ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

多項式環

索引 多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

79 関係: 加法的多項式原始元定理単項式単項イデアル環単項イデアル整域可換体可換環可換環論同型写像多項式多項式の次数多項式函数多重指数大局次元実数不定元主イデアル一意分解環交換関係 (量子力学)交換法則代数多様体代数幾何学代数的閉体作用素係数ネーター環モノイドモノイド環ユークリッドの互除法ユークリッド環リヒャルト・デーデキントレオポルト・クロネッカーローラン級数ワイル代数ホモロジー代数学ダフィット・ヒルベルト分解体分配法則アフィン空間イデアルの根基エルンスト・クンマーエウクレイデスカール・フリードリヒ・ガウスクルル次元グレブナー基底コーシー積シュプリンガー・サイエンス・アンド・ビジネス・メディア冪級数全単射全射...算術の基本定理素イデアル素数線型結合総和群環結合法則環 (数学)環上の多元環環準同型複素数部分環自由加群自然変換自然数零多項式集合除法の原理抽象代数学恒等写像核 (代数学)極大イデアル準同型定理最大公約数既約多項式既約成分数学整域整数 インデックスを展開 (29 もっと) »

加法的多項式

数学における加法的多項式(かほうてきたこうしき、additive polynomials)は古典代数的数論において重要なトピックである。.

新しい!!: 多項式環と加法的多項式 · 続きを見る »

原始元定理

体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。.

新しい!!: 多項式環と原始元定理 · 続きを見る »

単項式

数学における単項式(たんこうしき、monomial)とは、大ざっぱに言えばただひとつの項しかもたない多項式のことをいう。単項式は多項式(あるいは形式冪級数)の項として、一般の多項式(形式冪級数)を構成する構成ブロックの役割を果たす。"polynomial"(多項式)という単語は「多数」を意味する接頭辞 "poly-" に(「部分」を意味する)ギリシャ語 "νομός" (nomós) を足したものに由来するので、monomial(単項式)は理論上は "mononomial" と呼ばれるべきであり、"monomial" は "mononomial" の語中音消失である。.

新しい!!: 多項式環と単項式 · 続きを見る »

単項イデアル環

数学において、単項右(左)イデアル環、主右(左)イデアル環 (principal right (left) ideal ring) は環 R であってすべての右(左)イデアルがある x ∈ R に対して xR (Rx) の形であるようなものである。(1つの元で生成されたこの形の右と左のイデアルは単項イデアルである。)これが左と右のイデアル両方に対して満たされるとき、例えば R が可換環のような場合、R を単項イデアル環、主イデアル環 (principal ideal ring) あるいはシンプルに 単項環、主環 (principal ring) と呼ぶことができる。 R の有限生成右イデアルだけが単項であるならば、R は右ベズー環 (right Bézout ring) と呼ばれる。左ベズー環は同様に定義される。これらの条件は域 (domain) においてベズー域として研究される。 整域でもあるような可換単項イデアル環は単項イデアル整域 (PID) と呼ばれる。この記事において焦点は域とは限らない単項イデアル環のより一般的な概念に当てる。.

新しい!!: 多項式環と単項イデアル環 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: 多項式環と単項イデアル整域 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 多項式環と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 多項式環と可換環 · 続きを見る »

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: 多項式環と可換環論 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 多項式環と同型写像 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 多項式環と多項式 · 続きを見る »

多項式の次数

数学、初等代数学における多項式の次数(じすう、degree)は、多項式を不定元の冪積の線型結合からなるに表すとき、そこに現れる項のうち最も高い項の次数を言う。ここに、項の次数とは、それに現れる不定元の冪指数の総和である。次数の同義語として「位数」「階数」(order) が用いられることもあるが、今日的にはに取られるのが普通だろう。 例えば、多項式 は三つの項からなる。多項式の記法に関する通常の規約により、この多項式は厳密には を意味することに注意する。最初の項の次数は (冪指数 と の和)であり、二番目の項の次数は, 最後の項の次数は であるから、この中で最高次の項の次数である がこの多項式の次数ということになる。 上のような標準形になっていない多項式の次数の決定に際しては、たとえば のような場合、積は分配法則に従って展開し、同類項をまとめて、まずは標準形に直さなければならない。いまの例では だから次数は である(二つの二次式の和をとったにもかかわらず、である)。しかし、多項式が標準形の多項式の「積」に書かれている時には、積の次数は各因子の次数の総和として計算できるから、必ずしも展開・整理は要しない。 多項式の次数の日本語名称は、一貫して次数の値に接尾辞「-次」をつける。英語名称は、いくつかの例外はあるが基本的にラテン語の序数詞に形容詞を作る接尾辞の -ic を付けて表す。次数と不定元の数はきちんと区別されるべきであって、こちらには接尾辞「-元」あるいは「-変数」を付ける(英語名称ではラテン語に接尾辞 -ary が付く)。例えば のような二つの不定元に関する次数 の多項式は「二元二次」("binary quadratic") であると言い、二元 (binary) が不定元の数が であることを、二次 (quadratic) 次数が であることを言い表している。もう一つ、項の数も明示するなら「-項式」(英語名称では ラテン配分数詞に接尾辞 -nomial)を付ける。単項式 (monomial), 二項式 (binomial) あるいは三項式 (trinomial) など。つまり、例えば は「二元二次二項式」("binary quadratic binomial") である。 以下しばらくは一元多項式に関して述べる。.

新しい!!: 多項式環と多項式の次数 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 多項式環と多項式函数 · 続きを見る »

多重指数

数学において多重指数記法(たじゅうしすうきほう、multi-index notation; 多重添字記法)は、添字記法を順序組を用いて多重化(多変数に一般化)する表記法であり、多変数微分積分学、偏微分方程式論、シュヴァルツ超関数論などの分野において、主に整数冪の冪指数などの添字を多重化した多重指数、多重添字を用いて様々な式の表記を簡潔にする。.

新しい!!: 多項式環と多重指数 · 続きを見る »

大局次元

論とホモロジー代数において、環 A の左(右)大局次元あるいは大域次元(global dimension)(または大局ホモロジー次元(global homological dimension)、ときには単にホモロジー次元(homological dimension)と呼ばれる)は、すべての左(右) A-加群の射影次元の集合の上限として定義される環のホモロジー的不変量である。それは非負の整数か無限大に値をとり l. gl. dim A (r. gl. dim A )と書かれる。さらに両者が一致するときには単に大局次元と言い gl. dim A と書かれる。 一般の非可換環 A に対しては左と右の大局次元は異なるかもしれない。しかしながら、A が左かつ右ネーター環であれば、これらの大局次元は両方とも、定義が左右対称的な弱大局次元に等しいことがわかる。したがって、左かつ右ネーター環に対しては、両者は一致し、大局次元について話すことが正当化される。 大局次元は可換ネーター環の次元論で重要な技術的概念である。.

新しい!!: 多項式環と大局次元 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 多項式環と実数 · 続きを見る »

不定元

不定元 (indeterminate) は多項式や形式的冪級数に現れる記号であり、しばしば変数と呼ばれる。正式には、不定元は変数ではなく、多項式環や形式的冪級数環の定数である。しかしながら、多項式や形式的級数とそれらの定義する関数との間の強い関係のために、多くの著者は不定元を変数の特別な種類と考える。 例えば、二元体 F2 において多項式 X2 + X を考えると、これは 0 ではないが、この多項式の表す多項式関数は 0 である。 Category:抽象代数学 Category:数学に関する記事.

新しい!!: 多項式環と不定元 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: 多項式環と主イデアル · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 多項式環と一意分解環 · 続きを見る »

交換関係 (量子力学)

量子力学における交換関係(こうかんかんけい、commutation relation)とは、演算子としてあらわされた物理量が満たす量子力学特有の関係である。.

新しい!!: 多項式環と交換関係 (量子力学) · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 多項式環と交換法則 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 多項式環と代数多様体 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 多項式環と代数幾何学 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: 多項式環と代数的閉体 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 多項式環と作用素 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 多項式環と係数 · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: 多項式環とネーター環 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 多項式環とモノイド · 続きを見る »

モノイド環

抽象代数学におけるモノイド環(モノイドかん、monoid ring)あるいはモノイド多元環(モノイドたげんかん、monoid algebra; モノイド代数)は、(単位的)環とモノイドから構成される単位的多元環で、多項式環の概念を一般化するものである。 実際、環 上の一変数多項式環 は と( を含む)自然数全体の成す(加法的)モノイド (あるいは適当な不定元 を用いて乗法的に書いた可換モノイド )から得られるモノイド環 であり、同様に(加法)モノイド は -変数の多項式環 を与える。 与えられたモノイドがさらに群を成すとき、得られるモノイド環は群環と呼ばれる。.

新しい!!: 多項式環とモノイド環 · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: 多項式環とユークリッドの互除法 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: 多項式環とユークリッド環 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: 多項式環とリヒャルト・デーデキント · 続きを見る »

レオポルト・クロネッカー

レオポルト・クロネッカー(Leopold Kronecker, 1823年12月7日 - 1891年12月29日)はドイツの数学者である。リーグニッツ(現在のポーランド・レグニツァ Legnica)生まれ。ユダヤ系。 彼は、ヤコビ、ディリクレ、アイゼンシュタイン、クンマーといったドイツの先達の後に立って、また、パリ滞在中にエルミートなどの影響によって、群論、モジュラー方程式、代数的整数論、楕円関数、また行列式の理論において大きな業績を残した。クロネッカーの名前は現在でも、クロネッカーのデルタ、クロネッカー積、クロネッカー=ウェーバーの定理、クロネッカーの青春の夢などに見ることができる。.

新しい!!: 多項式環とレオポルト・クロネッカー · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 多項式環とローラン級数 · 続きを見る »

ワイル代数

抽象代数学におけるワイル代数(ワイルだいすう、Weyl algebra)は多項式係数の微分作用素がなす非可換環である。量子力学におけるハイゼンベルグの不確定性原理の研究においてこの環を導入したヘルマン・ワイルにちなみ、この名前が付けられている。ワイル代数はハイゼンベルグ群のリー環の普遍包絡環から、リー環の中心の生成元と普遍包絡環の単位元とを同一視して得られる商になっており、このことからハイゼンベルグ代数とも呼ばれる。.

新しい!!: 多項式環とワイル代数 · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: 多項式環とホモロジー代数学 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 多項式環とダフィット・ヒルベルト · 続きを見る »

分解体

抽象代数学において、与えられた多項式の分解体(ぶんかいたい、splitting field)とは、その多項式を一次式の積に因数分解 (splitting) できるような係数体の拡大体を言う。特にそのような拡大体のうちが最小となる最小分解体 (smallest splitting field) は多項式に対して同型を除いて一意に定まるため、最小分解体のことを指して単に分解体と呼ぶことも多い。.

新しい!!: 多項式環と分解体 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: 多項式環と分配法則 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 多項式環とアフィン空間 · 続きを見る »

イデアルの根基

数学の一分野である可換環論において、イデアル I の根基(radical of an ideal)とは、イデアルであって、何乗かすれば I の元となるような元の集合である。根基イデアル(あるいは半素イデアル)とは、自分自身の根基と等しいようなイデアルのことである。(これは「根基化」と呼ばれるイデアルへの作用の固定点であるということもできる。)準素イデアルの根基は素イデアルである。 ここで定義された根基イデアルは半素環の記事において非可換環に一般化される。.

新しい!!: 多項式環とイデアルの根基 · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: 多項式環とエルンスト・クンマー · 続きを見る »

エウクレイデス

ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス アレクサンドリアのエウクレイデス(、、(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。 プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。 なお、エウクレイデスという名はギリシア語で「よき栄光」を意味する。その実在を疑う説もあり、その説によると『原論』は複数人の共著であり、エウクレイデスは共同筆名とされる。 確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。.

新しい!!: 多項式環とエウクレイデス · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 多項式環とカール・フリードリヒ・ガウス · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: 多項式環とクルル次元 · 続きを見る »

グレブナー基底

レブナー基底(グレブナーきてい、Gröbner basis)は、多変数多項式の簡約化が一意に行える多項式の集合である。多変数の連立代数方程式の解を求める際などに利用される(#計算例参照)。 グレブナー基底を求めるアルゴリズムとしては、ブッフベルガーアルゴリズム(Buchberger's algorithm)があり、数式処理の分野での連立代数方程式の解法として使われている。また、可換環論、代数幾何、微分方程式論、整数計画問題などに出てくる様々な数学的対象物を構成するための基礎となっている。.

新しい!!: 多項式環とグレブナー基底 · 続きを見る »

コーシー積

数学の特に初等解析学におけるコーシー積(コーシーせき、Cauchy product)は、二つの無限級数に対する離散的な畳み込み積である。名称はフランス人数学者のオーギュスタン・ルイ・コーシーに因む。 コーシー積が適用できるのは、無限級数あるいは冪級数である。冪級数のコーシー積は冪級数を単に無限級数とみてとったコーシー積であるから、ことさら区別を強調することはないけれども、収束性を考える上では分けておくことは便利である。 コーシー積は数列を添字集合上の離散的な函数と見たときの函数の畳み込みであり、また有限数列または有限級数を、台が有限(つまり、有限個を除くすべての項が零)な無限数列または無限級数と見てコーシー積をとることもできるけれども、その場合は離散畳み込みと呼ぶほうが普通であろう。.

新しい!!: 多項式環とコーシー積 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 多項式環とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 多項式環と冪級数 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 多項式環と全単射 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 多項式環と全射 · 続きを見る »

算術の基本定理

pp.

新しい!!: 多項式環と算術の基本定理 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: 多項式環と素イデアル · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 多項式環と素数 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 多項式環と線型結合 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 多項式環と総和 · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: 多項式環と群環 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 多項式環と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 多項式環と環 (数学) · 続きを見る »

環上の多元環

数学の殊に環論において可換環上の代数あるいは多元環(たげんかん、algebra)は、体上の多元環の概念において係数体を考えるところを置き換えて可換環を係数環としたものである。 本項においては、環と言えば単位元を持つものと仮定する。.

新しい!!: 多項式環と環上の多元環 · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 多項式環と環準同型 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 多項式環と複素数 · 続きを見る »

部分環

数学における部分環(ぶぶんかん、subring)は、環 R の部分集合 S で、R の加法と乗法をそこに制限するときそれ自身が環となり、かつ R の単位元を含むものを言う。単位元を持つことを仮定しない場合には、R の演算の制限で S が環を成すことのみを以って部分環を定義する(この場合も自動的に S は R の加法単位元を含む)。後者は前者よりも弱い条件であり、例えば任意のイデアルは(たとえ乗法的単位元を持つ環においても)後者の意味の部分環になる(この部分環が、もとの環とは異なる乗法単位元を持つ場合もあり得る)。(本項で扱う)単位元の存在を定義に含める場合には、R の部分環となるようなイデアルは R 自身に限る。.

新しい!!: 多項式環と部分環 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 多項式環と自由加群 · 続きを見る »

自然変換

数学の一分野である圏論において、自然変換(しぜんへんかん、natural transformation)は、ある函手をその圏に関する内部構造(即ち射の合成)を保ちながら別の函手に変形する方法を与えるものである。したがって直観的には、自然変換というのは「函手間の射」のことであると考えうる。このことは実際に、函手圏と呼ばれるものを定義することにより厳密に定式化することができる。圏論において自然変換の概念は、圏と函手に次いで最も基本的な概念であり、それ故に圏論を用いる議論の大部分に現れる。.

新しい!!: 多項式環と自然変換 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 多項式環と自然数 · 続きを見る »

零多項式

数学における零多項式(れいたこうしき、ゼロたこうしき、zero polynomial, null polynomial)は全ての係数が の多項式を言う。しばしば、零多項式自身をやはり で表す。零多項式は、一変数または多変数の多項式環における零元である。 零多項式を定数多項式や任意次数の斉次多項式と見ることもできるし、そうしないこともあり得る。.

新しい!!: 多項式環と零多項式 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 多項式環と集合 · 続きを見る »

除法の原理

数学の特に算術において、自然数や整数に対する通常の剰余付き除法(じょうよつきじょほう、division with remainder; 余りのある割り算)は、ユークリッド除法(ユークリッドじょほう、Euclidean division)または整除法(せいじょほう、entire division)とも呼ばれ、「被除数と除数と呼ばれる二つの自然数に対して、商と剰余と呼ばれる二つの自然数が、与えられた性質を満たして一意的に存在する」ことを主張する定理として明確に規定することができる。このような定理を「除法の原理」(じょほうのげんり、division algorithm; 除法の算法)という。即ち、その主張は「二つの自然数 n および m ≠ 0 に対してある自然数 a および b が存在して n.

新しい!!: 多項式環と除法の原理 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 多項式環と抽象代数学 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 多項式環と恒等写像 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 多項式環と核 (代数学) · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: 多項式環と極大イデアル · 続きを見る »

準同型定理

抽象代数学における準同型定理(じゅんどうけいていり、fundamental theorem on homomorphisms; 準同型の, )は、与えられた構造をもつ二つの対象の間の準同型が与えられたとき、その準同型の核と像とを関係づける。 準同型定理は同型定理の証明に利用できる。 以下、群の場合に定理の主張を述べるが、同様の主張はモノイド、ベクトル空間、加群、環などについても成立する。.

新しい!!: 多項式環と準同型定理 · 続きを見る »

最大公約数

40と15に関する次の要素が埋め込まれた図: 積(600)、 商と剰余(40÷15.

新しい!!: 多項式環と最大公約数 · 続きを見る »

既約多項式

代数学において既約多項式(きやくたこうしき、irreducible polynomial)とは、多項式環の既約元のことである。より冗長には次のようになる。 を単位元をもつ可換環とし、その単数全体を 、一変数多項式環を とおく。多項式 が2条件.

新しい!!: 多項式環と既約多項式 · 続きを見る »

既約成分

数学、とりわけ代数幾何学において、既約成分 (irreducible component) の概念は方程式 XY.

新しい!!: 多項式環と既約成分 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 多項式環と数学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 多項式環と整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 多項式環と整数 · 続きを見る »

ここにリダイレクトされます:

多項式代数形式多項式自由可換多元環自由可換環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »