ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

逆写像

索引 逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

51 関係: 単射単調写像単集合反復合成双曲線関数同値同値関係多価関数定義域実数値関数実数直線対合対数射 (圏論)主値三角関数三次関数微分微分可能関数微分積分学圏論像 (数学)ヤコビ行列ケプラーの方程式写像写像の合成全単射全射値域空関数等位集合線対称終域選択公理部分写像部分集合関数 (数学)自然対数集合論集合族連続 (数学)連鎖律逆三角関数逆函数定理逆元逆関係恒等写像極値正則行列数学...数式 インデックスを展開 (1 もっと) »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 逆写像と単射 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 逆写像と単調写像 · 続きを見る »

単集合

数学における単集合(たんしゅうごう、singleton; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。.

新しい!!: 逆写像と単集合 · 続きを見る »

反復合成

反復合成.

新しい!!: 逆写像と反復合成 · 続きを見る »

双曲線関数

csch) のグラフ 数学において、双曲線関数(そうきょくせんかんすう、hyperbolic function)とは、三角関数と類似の関数で、標準形の双曲線を媒介変数表示するときなどに現れる。.

新しい!!: 逆写像と双曲線関数 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 逆写像と同値 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 逆写像と同値関係 · 続きを見る »

多価関数

多価関数(たかかんすう、multivalued function)とは、完全関係のひとつであり、一つの入力が与えられたときに一つあるいは複数の出力を得るものである。しかし現代的な定義での関数は写像の一種とみなされ、一つの入力があるときに出力を一つだけ得るものと定義されることが多く、この場合には多価関数を「関数」と呼ぶのは不適切となる(下記多価関数#歴史的経緯参照)。多価関数は単射でない関数から得ることができる。そのような関数では逆関数が定義できないが、逆関係 (inverse relation) はある。多価関数は、この逆関係に相当する。.

新しい!!: 逆写像と多価関数 · 続きを見る »

定義域

数学における写像の定義域(ていぎいき、domain of definition)あるいは始域(しいき、domain; 域, 領域)とは、写像の値の定義される引数(「入力」)の取り得る値全体からなる集合である。つまり、写像はその定義域の各元に対して(「出力」としての)値を与える。 例えば、実数の範囲での議論において、余弦函数の定義域はふつう実数全体の成す集合(実数直線)であるし、正の平方根函数の定義域は 以上の実数全体の成す集合であるものとする。定義域が実数から成る集合(実数全体の成す集合の部分集合)であるような実数値函数は、その定義域が -軸上にあるものとして -直交座標系に表すことができる。.

新しい!!: 逆写像と定義域 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: 逆写像と実数値関数 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: 逆写像と実数直線 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 逆写像と対合 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 逆写像と対数 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 逆写像と射 (圏論) · 続きを見る »

主値

複素解析において、関数値として複数の複素数を取る多価関数を考えるとき、関数の主値(しゅち、principal value)とはその関数の分枝から取られる値のことである。多価関数の値を主値に限定することで、一価の関数となる。.

新しい!!: 逆写像と主値 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 逆写像と三角関数 · 続きを見る »

三次関数

x-軸と交わる点である。このグラフは二つの極値を持つ。 1.

新しい!!: 逆写像と三次関数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 逆写像と微分 · 続きを見る »

微分可能関数

数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。.

新しい!!: 逆写像と微分可能関数 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 逆写像と微分積分学 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 逆写像と圏論 · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 逆写像と像 (数学) · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 逆写像とヤコビ行列 · 続きを見る »

ケプラーの方程式

プラーの方程式(ケプラーのほうていしき)とは、ケプラー問題 ケプラー予想のことではなく、惑星の軌道を求める問題に現れた超越方程式のことである。 普通、次のような形の方程式をケプラーの方程式と呼んでいる。 ケプラーの時代は、この方程式から E を M と \epsilon によって近似的に表すことで惑星の位置を決定した。ニュートン力学を知っている現在では、運動方程式から計算することができる(特に2体問題の惑星の軌道を求めるのであれば、運動方程式は解析的に解ける)ので、ケプラーの方程式を解かなくても惑星の位置を知ることができる。.

新しい!!: 逆写像とケプラーの方程式 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 逆写像と写像 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 逆写像と写像の合成 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 逆写像と全単射 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 逆写像と全射 · 続きを見る »

値域

数学、特に素朴集合論における写像の値域(ちいき、range)は、その写像の終域または像の何れかの意味で用いられる。現代的な用法ではほとんど全ての場合において「像」の意味である。.

新しい!!: 逆写像と値域 · 続きを見る »

空関数

関数(くうかんすう、empty function)、あるいは空写像とは、数学における関数(写像)の一種で、定義域が空集合の関数をいう。任意の集合 A について、A を終域とする空関数 は必ずちょうど1つ存在する。 空関数のグラフは、直積集合 ∅×A の部分集合である。直積は空なので、その部分集合も空集合 ∅ である。定義域 ∅ に属する全ての x に対して、(x, y) ∈ ∅ となるような値域 A 内の y が一意に定まるので、空部分集合は妥当なグラフである。実際には「定義域にはどんな x も存在しない」ので、これはの一例である。 空関数が定数関数の定義に含まれるかどうかを気にすることは少なく、その場その場で便利なように定義することが多い。しかし場合によっては空関数を定数関数の一種と考えない方がよく、値域を用いた定義が望ましい場合もある。これは、1を素数に含めないとか、空の位相空間を連結空間に含めないとか、自明群を単純群に含めないといったことと同列の考え方である。 空関数は単射であり、とくに終域 A も空集合のときは全単射である。 任意の集合 A について唯一の空関数が存在するということは、空集合が集合の圏の始対象 (initial object) であることを意味する。 値域を空集合とする空関数を考えることにより、基数あるいは順序数の冪の意味で を示すことが出来る。詳細は0の0乗#集合論による導出を参照。.

新しい!!: 逆写像と空関数 · 続きを見る »

等位集合

数学における等値集合または等位集合(とういしゅうごう、level set)は、与えられた写像が決められた値を取るような定義域に属する元全体の成す集合を言う。例えば、-変数の実数値函数 に対し、実数値 に対する等位集合は で与えられる。 二変数の場合には、等位集合は曲線を描き、等位(曲)線 (level curve), 等高線 (contour line), 等値線 (iso­line) などと呼ばれる。同様に三変数のときの等位集合は、等位(曲)面 (level surface), 等値面 (iso­surface) と言い、またさらに高次元の場合を等位超曲面 (level hyper­surface) と呼ぶことがある。.

新しい!!: 逆写像と等位集合 · 続きを見る »

線対称

線対称(せんたいしょう、line symmetry)は、図形を特徴づける性質の1つで、ある直線を軸として図形を反転させると自らと重なり合う対称性である。その直線を対称軸という。.

新しい!!: 逆写像と線対称 · 続きを見る »

終域

数学において写像の終域(しゅういき、codomain; 余域)あるいは終集合(しゅうしゅうごう、target set)は、写像を と表すときの集合 、すなわち写像 の出力する値がその中に属するべきという制約を定める集合をいう。終域の代わりに「値域」という語を用いる場合もあるが、値域は写像の像(出力される値すべてからなる集合、 で言えば )の意味で用いることが多いので注意すべきである。.

新しい!!: 逆写像と終域 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: 逆写像と選択公理 · 続きを見る »

部分写像

単射な部分写像の例 単射でない全域写像の例 数学において部分写像(ぶぶんしゃぞう、partial mapping)あるいは部分函数(partial function)は適当な部分集合上で定義された写像である。即ち、集合 から への部分写像 は の任意の元に の元を割り当てることが求められる写像 の概念を一般化して、 の適当な部分集合 の元に対してのみそれを要求する。 となる場合には は全域写像 (total function) と呼ばれ、これは写像と同じ概念を意味する。部分写像を考えるときには、その定義域 がはっきりとは分かっていないという場合もよくある。.

新しい!!: 逆写像と部分写像 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 逆写像と部分集合 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 逆写像と関数 (数学) · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 逆写像と自然対数 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: 逆写像と集合論 · 続きを見る »

集合族

数学の集合論関連分野における集合族(しゅうごうぞく、family of sets)は集合の「あつまり」である。ここで「集合の集合」といわず「集合のあつまり」としているのは、文脈によっては集合族が同じ集合をいくつも重複して持つ場合(しばしば添字付けられた族 (indexed family of sets) として扱われる)があったり、別の文脈では集合でない真の類 (proper class) となる場合があるなどの理由による。 特に与えられた集合 の部分集合のみを考えるとき、 の部分集合からなる集合は の部分集合族、 上の集合族あるいはなどと呼ぶ。グラフ理論の文脈では集合系はハイパーグラフとも呼ばれる。 また、自然数で添字付けられた(あるいは可算な)集合族は特にと呼ぶ(族 (数学)および列 (数学)の項も参照)。.

新しい!!: 逆写像と集合族 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 逆写像と連続 (数学) · 続きを見る »

連鎖律

微分法において連鎖律(れんさりつ、chain rule)とは、複数の関数が合成された合成関数を微分するとき、その導関数がそれぞれの導関数の積で与えられるという関係式のこと。.

新しい!!: 逆写像と連鎖律 · 続きを見る »

逆三角関数

数学において、逆三角関数(ぎゃくさんかくかんすう、inverse trigonometric function、時折 )は(関数の定義域を適切に制限した)三角関数の逆関数である。具体的には、それらは正弦 、余弦 、正接 、余接 、正割 、余割 関数の逆関数である。それらは角度の三角比の任意から角度を得るために使われる。逆三角関数は工学、航法、物理学、幾何学において広く使われる。.

新しい!!: 逆写像と逆三角関数 · 続きを見る »

逆函数定理

数学、特に微分学において逆函数定理(ぎゃくかんすうていり、inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の ''C''1 級へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。.

新しい!!: 逆写像と逆函数定理 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 逆写像と逆元 · 続きを見る »

逆関係

数学における二項関係の逆関係(ぎゃくかんけい、inverse relation)は、関係(のグラフ)に属する順序対の成分を逆順にして得られる関係である。例えば、「~の子である」という関係の逆関係は「~の親である」という関係である。.

新しい!!: 逆写像と逆関係 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 逆写像と恒等写像 · 続きを見る »

極値

数学において、関数の局所的な(つまり、ある点の近傍における)最大値または最小値のことをそれぞれ極大値(きょくだいち、maximal, local maximum)、極小値(きょくしょうち、minimal, local minimum)といい、これらを併せて極値(きょくち)と総称する。 極値は局所的な概念であるため、ある点で極値をとってもその点が全域的な最大・最小値を取るとは限らないが、極値自体が適当な区間における最大・最小値の候補と考えることができるため、関数の振る舞いを知る上で重要である。極値を調べる方法としては、微分を利用することで極値をとるための必要条件を求めることができる。.

新しい!!: 逆写像と極値 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 逆写像と正則行列 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 逆写像と数学 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: 逆写像と数式 · 続きを見る »

ここにリダイレクトされます:

逆作用素逆函数逆演算逆関数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »