ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ジョルダン標準形

索引 ジョルダン標準形

ョルダン標準形(ジョルダンひょうじゅんけい、Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ一つのジョルダン標準形と相似である。名前はカミーユ・ジョルダンにちなむ。.

22 関係: 加群の直和基底 (線型代数学)単位行列可換体対角化差集合代数的閉体ハメル次元ベクトル空間カミーユ・ジョルダンスペクトル定理冪乗固有値線型写像線型方程式系行列の相似行列の階数行列指数関数複素数自然数正則行列正方行列

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: ジョルダン標準形と加群の直和 · 続きを見る »

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: ジョルダン標準形と基底 (線型代数学) · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: ジョルダン標準形と単位行列 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ジョルダン標準形と可換体 · 続きを見る »

対角化

対角化(たいかくか、diagonalization)とは、正方行列を適当な線形変換によりもとの行列と相似な対角行列に変形することを言う。あるいは、ベクトル空間の線形写像に対し、空間の基底を取り替え、その作用が常にある方向(固有空間)へのスカラー倍(固有値)として現れるようにすること。対角化により変換において本質的には無駄な計算を省くことで計算量を大幅に減らすことが出来る。.

新しい!!: ジョルダン標準形と対角化 · 続きを見る »

差集合

差集合(さしゅうごう、set difference)とは、ある集合の中から別の集合に属する要素を取り去って得られる集合のことである。特に、全体集合 を固定して、 からその部分集合 の要素を取り去って得られる集合を の補集合という。.

新しい!!: ジョルダン標準形と差集合 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: ジョルダン標準形と代数的閉体 · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: ジョルダン標準形とハメル次元 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: ジョルダン標準形とベクトル空間 · 続きを見る »

カミーユ・ジョルダン

マリ・エヌモン・カミーユ・ジョルダン(Marie Ennemond Camille Jordan、1838年1月5日 - 1922年1月22日)はフランスの数学者。群論に関する基礎的研究と、影響力のある著書"Cours d'analyse"の二つによって有名である。 リヨンで生まれ、エコール・ポリテクニークで教育を受けた(1855年入学)。職業的な技術者になり、エコール・ポリテクニークで教鞭をとった。コレージュ・ド・フランスでリウヴィルの跡を継ぎ、独特な記号表記によって好評を博した。 今日、彼の名は以下に挙げる基礎的研究の成果よって記憶されている。.

新しい!!: ジョルダン標準形とカミーユ・ジョルダン · 続きを見る »

スペクトル定理

数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。この対角化の概念は、有限次元空間上の作用素については比較的直ちに従うものであるが、無限次元空間上の作用素についてはいくつかの修正が必要となる。一般にスペクトル定理は、乗算作用素によって出来る限り簡単にモデル化される線型作用素のクラスを明らかにするものである。より抽象的に、スペクトル定理は可換なC*-環に関して述べたものである。その歴史的観点については、スペクトル理論を参照されたい。 スペクトル定理が適用できる作用素の例として、自己共役作用素や、より一般のヒルベルト空間上の正規作用素などがある。 スペクトル定理はまた、スペクトル分解(spectral decomposition)や固有値分解(eigenvalue decomposition)、(eigendecomposition)と呼ばれるような、作用素の定義されるベクトル空間のを与えるものである。 オーギュスタン=ルイ・コーシーは、自己随伴行列に関するスペクトル定理を証明した。すなわち、すべての実対称行列は対角化可能であることを証明した。その定理のジョン・フォン・ノイマンによる一般化は、今日の作用素論におけるもっとも重要な結果となっている。またコーシーは、行列式に関する系統的な理論を構築した第一人者である。 この記事では主に、ヒルベルト空間上の自己共役作用素に関する、最も簡単な種類のスペクトル定理について述べる。しかし、上記のように、スペクトル定理はヒルベルト空間上の正規作用素についても成立するものである。.

新しい!!: ジョルダン標準形とスペクトル定理 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: ジョルダン標準形と冪乗 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: ジョルダン標準形と固有値 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ジョルダン標準形と線型写像 · 続きを見る »

線型方程式系

数学において、線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式等とも呼ぶこともある。.

新しい!!: ジョルダン標準形と線型方程式系 · 続きを見る »

行列の相似

線型代数学において、ふたつの n 次正方行列 A, B が相似(そうじ、similar)であるとは、n 次正則行列 P で となるようなものが存在するときに言う。互いに相似な行列は同じ線型写像を異なる基底に関して表現するもので、さきほどの P はそれらの基底の間の基底変換 (change of basis) を与える行列である。上記のような変換はしばしば、変換行列 P に関する相似変換 (similarity transformation) と呼ばれる。線型代数群の文脈では、行列の相似性は(群の元としての)共軛性として言及されることも多い。.

新しい!!: ジョルダン標準形と行列の相似 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: ジョルダン標準形と行列の階数 · 続きを見る »

行列指数関数

線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、matrix exponential; 行列乗)は、正方行列に対して定義されるで、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列リー代数の間の対応関係(指数写像)を行列の指数函数が記述する。 実または複素行列 の指数関数 または は、冪級数 で定義される -次正方行列である。この級数は任意の に対して収束するから、行列 の指数関数は well-defined である。 が 行列のとき、-乗 は 行列であり、その唯一の成分は の唯一の成分に対する通常の指数関数に一致する。これらはしばしば同一視される。この意味において行列の指数函数は、通常の指数函数の一般化である。.

新しい!!: ジョルダン標準形と行列指数関数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ジョルダン標準形と複素数 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: ジョルダン標準形と自然数 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: ジョルダン標準形と正則行列 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: ジョルダン標準形と正方行列 · 続きを見る »

ここにリダイレクトされます:

Jordan標準形ジョルダンの標準形ジョルダン標準化ジョルダン細胞

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »