ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

離散フーリエ変換

索引 離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

50 関係: 偏微分方程式偏角多項式対称行列位相信号 (電気工学)信号処理ネイピア数ユニタリ作用素デジタル信号フーリエ変換フーリエ級数ベクトル周波数周波数領域アルゴリズムエネルギークロネッカーのデルタショーンハーゲ・ストラッセン法スペクトラムスペクトル密度スペクトル分析スペクトル漏れ円周率内積窓関数画像画像処理畳み込み直交関数列相互相関関数音声非可逆圧縮行列複素共役複素解析計算複雑性理論計算機高速フーリエ変換離散コサイン変換離散数学離散時間フーリエ変換虚数単位JPEGZ変換折り返し雑音標本化標本化定理振幅2次元

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 離散フーリエ変換と偏微分方程式 · 続きを見る »

偏角

偏角(へんかく).

新しい!!: 離散フーリエ変換と偏角 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 離散フーリエ変換と多項式 · 続きを見る »

対称行列

線型代数学における対称行列(たいしょうぎょうれつ、symmetric matrix)は、自身の転置行列と一致するような正方行列を言う。記号で書けば、行列 A は を満たすとき対称であるという。相等しい行列の型(次元、サイズ)は相等しいから、この式を満たすのは正方行列に限られる。 定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 は任意の添字 に関して を満たす。例えば、次の 行列 1 & 7 & 3\\ 7 & 4 & -5\\ 3 & -5 & 6 \end は対称である。任意の正方対角行列は、その非対角成分が であるから、対称である。同様に、歪対称行列( なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて でなければならない。 線型代数学において、実対称行列は実内積空間上の自己随伴作用素を表す。これと、複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。.

新しい!!: 離散フーリエ変換と対称行列 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: 離散フーリエ変換と位相 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: 離散フーリエ変換と信号 (電気工学) · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: 離散フーリエ変換と信号処理 · 続きを見る »

ネイピア数

1.

新しい!!: 離散フーリエ変換とネイピア数 · 続きを見る »

ユニタリ作用素

数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の線型空間の構造、内積構造およびそこから定まる位相構造)を保つ全単射である。与えられたヒルベルト空間 からそれ自身へのユニタリ作用素全体の成す集合は群を成し、 のヒルベルト群 と呼ばれることもある。.

新しい!!: 離散フーリエ変換とユニタリ作用素 · 続きを見る »

デジタル信号

デジタル信号(Digital signal)は、離散信号の量子化されたもの、あるいはデジタルシステムでの信号の波形を指す。.

新しい!!: 離散フーリエ変換とデジタル信号 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 離散フーリエ変換とフーリエ変換 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 離散フーリエ変換とフーリエ級数 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 離散フーリエ変換とベクトル · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 離散フーリエ変換と周波数 · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: 離散フーリエ変換と周波数領域 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 離散フーリエ変換とアルゴリズム · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 離散フーリエ変換とエネルギー · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: 離散フーリエ変換とクロネッカーのデルタ · 続きを見る »

ショーンハーゲ・ストラッセン法

ョーンハーゲ・ストラッセン法は高速フーリエ変換に基づく乗算アルゴリズムである。この図は1234 × 5678.

新しい!!: 離散フーリエ変換とショーンハーゲ・ストラッセン法 · 続きを見る »

スペクトラム

記載なし。

新しい!!: 離散フーリエ変換とスペクトラム · 続きを見る »

スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

新しい!!: 離散フーリエ変換とスペクトル密度 · 続きを見る »

スペクトル分析

ペクトル分析(スペクトルぶんせき)とは、時系列データを周期がシステマティックに決められた三角関数の和に恒等的に置き換え、周期ごとの影響度の強さを分析する手法である。スペクトラル分析ともいう。 もとの時系列データの値と、周期および強度(振幅)の集合の間には恒等的な関係があるため、時系列変動の周期性を分析する手法として有用である。一方で、位相に関する情報が欠落したり、十分に長い(データ点の多い)時系列を必要とするなどの欠点もある。1960年代に景気循環の分析に大いに用いられた。.

新しい!!: 離散フーリエ変換とスペクトル分析 · 続きを見る »

スペクトル漏れ

right スペクトル漏れ(英: Spectral leakage)とは、信号をスペクトル分析したとき、本来の信号には含まれていないはずの周波数成分でわずかなエネルギーが観測される現象。本来の信号スペクトルから周囲の周波数に漏れ出すようにエネルギーが観測されることから、このように言う。.

新しい!!: 離散フーリエ変換とスペクトル漏れ · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

新しい!!: 離散フーリエ変換と円周率 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 離散フーリエ変換と内積 · 続きを見る »

窓関数

窓関数(まどかんすう、window function)とは、ある有限区間(台)以外で0となる関数である。 ある関数や信号(データ)に窓関数が掛け合わせられると、区間外は0になり、有限区間内だけが残るので、数値解析が容易になる。 窓関数は、スペクトル分析、フィルタ・デザインや、音声圧縮に応用される。 窓関数を単に窓 (window) ともいい、データに窓関数を掛け合わせることを窓を掛ける (windowing) という。実装可能な有限のタップ数を持つフィルタにおいて生じる制約の範囲内で周波数分解能とダイナミックレンジのバランスの調節を行うための関数である。.

新しい!!: 離散フーリエ変換と窓関数 · 続きを見る »

画像

画像(がぞう)とは、事象を視覚的に媒体に定着させたもので、そこから発展した文字は含まない(例:文字と画像、書画)。定着される媒体は主に2次元平面の紙であるが、金属、石、木、竹、布、樹脂や、モニター・プロジェクター等の出力装置がある。また、3次元の貼り絵、ホログラフィー等も含まれる。.

新しい!!: 離散フーリエ変換と画像 · 続きを見る »

画像処理

画像処理(がぞうしょり、Image processing)とは、電子工学的(主に情報工学的)に画像を処理して、別の画像に変形したり、画像から何らかの情報を取り出すために行われる処理全般を指す。まれにコンピュータグラフィックスによる描画全般を指して使われることがあるが、あまり適切ではない。歴史上CGアプリケーションはCADが先行し、そのころのCGは「図形処理」と呼ばれていて、実際図形処理情報センターという出版メディアも存在した。画像処理は本来CGとは無関係にテレビジョン技術の発達とともに、産業界では早くから注目を浴びていたテクノロジーであり、当初からビデオカメラの映像信号を直接アナログ-デジタル変換回路へ通すという方法が試みられた。その成果の一部(輪郭強調によるシャープネスなど)が現在のCGアプリケーションに生かされている。.

新しい!!: 離散フーリエ変換と画像処理 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: 離散フーリエ変換と畳み込み · 続きを見る »

直交関数列

数学において直交関数列(ちょっこうかんすうれつ、orthogonal functions)とは互いに直交する関数列の事である。.

新しい!!: 離散フーリエ変換と直交関数列 · 続きを見る »

相互相関関数

互相関関数(そうごそうかんかんすう、)は、ふたつの信号、配列(ベクトル)の類似性を確認するために使われる。関数の配列の結果がすべて1であれば相関があり、すべてゼロであれば無相関であり、すべて であれば負の相関がある。しばしば、相関と略されることがあり、相関係数と似ているために混同することがある。 二つの信号を畳み込む畳み込みの式 のうち片方の関数の信号配列の順序をフリップ(逆順に)して畳み込むと、相互相関関数を求めることができる。 さらに、この二つの信号が、全く同じ場合、自己相関関数と呼び、関数の周期性を調べるのに用いられる。 自己相関関数の値がすべて1のときには、その離散関数の波形の周期性はその関数を表す配列と同じであることがわかる。.

新しい!!: 離散フーリエ変換と相互相関関数 · 続きを見る »

音声

音声(おんせい)とは人の声、すなわち人が発声器官を通じて発する音である。 基本要素として母音と子音がある。さらに、これらを細かく分類して、特定の言語で意味の違いを弁別・認識する音声の基本単位を音素といい、特定の言語に依存せずに、音声学で分類・定義する音声の基本単位を単音という。.

新しい!!: 離散フーリエ変換と音声 · 続きを見る »

非可逆圧縮

非可逆圧縮(ひかぎゃくあっしゅく)とは、圧縮前のデータと、圧縮・展開を経たデータとが完全には一致しないデータ圧縮方法のこと。不可逆圧縮(ふかぎゃくあっしゅく)とも呼ばれる。画像や音声、映像データに対して用いられる。静止画像ではJPEG、動画像ではMPEG-1、MPEG-2、MPEG-4(DivX、Xvid、3ivX)、MPEG-4 AVC/H.264、HEVC/H.265、WMV9、VP8、音声ではVorbis、WMA、AAC、MP3、ATRAC、Dolby Digital、DTS Digital Surround、Dolby Digital Plus、DTS-HD High Resolutionなどが代表的な非可逆圧縮方法にあたる。 圧縮に伴い、データは欠落・改変するものの、人間の視聴覚特性を利用して劣化を目立たなくしている。つまり、人間の感覚に伝わりにくい部分は情報を大幅に減らし、伝わりやすい部分の情報を多く残すように行う。その結果、すべてのデータを均一に扱う可逆圧縮と比較して圧倒的な圧縮率が得られ、利点である。また、圧縮率と品質の劣化を両天秤にかけることができ、目的や環境の制約に応じて適切なバランスを選ぶことができる。たとえば、低速な通信回線で音楽などを送信する場合や美術的な再現性を必要としない画像の表示・印刷の場合には圧縮率を高めてデータを小さくする。逆に高速な通信回線が使える場合や、より鮮明な画像の表現を求める場合は圧縮率を低くして大きなデータをやり取りする。.

新しい!!: 離散フーリエ変換と非可逆圧縮 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 離散フーリエ変換と行列 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 離散フーリエ変換と複素共役 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: 離散フーリエ変換と複素解析 · 続きを見る »

計算複雑性理論

計算複雑性理論(けいさんふくざつせいりろん、computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。.

新しい!!: 離散フーリエ変換と計算複雑性理論 · 続きを見る »

計算機

計算機(けいさんき)は、計算を機械的に、さらには自動的に行う装置である。人間が行う計算を援助するのみのものや、手動操作で自動的ではないものなどは計算器という文字表現をすることがある。.

新しい!!: 離散フーリエ変換と計算機 · 続きを見る »

高速フーリエ変換

速フーリエ変換(こうそくフーリエへんかん、fast Fourier transform, FFT)は、離散フーリエ変換(discrete Fourier transform, DFT)を計算機上で高速に計算するアルゴリズムである。高速フーリエ変換の逆変換を逆高速フーリエ変換(inverse fast Fourier transform, IFFT)と呼ぶ。.

新しい!!: 離散フーリエ変換と高速フーリエ変換 · 続きを見る »

離散コサイン変換

DFTとの比較。左はスペクトル、右はヒストグラム。低周波域での相違を示すため、スペクトルは 1/4 だけ示してある。DCTでは、パワーのほとんどが低周波領域に集中していることがわかる。 離散コサイン変換(りさんコサインへんかん)は、離散信号を周波数領域へ変換する方法の一つであり、信号圧縮に広く用いられている。英語の discrete cosine transform の頭文字から DCT と呼ばれる。以下DCTと略す。.

新しい!!: 離散フーリエ変換と離散コサイン変換 · 続きを見る »

離散数学

離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。 グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。またもちろん離散数学には整数論が含まれるが、初等整数論を超えると解析学などとも関係し(解析的整数論)、離散数学の範疇を超える。.

新しい!!: 離散フーリエ変換と離散数学 · 続きを見る »

離散時間フーリエ変換

離散時間フーリエ変換(英: Discrete-time Fourier transform、DTFT)はフーリエ変換の一種。したがって、通常時間領域の関数を周波数領域に変換する。ただし、DTFTでは元の関数は離散的でなければならない。そのような入力は連続関数の標本化によって生成される。 DTFTの周波数領域の表現は常に周期的関数である。したがって1つの周期に必要な情報が全て含まれるため、DTFTを「有限な」周波数領域への変換であるということもある。.

新しい!!: 離散フーリエ変換と離散時間フーリエ変換 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: 離散フーリエ変換と虚数単位 · 続きを見る »

JPEG

JPEG(ジェイペグ、Joint Photographic Experts Group)は、コンピュータなどで扱われる静止画像のデジタルデータを圧縮する方式のひとつ。またはそれをつくった組織 (ISO/IEC JTC 1/SC 29/WG 1, Joint Photographic Experts Group) の略称であり、アクロニムである。JPEG方式による画像ファイルにつけられる拡張子はjpgが多く使われるほか、jpeg等が使われる場合もある。 一般的に非可逆圧縮の画像フォーマットとして知られている。可逆圧縮形式もサポートしているが、可逆圧縮は特許などの関係でほとんど利用されていない。1992年9月18日に最初のリリースが行われた比較的古いフォーマットであり、欠点を克服すべく数々の後継規格が提案されてきたが、企業間の思惑なども絡み、いずれも主流になるには至らず、JPEGが現在も静止画像規格の主流である。 標準では、特定の種類の画像の正式なフォーマットがなく、JFIF形式(マジックナンバー上は、6バイト目から始まる形式部分にJFIFと記されているもの)が事実上の標準ファイルフォーマットとなっている。動画を記録可能にしたものにMotion JPEGがある。立体視 (3D) 用には、ステレオJPEG (JPS) フォーマットがある。 デジタルカメラの記録方式としてもよく利用されているが、デジタルカメラでは様々なオプション機能を使い、JFIFを拡張したExchangeable image file format (EXIF) などのフォーマットとしてまとめられている。.

新しい!!: 離散フーリエ変換とJPEG · 続きを見る »

Z変換

関数解析学において、Z変換(ゼッドへんかん、Z-transform)とは、離散群上で定義される、ローラン展開をベースにした関数空間の間の線形作用素。関数変換。 Z変換は離散群上でのラプラス変換とも説明される。なお、Z変換という呼び方は、ラプラス変換のことを「S変換」と呼んでいるようなものであり、定義式中の遅延要素であるzに由来する名前である。.

新しい!!: 離散フーリエ変換とZ変換 · 続きを見る »

折り返し雑音

正しく標本化されたレンガの壁の画像 空間折り返しひずみ(モアレ)が生じている例 折り返し雑音(おりかえしざつおん、Folding noise)またはエイリアシング(Aliasing)とは、統計学や信号処理やコンピュータグラフィックスなどの分野において、異なる連続信号が標本化によって区別できなくなることをいう。エイリアス(aliases)は、この文脈では「偽信号」と訳される。信号が標本化され再生されたとき、元の信号とエイリアスとが重なって生じる歪みのことを折り返しひずみ(aliasing distortion)という。折り返しひずみのことをエイリアシングまたは折り返し雑音ということもある。 デジタル写真を見たとき、ディスプレイやプリンタ機器、あるいは我々の眼や脳で再生(補間)が行われている。再生された画像が本来の画像と違っている場合、そこには折り返しひずみが生じている。空間折り返しひずみ(spatial aliasing)の例として、レンガの壁をピクセル数の少ない画像にしたときに生じるモアレがある。このようなピクセル化に際しての問題を防ぐ技法をアンチエイリアスと呼ぶ。 ストロボ効果(時間折り返し雑音)は、ビデオや音響信号の標本化での重大な問題である。例えば、音楽には高周波成分が含まれていることがあるが、人間の耳には聞こえない。それを低すぎるサンプリング周波数で標本化し、デジタル-アナログ変換回路を通して音楽を再生した場合、高周波がアンダーサンプリングされて低周波の折り返し雑音になったものが聞こえることがある。従って、標本化の前にフィルタ回路を使って高周波成分を取り除くのが一般的である。 (必要に応じて)低周波成分を排除したときにも似たような状況が発生し、高周波成分が意図的にアンダーサンプリングされて低周波として再生される。デジタルチャネライザには、計算を効率化するためにこのような折り返し雑音を利用するものもある。低周波成分を全く含まない信号は、バンドパスあるいは非ベースバンドと呼ばれる。 ビデオや映画撮影では、フレームレートが有限であるためにストロボ効果が生じ、例えば車輪のスポークがゆっくり回転しているように見えたり、逆回転しているように見える。すなわち、折り返し雑音が回転の周波数を変えているのである。逆回転は負の周波数で説明できる。 ビデオカメラも含めて、標本化は一般に周期的に行われ、サンプリング周波数と呼ばれる性質が(時間的または空間的に)存在する。デジタルカメラでは、画面の単位長当たりの標本(ピクセル)数が存在する。音響信号はアナログ-デジタル変換回路でデジタイズされ、毎秒一定数の標本を生成する。特に標本化対象となっている信号自体に周期性があるとき、折り返し雑音の影響が強く生じることが多い。.

新しい!!: 離散フーリエ変換と折り返し雑音 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: 離散フーリエ変換と標本化 · 続きを見る »

標本化定理

標本化定理(ひょうほんかていり、sampling theorem: サンプリング定理とも)はアナログ信号をデジタル信号へと変換する際に、どの程度の間隔で標本化(サンプリング)すればよいかを定量的に示す定理。情報理論の分野において非常に重要な定理の一つである。 標本化定理は1928年にハリー・ナイキストによって予想され、1949年にクロード・E・シャノンと日本の染谷勲によってそれぞれ独立に証明された。そのためナイキスト定理、ナイキスト・シャノンの定理、シャノン・染谷の定理とも呼ばれる。.

新しい!!: 離散フーリエ変換と標本化定理 · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: 離散フーリエ変換と振幅 · 続きを見る »

2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

新しい!!: 離散フーリエ変換と2次元 · 続きを見る »

ここにリダイレクトされます:

Discrete Fourier Transform

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »