ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

閉性

索引 閉性

数学において、与えられた集合がある演算あるいは特定の性質を満たす関係について閉じている (closed) あるいはその演算がその集合上で閉性(へいせい、closure property; 包性)を持つとは、その集合の元に対して演算を施した結果がふたたびもとの集合に属することを言う。複数の演算からなる集まりが与えられた場合も、それら演算の族に関して閉じているとは、それが個々の演算すべてに関して閉じていることを言う。.

11 関係: 加法乗法二項関係積閉集合算法 (数学)自然数集合除法減法数学整数

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 閉性と加法 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: 閉性と乗法 · 続きを見る »

二項関係

数学において、二項関係(にこうかんけい、binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 の部分集合を、集合 上の二項関係と呼ぶ。あるいはもっと一般に、二つの集合 に対して、 と との間の二項関係とは、直積 の部分集合のことをいう。 二項関係の一つの例は素数全体の成す集合 と整数全体の成す集合 の間の整除関係である。この整除関係では任意の素数 は、 の倍数である任意の整数 に関係を持ち、倍数でない整数には関係しないものとして扱われる。例えば、素数 が関係を持つ整数には などが含まれるが や は含まれない。同様に素数 が関係する整数として などが挙げられるが、 や はそうではない。 二項関係は数学のさまざまな分野で用いられ、不等関係、恒等関係、算術の整除関係、初等幾何学の合同関係、グラフ理論の隣接関係、線型代数学の直交関係などのさまざまな概念が二項関係として定式化することができる。また、写像の概念を特別な種類の二項関係として定義することもできる。二項関係は計算機科学においても重用される。 二項関係はn-項関係 (各 -番目の成分が関係の -番目の始集合 からとられているようなn-組からなる集合)で とした特別の場合である。 ある種の公理的集合論では(集合の一般化としての)類の上の関係を考えることができる。このような拡張は、集合論における元の帰属関係や包含関係の概念(に限った話ではないが)のモデル化を、ラッセルの逆理のような論理矛盾に陥らずに行うために必要である。.

新しい!!: 閉性と二項関係 · 続きを見る »

積閉集合

抽象代数学における積閉集合(せきへいしゅうごう、multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。.

新しい!!: 閉性と積閉集合 · 続きを見る »

算法 (数学)

算法(さんぽう)には次の用法がある。.

新しい!!: 閉性と算法 (数学) · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 閉性と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 閉性と集合 · 続きを見る »

除法

法(じょほう、division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。 除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (dividend) と呼び、他方を除数 (divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (numerator)、除数は分母 (denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。 除算は商 (quotient) と剰余 (remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。 剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、 を で割った余りは 、商は となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、 を で割る例では、 から を 1 回ずつ引いていき()、引かれる数が より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。 剰余を与える演算に % などの記号を用いる場合がある。 除数が である場合、除数と商の積は必ず になるため商を一意に定めることができない。従ってそのような数 を除数とする除法の商は未定義となる(ゼロ除算を参照)。 有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、 という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。 実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。.

新しい!!: 閉性と除法 · 続きを見る »

減法

減法(げんぽう、subtraction)は、一方から一部として他方を取り去ることにより両者の間の差分を求める二項演算で、算術における四則演算の 1 つ。計算することの側面を強調して引き算(ひきざん)、減算(げんさん、げんざん)などとも言う。また、引き算を行うことを「( から) を引く」 と表現する。引く数を減数(げんすう、subtrahend)と呼び引かれる数を被減数(ひげんすう、minuend)と呼ぶ。また、減算の結果は差(さ、difference)と呼ばれる。 抽象代数学において減法は多くの場合、加法の逆演算として定式化されて加法に統合される。たとえば自然数の間の減法は、整数への数の拡張により、数を引くことと負の数を加えることとが同一視されて、減法は加法の一部となる。またこのとき、常に大きいものから小さいものを減算することしかできない自然数の体系に対して、整数という体系では減算が自由に行えるようになる(整数の全体は、逆演算として減法を内包した加法に関してアーベル群になる)。.

新しい!!: 閉性と減法 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 閉性と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 閉性と整数 · 続きを見る »

ここにリダイレクトされます:

閉じている閉性質

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »