ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

波動関数

索引 波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

46 関係: 基底完全系位置位相速度化学ボルンの規則ディラックのデルタ関数アインシュタイン=ポドルスキー=ローゼンのパラドックスエルミート作用素エルヴィン・シュレーディンガーエヴェレットの多世界解釈オブザーバブルコペンハーゲン解釈シュレーディンガーの猫シュレーディンガー方程式スペクトルサイエンス社内積光速固有値固有状態固有関数状態確率確率分布積分法第一原理バンド計算線型結合総和物性物理学直交運動量複素数規格化関数 (数学)重ね合わせ量の次元量子力学量子デコヒーレンス量子状態長さの逆数離散数学電子軌道極限波動波動力学

基底

* 一般.

新しい!!: 波動関数と基底 · 続きを見る »

完全系

完全系(かんぜんけい、)とは、ある関数やベクトルの集合が、任意の関数やベクトルなどを線形結合で展開できる時の集合のこと。.

新しい!!: 波動関数と完全系 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 波動関数と位置 · 続きを見る »

位相速度

位相速度は周期的な波の速度と見ることができる。赤点は位相速度で移動しているが、円周上の1点の移動でもあり、特定の位相(特定の円周位置)、この場合は波の頂上を赤点によって位相速度を直線上の移動として示している。 位相速度(いそうそくど、英:Phase velocity)は、位相、すなわち波の山や谷の特定の位置が移動する速度のことである。 速度は多くの場合、直線を移動する速さ、すなわち単位時間当たりに進んだ距離を表す。 位相速度は円の外周の1点がどれだけの速度で移動するかを表す。定位置で回転する円の外周の1点の高さだけに注目するとそれは上下することとなるが、その上下の状態を縦軸とし、横軸を時間軸とするとその1点は正弦波で表される。円周上の1点は正弦波の波一つの山であったり、谷であったりする。 位相速度はその1点の外周での移動速度を表し、その円が回転して直線を移動するなら、位相速度は直線での移動速度と言える。 これとよく似た日常で見かけるわかりやすい例として、「いも虫の歩行」がある。 歩行しているいも虫を見ると波打たせながら歩行している。上か横から見ると「こぶ」が波打っている。「こぶ」の波打ちが位相速度、いも虫そのものの移動が群速度と考えると理解しやすい。 正弦波である波動を起こす回転物の角速度(または角周波数)を ω(ラジアン毎秒(rad/s))とし、 車輪の様に回転し外周で1秒間に移動した距離(長さ)における位相の進行度合でこれを波数k(rad/長さ)と呼び、 1点の円周上の移動速度、すなわち位相速度は \mathbf_\phi(長さ/s)で表される; \mathbf_\phi.

新しい!!: 波動関数と位相速度 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

新しい!!: 波動関数と化学 · 続きを見る »

ボルンの規則

量子力学においてボルンの規則(ボルンのきそく)とは、量子系について物理量(オブザーバブル)の測定をしたとき、ある値が得られる確率を与える法則のこと。発見者である物理学者マックス・ボルンにちなんで命名された。 ボルンの規則は、量子力学における物理量の測定値についての最も基本的な原理である。現在までに量子力学の他の基本原理からボルンの規則を導出しようとする試みが多く行われているが、成功には至っていない。.

新しい!!: 波動関数とボルンの規則 · 続きを見る »

ディラックのデルタ関数

right 数学におけるディラックのデルタ関数(デルタかんすう、delta function)、制御工学におけるインパルス関数 (インパルスかんすう、impulse function) とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数は、デルタ超関数 (delta distribution) あるいは単にディラックデルタ (Dirac's delta) とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数 の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、 として実直線上常に一定の値 をとる関数をとり、デルタ関数をデルタ関数自身と との積であると見ることにより である。一方、積分値が の での値にしかよらないことから でなければならないが、その上で積分値が でない有限の値をとるためには が満たされなければならない。.

新しい!!: 波動関数とディラックのデルタ関数 · 続きを見る »

アインシュタイン=ポドルスキー=ローゼンのパラドックス

アインシュタイン=ポドルスキー=ローゼンのパラドックス(頭文字をとってEPRパラドックスとも呼ばれる)は、量子力学の量子もつれ状態が局所性を(ある意味で)破るので、相対性理論と両立しないのではないかというパラドックスである。アルベルト・アインシュタイン、ボリス・ポドルスキー、ネイサン・ローゼンらの思考実験にちなむ。 EPRパラドックスが発表された当時は、アインシュタインらは局所実在論の立場を取っていたため、量子論が実在論的に完全でない結果を与えることを「パラドックス」であるとした。しかし、ベルの不等式の検証(1982年)などにより、量子論では局所実在論が破綻することが明らかになっており、非局所的な量子もつれ状態はEPR相関と呼ばれている。.

新しい!!: 波動関数とアインシュタイン=ポドルスキー=ローゼンのパラドックス · 続きを見る »

エルミート作用素

ルミート作用素(エルミートさようそ、Hermitian operator, Hermitian)または自己共役作用素(じこきょうやくさようそ、self adjoint operator)は、複素ヒルベルト空間上の線形作用素で、その共役作用素が自分自身に一致するようなもののことである。物理学ではエルミート演算子とも呼ばれる。エルミートという名称は、フランス人数学者シャルル・エルミートに因む。.

新しい!!: 波動関数とエルミート作用素 · 続きを見る »

エルヴィン・シュレーディンガー

ルヴィーン・ルードルフ・ヨーゼフ・アレクサンダー・シュレーディンガー(オーストリア語: Erwin Rudolf Josef Alexander Schrödinger、1887年8月12日 - 1961年1月4日)は、オーストリア出身の理論物理学者。 1926年に波動形式の量子力学である「波動力学」を提唱。次いで量子力学の基本方程式であるシュレーディンガー方程式や、1935年にはシュレーディンガーの猫を提唱するなど、量子力学の発展を築き上げたことで名高い。 1933年にイギリスの理論物理学者ポール・ディラックと共に「新形式の原子理論の発見」の業績によりノーベル物理学賞を受賞。1937年にはマックス・プランク・メダルが授与された。 1983年から1997年まで発行されていた1000オーストリア・シリング紙幣に肖像が使用されていた。.

新しい!!: 波動関数とエルヴィン・シュレーディンガー · 続きを見る »

エヴェレットの多世界解釈

ヴェレットの多世界解釈(エヴェレットのたせかいかいしゃく、many-worlds interpretation; MWI)とは、量子力学の観測問題における解釈の一つである。 プリンストン大学の大学院生であったヒュー・エヴェレット3世が1957年に提唱した定式を元に、によって提唱された。.

新しい!!: 波動関数とエヴェレットの多世界解釈 · 続きを見る »

オブザーバブル

ブザーバブル(英語:Observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。.

新しい!!: 波動関数とオブザーバブル · 続きを見る »

コペンハーゲン解釈

ペンハーゲン解釈(コペンハーゲンかいしゃく)は、量子力学の解釈の一つである。 量子力学の状態は、いくつかの異なる状態の重ね合わせで表現される。このことを、どちらの状態であるとも言及できないと解釈し、観測すると観測値に対応する状態に変化する(波束の収縮が起こる)と解釈する。 「コペンハーゲン解釈」という名称は、デンマークの首都コペンハーゲンにあるボーア研究所から発信されたことに由来する。.

新しい!!: 波動関数とコペンハーゲン解釈 · 続きを見る »

シュレーディンガーの猫

ュレーディンガーの猫」のイメージ図 シュレーディンガーの猫(シュレーディンガーのねこ、Schrödinger's cat)またはシュレディンガーの猫は、射影公準における収縮がどの段階で起きるのかが明確でないことによって引き起こされる矛盾を示すことを狙いとした思考実験のことである白井仁人, 東克明,森田邦久,渡部鉄兵『量子という謎 量子力学の哲学入門』勁草書房2012年ISBN978-4-326-70075-2 p3-16。.

新しい!!: 波動関数とシュレーディンガーの猫 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 波動関数とシュレーディンガー方程式 · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 波動関数とスペクトル · 続きを見る »

サイエンス社

株式会社サイエンス社(サイエンスしゃ、英称:SAIENSU-SHA Co.,Ltd.)は、東京都渋谷区千駄ヶ谷にある日本の出版社である。.

新しい!!: 波動関数とサイエンス社 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 波動関数と内積 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 波動関数と光速 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 波動関数と固有値 · 続きを見る »

固有状態

量子力学において、ある物理量 の固有状態 (eigenstate) とは、その物理量(オブザーバブル)を表すエルミート演算子 \hat の固有ベクトル \ \ のことである。 よって物理量 の固有状態 \ \ は以下の固有値方程式を満たす。 一般に、量子系について物理量の測定を行った時、どんなに同じように状態を用意して同じように測定をしても、測定値は測定によってバラバラである。しかし系が\hatの固有値 a_n \ に属する固有状態 |a_n\rangle \ であるときは、物理量 \hat を観測すれば必ず a_n \ という値を得る(オブザーバブルを参照)。よって「物理量 \hat の固有状態 |a_n\rangle \ は、物理量 \hat が確定した値 a_n を持っている状態である」と解釈できる。 また \hat はエルミート演算子なので、その固有値はすべて実数である。.

新しい!!: 波動関数と固有状態 · 続きを見る »

固有関数

波動関数\left.

新しい!!: 波動関数と固有関数 · 続きを見る »

状態

態(じょうたい、)は、 ある事物・対象の、時間とともに変化しうる性質・ありさま等を指す言葉である。 分野によってさまざまな意味で使われる。.

新しい!!: 波動関数と状態 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 波動関数と確率 · 続きを見る »

確率分布

率分布(かくりつぶんぷ, probability distribution)は、確率変数の各々の値に対して、その起こりやすさを記述するものである。日本工業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。.

新しい!!: 波動関数と確率分布 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 波動関数と積分法 · 続きを見る »

第一原理バンド計算

一原理バンド計算(だいいちげんりバンドけいさん)は、実験結果に依らないで(第一原理)計算が遂行されるバンド計算である。第一原理電子構造計算、第一原理電子状態計算、あるいは単にバンド計算とも言う。 第一原理バンド計算手法には、様々なものがある。主に、擬ポテンシャル+平面波基底によるものと、全電子による電子状態計算手法とがある。全電子手法には、LMTO法、APW法、線形化 APW 法(LAPW法)、KKR法とそのフルポテンシャル版などがある。.

新しい!!: 波動関数と第一原理バンド計算 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 波動関数と線型結合 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 波動関数と総和 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 波動関数と物性物理学 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: 波動関数と直交 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 波動関数と運動量 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 波動関数と複素数 · 続きを見る »

規格化

規格化 (normalization) ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることが規格化(正規化とも言う)である。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r.

新しい!!: 波動関数と規格化 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 波動関数と関数 (数学) · 続きを見る »

重ね合わせ

重ね合わせ(かさねあわせ、superposition)は、量子力学の基本的な性質である。.

新しい!!: 波動関数と重ね合わせ · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: 波動関数と量の次元 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 波動関数と量子力学 · 続きを見る »

量子デコヒーレンス

量子デコヒーレンス(りょうしデコヒーレンス)は、量子系の干渉が環境との相互作用によって失われる現象。デコヒーレンス。.

新しい!!: 波動関数と量子デコヒーレンス · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: 波動関数と量子状態 · 続きを見る »

長さの逆数

長さの逆数(ながさのぎゃくすう)は、数学や科学のいくつかの分野で使用される物理量である。名前の通り長さの逆数の次元 (L) を持つ。この物理量に使用される一般的な単位は、国際単位系 (SI) では毎メートル (m)、CGS単位系では毎センチメートル (cm) である。 長さの逆数の次元を持つ量には、以下のものがある。.

新しい!!: 波動関数と長さの逆数 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: 波動関数と離散数学 · 続きを見る »

電子軌道

軌道はエネルギーの固有関数である。 電子軌道(でんしきどう、)とは、電子の状態を表す、座標表示での波動関数のことを指す。電子軌道は単に「軌道」と呼ばれることもある。.

新しい!!: 波動関数と電子軌道 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 波動関数と極限 · 続きを見る »

波動

波動(はどう、英語:wave)とは、単に波とも呼ばれ、同じようなパターンが空間を伝播する現象のことである。 海や湖などの水面に生じる波動に関しては波を参照のこと。 量子力学では、物質(粒子)も波動的な性質を持つとされている。.

新しい!!: 波動関数と波動 · 続きを見る »

波動力学

波動力学(はどうりきがく、wave mechanics)とは、シュレーディンガー方程式を利用する非相対論的量子力学の分野のこと、または波動一般に関する古典力学、量子力学の分野のことである。.

新しい!!: 波動関数と波動力学 · 続きを見る »

ここにリダイレクトされます:

波動函数確率振幅

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »