大将軍となり、以後260年余にわたる幕府の基礎を固めた。画像は狩野探幽による「徳川家康像」(大阪城天守閣蔵)。 日光東照宮。徳川家康は死後に東照大権現の称号を贈られ日光に葬られた。続く三代将軍徳川家光の時代までに豪奢で絢爛な社殿が造営された。画像は「日暮御門」とも通称される東照宮の陽明門。 歌舞伎の誕生。1603年に京都北野社の勧進興業で行われた出雲阿国の「かぶき踊り」が端緒となり、男装の女性による奇抜な演目が一世を風靡した。画像は『歌舞伎図巻』下巻(名古屋徳川美術館蔵)に描かれた女歌舞伎の役者采女。 新興都市江戸。17世紀半ばには江戸は大坂や京都を凌ぐ人口を擁するまでとなった。画像は明暦の大火で焼失するまで威容を誇った江戸城天守閣が描かれた「江戸図屏風」(国立歴史民俗博物館蔵)。 海を渡る日本の陶磁器。明清交代で疲弊した中国の陶磁器産業に代わり、オランダ東インド会社を通じて日本から陶磁器が数多く輸出された。画像は1699年に着工されたベルリンのシャルロッテンブルク宮殿の「磁器の間」。 海賊の黄金時代。西インド諸島での貿易の高まりはカリブ海周辺に多くの海賊を生み出した。画像はハワード・パイルが描いた「カリブ海のバッカニーア」。 スペイン副王支配のリマ。リマはこの当時スペインの南米支配の拠点であり、カトリック教会によるウルトラバロックとも呼ばれる壮麗な教会建築が並んだ。画像は1656年の大地震で大破したのちに再建されたリマのサン・フランシスコ教会・修道院。 17世紀(じゅうしちせいき、じゅうななせいき)は、西暦1601年から西暦1700年までの100年間を指す世紀。.

新しい!!: ベクトル空間と17世紀 · 続きを見る »

1804年

記載なし。

新しい!!: ベクトル空間と1804年 · 続きを見る »

1827年

記載なし。

新しい!!: ベクトル空間と1827年 · 続きを見る »

1844年

記載なし。

新しい!!: ベクトル空間と1844年 · 続きを見る »

1857年

記載なし。

新しい!!: ベクトル空間と1857年 · 続きを見る »

1867年

記載なし。

新しい!!: ベクトル空間と1867年 · 続きを見る »

1888年

記載なし。

新しい!!: ベクトル空間と1888年 · 続きを見る »

1920年

記載なし。

新しい!!: ベクトル空間と1920年 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: ベクトル空間と19世紀 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: ベクトル空間と3次元 · 続きを見る »

ここにリダイレクトされます:

実ベクトル空間線形空間線型空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »