ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

代数体

索引 代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

32 関係: 基底単拡大一意分解環二次体代数体代数的数代数的整数代数的整数論代数拡大体の拡大ミンコフスキーの定理デデキントゼータ関数デデキント環ディリクレの単数定理ベクトル空間分数イデアルアイゼンシュタイン整数イデアル (環論)イデアル類群ガウス整数円分体総実体総虚体絶対値類数公式行列式自由加群有理数有限拡大整域整数環整拡大

基底

* 一般.

新しい!!: 代数体と基底 · 続きを見る »

単拡大

数学、より正確には代数学において、可換体の理論の枠組みで、体 の拡大 は、 のある元 が存在して が ''K''(''α'') と等しいときに単拡大あるいは単純拡大 (simple extension) という。 単拡大 が有限拡大であることと が K 上代数的であることは同値である。 の(同型の違いを除いて)唯一の無限単拡大は有理関数体 である。 原始元定理はすべての有限分離拡大が単拡大であることを保証する。.

新しい!!: 代数体と単拡大 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 代数体と一意分解環 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: 代数体と二次体 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: 代数体と代数体 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 代数体と代数的数 · 続きを見る »

代数的整数

数論において代数的整数(だいすうてきせいすう、algebraic integer)とは、整数係数モニック多項式の根となるような複素数のことを言う。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 O は K ∩ A に等しく、また体 K の極大整環(order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z がアーベル群として有限生成(即ち有限生成 '''Z'''-加群)であることと同値である。.

新しい!!: 代数体と代数的整数 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: 代数体と代数的整数論 · 続きを見る »

代数拡大

抽象代数学において、体の拡大 は次を満たすときに代数的(algebraic)であると言う。 のすべての元は 上代数的である、すなわち、 のすべての元は 係数のある でない多項式の根である。代数的でない体の拡大、すなわち超越元を含む場合は、超越的 (transcendental) と言う。 例えば、体の拡大, すなわち有理数体の拡大としての実数体は、超越的であるのに対し、体の拡大 や は代数的である。ここで は複素数体である。 すべての超越拡大は無限次元の拡大である。言い換えるとすべての有限次拡大は代数的ということになる。しかしながら逆は正しくない。無限次代数拡大が存在する。例えば、代数的数体は有理数体の無限次代数拡大である。 が 上代数的であれば、 係数の による多項式全体の集合 は環であるだけでなく体である: 上有限次の の代数拡大である。逆もまた正しく、 が体ならば は 上代数的である。特別な場合として、 が有理数体のときは、 は代数体の例である。 非自明な代数拡大をもたない体は代数的閉体と呼ばれる。例は複素数体である。すべての体は代数的閉であるような代数拡大をもつ(これは代数的閉包と呼ばれる)が、これを一般に証明するには選択公理が必要である。 拡大 が代数的であることと のすべての部分 -代数が体であることは同値である。.

新しい!!: 代数体と代数拡大 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 代数体と体の拡大 · 続きを見る »

ミンコフスキーの定理

ミンコフスキーの定理は凸体の中の格子点の存在に関する定理で、 原点に関して対称な凸集合は体積が十分大きいとき、必ず原点以外の格子点を有することを主張している。 ヘルマン・ミンコフスキーによって証明され、二次形式の研究に用いられた。 凸体と格子点の関係に関する研究は数の幾何学へと発展し、二次形式のほか、代数体の単数やイデアル類群の性質の研究、ディオファントス近似など数論の様々な領域に応用されている。.

新しい!!: 代数体とミンコフスキーの定理 · 続きを見る »

デデキントゼータ関数

デデキントゼータ関数(-かんすう、Dedekind's zeta function)とは、 代数体 K に対して で表される関数のことをいう。但し、和は K の整イデアル全てを動き、\scriptstyle N\mathfrak は整イデアル \mathfrak のノルムである。従って、デデキントゼータ関数は、ヘッケのL関数の特別な場合である。 特に、K が有理数体のとき、リーマンゼータ関数になる。 与えられた整数 n に対して、ノルムが n である整イデアルは有限個しかなく、ノルムは正整数であるので、 デデキントゼータ関数は、 と、ディリクレ級数の形で表すことが出来る。 デデキントゼータ関数は、\scriptstyle\operatorname\ s>1 に対して、絶対かつ一様収束する。従って、\scriptstyle\operatorname\ s>1 で、\zeta_K(s) は正則関数である。.

新しい!!: 代数体とデデキントゼータ関数 · 続きを見る »

デデキント環

デデキント環(デデキントかん、Dedekind ring)、あるいはデデキント整域(デデキントせいいき、Dedekind domain)とは、任意の0でない真のイデアルが、有限個の素イデアルの積にかけるような整域のことである。そのような分解は一意であることが知られており、イデアル論の基礎定理と呼ばれる。.

新しい!!: 代数体とデデキント環 · 続きを見る »

ディリクレの単数定理

数学において、ディリクレの単数定理(Dirichlet's unit theorem)は、ペーター・グスタフ・ディリクレ による代数的整数論の基本的な結果である。ディリクレの単数定理は、代数体 の代数的整数がなす環 \mathcal_K の単数群 \mathcal_K^\times の階数を決定する。単数基準(もしくは、レギュレイター(regulator)ともいう)は、どれくらい単数の「密度」があるかを決める正の実数である。 It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.-->.

新しい!!: 代数体とディリクレの単数定理 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 代数体とベクトル空間 · 続きを見る »

分数イデアル

数学、特に可換環論において、分数イデアル(fractional ideal)の概念は整域の文脈で導入され、特にデデキント整域の研究において成果が多い。ある意味で、整域の分数イデアルは分母が許されたイデアルのようなものである。分数イデアルと普通の環のイデアルがともに議論に出てくるような文脈では、明確にするために後者を整イデアル (integral ideal) と呼ぶこともある。.

新しい!!: 代数体と分数イデアル · 続きを見る »

アイゼンシュタイン整数

ウス平面内の、正三角形を成す格子における格子点は、アイゼンシュタイン整数を表す。 アイゼンシュタイン整数(アイゼンシュタインせいすう、Eisenstein integer)とは、フェルディナント・ゴットホルト・マックス・アイゼンシュタインにちなんで名付けられた複素数の一種である。正確には、整数 a, b と1の原始3乗根 に対して a + b ω の形の複素数のことである。b.

新しい!!: 代数体とアイゼンシュタイン整数 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 代数体とイデアル (環論) · 続きを見る »

イデアル類群

数学において,体 に対してイデアル類群(ideal class group)あるいは類群(class group)とは,商群 である,ただし は の分数イデアルの群で, は の単項イデアルからなる部分群である.代数体(あるいはより一般に任意のデデキント環)の整数環における一意分解の成り立たなさをイデアル類群によって記述することができる.この群が有限のとき(代数体の整数環の場合はそうである),その群の位数を類数(class number)と呼ぶ.デデキント環の乗法的理論はそのイデアル類群の構造と密接にかかわっている.例えば,デデキント環のイデアル類群が自明であることとその環が一意分解整域であることは同値である..

新しい!!: 代数体とイデアル類群 · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

新しい!!: 代数体とガウス整数 · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: 代数体と円分体 · 続きを見る »

総実体

数論において、代数体 K が総実(そうじつ、totally real)であるとは、K の複素数体への各埋め込みに対し、その像が実数体に含まれることをいう。同値な条件は、すべての根が実であるようなのある1つの根によって、K が Q 上生成されることである。あるいは、K を Q 上 R とテンソルした代数が R のコピーの直積になることである。 例えば、Q 上次数が 2 の二次体 K は、正あるいは負のどちらの数の平方根が Q に添加されたかに応じて、実数体の部分体(このとき総実)あるいは虚数を含む体となる。の場合には、Q 上既約な三次の整数多項式 P は少なくとも1つの実根を持つ。P が1つの実根と2つの虚根を持つならば、その実根を添加することによって定義される Q の三次拡大は、実数体の部分体であるにもかかわらず、総実ではない。 総実体は代数的整数論において重要で特別な役割を果たす。Q のアーベル拡大は総実であるか、あるいは総実な部分体を含みこの部分体上2次拡大である。 有理数体上ガロワな任意の数体は総実であるかまたは総虚でなければならない。.

新しい!!: 代数体と総実体 · 続きを見る »

総虚体

代数的整数論において、数体が総虚(そうきょ、totally imaginary or totally complex)であるとは、実数体に埋め込めないことをいう。例えば、虚二次体、円分体、そしてより一般に、CM体などは総虚体である。 有理数体上ガロワな任意の数体は総実であるかまたは総虚でなければならない。.

新しい!!: 代数体と総虚体 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 代数体と絶対値 · 続きを見る »

類数公式

数論では、類数公式(class number formula)は、代数体の多くの重要な不変量(特にイデアル類群の位数である類数)をデデキントゼータ函数の特殊値に関係付ける公式である。.

新しい!!: 代数体と類数公式 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 代数体と行列式 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 代数体と自由加群 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 代数体と有理数 · 続きを見る »

有限拡大

数学、より正確にはガロワ理論に際して代数学において、有限拡大 (extension finie) は次数有限の体の拡大である、すなわち、体 K の拡大可換体であって、K-ベクトル空間として次元が有限のものである。そのような拡大はつねに代数的である。.

新しい!!: 代数体と有限拡大 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 代数体と整域 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: 代数体と整数環 · 続きを見る »

整拡大

可換環論において、可換環 B とその部分環 A について、B の元 b が A 係数のモニック多項式の根であるとき、b は A 上整である(integral over A)という。B のすべての元が A 上整であるとき、B は A 上整である、または、B は A の整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。.

新しい!!: 代数体と整拡大 · 続きを見る »

ここにリダイレクトされます:

単数基準数体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »