ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

順序体

索引 順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

51 関係: 可換体同型写像向き実閉体実数実数空間完全不連結空間乗法群二項関係代数的数位相体位相空間形式的に実な体体の拡大ハンス・ハーンハウスドルフ空間ローラン級数ダフィット・ヒルベルトベクトル空間アメリカ数学会アルキメデスの性質オットー・ヘルダークラス (集合論)コンパクト空間ストーンの表現定理内積凸解析全順序積位相無限小相対位相非アルキメデス順序体順序環複素数超実数部分群自乗自然数離散空間集合連続写像虚数単位P進数推移関係標数有理関数有理数有限加法族有限体数学...数ベクトル空間 インデックスを展開 (1 もっと) »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 順序体と可換体 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 順序体と同型写像 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: 順序体と向き · 続きを見る »

実閉体

数学における実閉体(じつへいたい、real closed field)は実数体と一階の性質が同じである体を言う。実数体、実代数的数体、超実数体などがその例を与える。.

新しい!!: 順序体と実閉体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 順序体と実数 · 続きを見る »

実数空間

数学において実 -次元数空間(すうくうかん、n-space)は実変数の -組を一つの変数であるかのように扱うことを許す座標空間である。太字の R の右肩に n を置いた で表す(または黒板太字を用いて とも、プレーンテキストでは とも書く)。さまざまな次元の が純粋数学や応用数学、あるいは物理学などの多くの分野で利用される。実 -次元数空間は実線型空間の原型例であり、n-次元ユークリッド空間を表現するものとしてよく用いられる。この事実から、幾何学的な暗喩が に対して広く用いられる(具体的には を平面、および を空間として扱うなど)。.

新しい!!: 順序体と実数空間 · 続きを見る »

完全不連結空間

位相空間論やそれに関わる分野において、完全不連結空間 (totally disconnected space) は非自明な連結部分集合を持たないという意味で最も不連結な位相空間である。すべての位相空間において空集合と1点集合は連結である。完全不連結空間においてはこれらしか連結部分集合がない。 完全不連結空間の重要な例の1つはカントール集合である。別の例は ''p''-進数体 Qp で、代数的整数論において重要な役割を果たす。.

新しい!!: 順序体と完全不連結空間 · 続きを見る »

乗法群

数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する:.

新しい!!: 順序体と乗法群 · 続きを見る »

二項関係

数学において、二項関係(にこうかんけい、binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 の部分集合を、集合 上の二項関係と呼ぶ。あるいはもっと一般に、二つの集合 に対して、 と との間の二項関係とは、直積 の部分集合のことをいう。 二項関係の一つの例は素数全体の成す集合 と整数全体の成す集合 の間の整除関係である。この整除関係では任意の素数 は、 の倍数である任意の整数 に関係を持ち、倍数でない整数には関係しないものとして扱われる。例えば、素数 が関係を持つ整数には などが含まれるが や は含まれない。同様に素数 が関係する整数として などが挙げられるが、 や はそうではない。 二項関係は数学のさまざまな分野で用いられ、不等関係、恒等関係、算術の整除関係、初等幾何学の合同関係、グラフ理論の隣接関係、線型代数学の直交関係などのさまざまな概念が二項関係として定式化することができる。また、写像の概念を特別な種類の二項関係として定義することもできる。二項関係は計算機科学においても重用される。 二項関係はn-項関係 (各 -番目の成分が関係の -番目の始集合 からとられているようなn-組からなる集合)で とした特別の場合である。 ある種の公理的集合論では(集合の一般化としての)類の上の関係を考えることができる。このような拡張は、集合論における元の帰属関係や包含関係の概念(に限った話ではないが)のモデル化を、ラッセルの逆理のような論理矛盾に陥らずに行うために必要である。.

新しい!!: 順序体と二項関係 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 順序体と代数的数 · 続きを見る »

位相体

位相体(いそうたい、topological field)とは、密着位相ではない位相が入った位相空間であり、加法、乗法、および 0 以外の元に対する除法が連続となる体のことである。従って、位相体 K は加法に対する位相群であり、K× は乗法に対する位相群となる。.

新しい!!: 順序体と位相体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 順序体と位相空間 · 続きを見る »

形式的に実な体

抽象代数学において体が形式的に実(けいしきてきにじつ、formally real)、または形式的実体(けいしきてきじつたい、formally real field)とは、−1 の平方根を持たず(さらに が平方元の和として表すことができない)、また平方元の和が零に等しいという関係式は自明な(つまり、その和に現れる全ての平方元がそれぞれ零に等しい、例えば )場合に限られるなどの、実数体とも共通する性質を満たすことを言う。形式的実体を単に実体(じつたい、real fieldBochnak, Coste, Roy, )と呼ぶこともある。 与えられた体が形式的に実であることは、その体を(必ずしも一意的ではない方法によって)順序体にすることができるということを特徴づける性質である。.

新しい!!: 順序体と形式的に実な体 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 順序体と体の拡大 · 続きを見る »

ハンス・ハーン

ハンス・ハーン(Hans Hahn, 1879年9月27日 - 1934年7月24日)はオーストリアの数学者。関数解析学、位相幾何学、集合論、変分法、実解析、秩序理論などに多くの貢献を果たした。 ウィーン生まれ。ウィーン工科大学で学ぶ。また、ストラスブール大学、ミュンヘン大学、ゲッティンゲン大学でも学んでいる。1905年、ウィーン大学の教員に任命される。その後、チェルニウツィー大学、ボン大学の助教授、教授を経て、1921年にウィーン大学で数学教授に就任した。 哲学にも大いに関心を抱き、論理実証主義の立場にたつ科学者が哲学者たちが定期的にウィーンで開いていた会合であるウィーン学団にも参加している。 数学的貢献としてはハーン-バナッハの定理や一様有界性原理 (uniform boundedness principle) がある。いずれもステファン・バナフやフーゴ・シュタインハウス (Hugo Steinhaus) とは独立に定式化したもの。他には以下の定理にも貢献している。.

新しい!!: 順序体とハンス・ハーン · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 順序体とハウスドルフ空間 · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 順序体とローラン級数 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 順序体とダフィット・ヒルベルト · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 順序体とベクトル空間 · 続きを見る »

アメリカ数学会

アメリカ数学会(アメリカすうがくかい、英語:American Mathematical Society、略称:AMS)は、アメリカ合衆国の数学の学会である。現会員数は、32000人。 イギリス滞在中にロンドン数学会の影響を受けたトーマス・フィスクによって1888年に設立された。1894年7月に、現在の名前で再編成された。 AMS は組版処理ソフトウェア TeX の主唱者であり、AmS-TeX や AmS-LaTeX の開発を支援した。また、との合弁事業で MathJax オープンソースプロジェクトを管理している。.

新しい!!: 順序体とアメリカ数学会 · 続きを見る »

アルキメデスの性質

ヒルベルトによるアルキメデスの公理の定式化 数学におけるアルキメデスの性質(〜せいしつ、Archimedean property)とは、古代ギリシャの数学者シラクサのアルキメデスにちなんで名付けられた、実数の体系を典型的な例として一定の種類の群や体などいくつかの代数的構造が共通として持っている性質のことである。ふつう、アルキメデスの性質とは考えている体系の中に無限大や無限小が現れないこと、という意味で理解される。この概念は古代ギリシャにおける量の理論に端を発しているが、近現代の数学の教育や研究においてもヒルベルトの幾何の公理、順序群や順序体、局所体の理論などにおいて重要な役割を果たしている。 0でない元の任意の対について、それぞれ他方に対して無限小量ではないという意味で、「比較可能」な代数系はアルキメデス的であると呼ばれる。反対に二つの0でない元で片方がもう一方に対して無限小であるような代数系は非アルキメデス的であると呼ばれる。例えば、アルキメデス的な順序群はアルキメデス的順序群あるいはArchimedes的順序群、Archimedes順序群と呼ばれることになる。 アルキメデスの性質は様々な文脈に応じて異なった方法で定式化される。たとえば順序体の文脈ではアルキメデスの公理と呼ばれる命題によってアルキメデス性が定義され、実数体はその意味でのアルキメデス性を持つ一方で、実係数の有理関数体は適当な順序構造によってはアルキメデス性を持たない順序体になる。.

新しい!!: 順序体とアルキメデスの性質 · 続きを見る »

オットー・ヘルダー

ットー・ルードウィヒ・ヘルダー(Otto Ludwig Hölder、1859年12月22日 – 1937年8月29日)はドイツの数学者。 1859年、シュトゥットガルトにて生まれる。初めはPolytechnikum(現University of Stuttgart)で学んでいたが、1877年にベルリンに移り、レオポルト・クロネッカー、カール・ワイエルシュトラス、エルンスト・クンマーに学んだ。 1882年にテュービンゲン大学で博士号を得る。1899年から退職までライプツィヒ大学で働いた。 彼の名は数学に数多く残されており、ヘルダーの不等式、Jordan–Hölder theorem、Hölder's theorem、Hölder condition、Hölder meanなどがある。.

新しい!!: 順序体とオットー・ヘルダー · 続きを見る »

クラス (集合論)

集合論及びその応用としての数学におけるクラスまたは類(るい、class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツエルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。 (どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。 集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念をさしていた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。.

新しい!!: 順序体とクラス (集合論) · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 順序体とコンパクト空間 · 続きを見る »

ストーンの表現定理

数学において、ブール代数に対するストーンの表現定理(ストーンのひょうげんていり、Stone's representation theorem)は、任意のブール代数が何らかの集合代数 (field of sets) に同型であることを述べるものである。この定理は20世紀前半に浮上してきたブール代数の深い理解にとって基本的である。この定理を初めて証明したのは であり、名称はこの業績に因むものである。ストーンはヒルベルト空間上の作用素のスペクトル論の研究によってこの定理を導いた。 この定理はストーン双対性の特殊な場合に当たる。.

新しい!!: 順序体とストーンの表現定理 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 順序体と内積 · 続きを見る »

凸解析

凸解析 (とつかいせき) は、凸関数および凸集合を研究する数学の一分野である。最適化理論の領域の中の凸最小化によく応用される。.

新しい!!: 順序体と凸解析 · 続きを見る »

全順序

数学における線型順序(せんけいじゅんじょ、linear order)、全順序(ぜんじゅんじょ、total order)または単純順序(たんじゅんじゅんじょ、simple order)は、推移的、反対称かつ完全な二項関係を言う。集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。 即ち、集合 X が関係 ≤ によって全順序付けられるとき、X の任意の元 a, b, c に対して、以下の条件 が満足される。 反対称性によって a < b でも b < a でもあるような不確定な状態は排除される。完全性を持つ関係は、その集合の任意の二元がその関係でであることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である。また完全性から反射性 (a ≤ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序のと呼ばれる。.

新しい!!: 順序体と全順序 · 続きを見る »

積位相

位相幾何学とその周辺において、積空間(せきくうかん、product space)とは位相空間の族の直積に積位相 (product topology) と呼ばれるを入れた空間のことである。この位相は他の、もしかするとより明らかな、と呼ばれる位相とは異なる。箱位相も積空間に与えることができ、有限個の空間の直積では積位相と一致する。しかしながら、積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが積位相が「自然」であるという意味である。.

新しい!!: 順序体と積位相 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

新しい!!: 順序体と無限小 · 続きを見る »

相対位相

数学の位相空間論周辺分野における部分位相空間(ぶぶんいそうくうかん、subspace)は、位相空間の部分集合でもとの空間から由来する自然な位相を備えたものをいう。そのような位相は、部分空間位相 (subspace topology), 相対位相 (relative topology) あるいは誘導位相 (induced topology) やトレース位相 (trace topology) などと呼ばれる。.

新しい!!: 順序体と相対位相 · 続きを見る »

非アルキメデス順序体

数学における非アルキメデス順序体(ひアルキメデスじゅんじょたい、non-Archimedean ordered field、もしくは非アルキメデス的順序体)はアルキメデスの性質を満たさない順序体を言う。例えばレヴィ゠チヴィタ体、超実数体、体、デーン体、および実係数有理函数体に適当な順序を入れたもの(大域体、局所体も参照)、などは非アルキメデス体である。.

新しい!!: 順序体と非アルキメデス順序体 · 続きを見る »

順序環

抽象代数学において、順序環(じゅんじょかん、)は、演算と両立するような全順序が定義された(通常は可換な)環を言う。即ち、 が順序環であるとき、任意の元 に対し、以下の二つが成り立つ。.

新しい!!: 順序体と順序環 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 順序体と複素数 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 順序体と超実数 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 順序体と部分群 · 続きを見る »

自乗

自乗(じじょう)とは、ある数を自らと掛ける演算、あるいは演算によって得られる数を指す。二乗(にじょう、じじょう)、平方(へいほう、square)とも呼ばれる。自乗は指数 2 の冪算に等しいため、自乗は冪算の特殊な場合と見なされる。 自乗が平方と呼ばれるのはその幾何学的な意味に由来する。数を辺の長さによって表現すれば、その数の自乗は自乗される数に等しい辺の長さを持つ正方形の面積を与える。.

新しい!!: 順序体と自乗 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 順序体と自然数 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 順序体と離散空間 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 順序体と集合 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 順序体と連続写像 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 順序体と虚数単位 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 順序体とP進数 · 続きを見る »

推移関係

推移関係(すいいかんけい、Transitive relation)は、数学における二項関係の一種。集合 X の二項関係 R が推移的であるとは、Xの任意の元 a、b、c について、a と b に R が成り立ち、b と c に R が成り立つとき、a と c にも R が成り立つことをいう。推移的関係とも。 一階述語論理でこれを表すと、次のようになる。.

新しい!!: 順序体と推移関係 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 順序体と標数 · 続きを見る »

有理関数

数学における有理関数(ゆうりかんすう、rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数と不定元とを区別するので、後者の場合を有理式と呼ぶ。.

新しい!!: 順序体と有理関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 順序体と有理数 · 続きを見る »

有限加法族

数学において、有限加法族(ゆうげんかほうぞく、finitely additive class)あるいは集合体(しゅうごうたい、field of sets)、集合代数(しゅうごうだいすう、algebra of sets, algebra over a set)とは、冪集合が集合演算について成すブール代数の部分代数のことである。つまり、集合 S 上の有限加法族 (S, F ⊂ 2S) は、F の任意の二つの集合 A, B の結び A ∪ B, 交わり A ∩ B および任意の集合 M の全体集合 S に対する補集合 Mc.

新しい!!: 順序体と有限加法族 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 順序体と有限体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 順序体と数学 · 続きを見る »

数ベクトル空間

数ベクトル空間(すうべくとるくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間数空間のことを座標空間と呼ぶこともあるが、「座標系を備えた空間」という意味で座標空間と呼ぶこともあるので紛らわしい(の項も参照)。)を自然にベクトル空間と見たものである。.

新しい!!: 順序体と数ベクトル空間 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »