ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

境界値問題

索引 境界値問題

数学の微分方程式の分野における境界値問題(きょうかいちもんだい、Boundary value problem)とは、境界条件と呼ばれる付帯的な制限が与えられている微分方程式のことである。境界値問題の解とは、与えられた境界条件を満たすような微分方程式の解のことである。 境界値問題は、物理学のいくつかの分野によく現れる。「の決定」のような波動方程式を含む問題はしばしば境界値問題として記述される。境界値問題に関する一つの重要な理論としてスツルム=リウヴィル理論がある。その理論における境界値問題の解析には、微分作用素の固有関数の計算が含まれる。 応用上意義のあるものであるために、境界値問題は良設定問題でなければならない。これはすなわち、問題に与えられた入力に対して、その入力に連続的に依存するような解がただ一つ存在することを意味する。 偏微分方程式の分野における多くの理論的な研究は、科学的あるいは工学的な応用上実際に良設定であるような境界値問題の解決を目的としている。最も早い境界値問題の研究として、ラプラス方程式の解である調和関数の発見についてのディリクレ問題が挙げられる。その解はディリクレの原理により与えられた。.

27 関係: 偏微分方程式境界条件微分作用素微分方程式ノイマン境界条件ポテンシャル論ラプラス方程式ロビン境界条件ブラックホールディリクレの原理ディリクレ境界条件ディリクレ問題初期値問題グリーン関数コーシー境界条件凝固点固有関数絶対零度物理学静電気学調和関数良設定問題楕円型作用素波動波動方程式混合境界条件数学

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 境界値問題と偏微分方程式 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 境界値問題と境界条件 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 境界値問題と微分作用素 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 境界値問題と微分方程式 · 続きを見る »

ノイマン境界条件

数学の分野におけるノイマン境界条件(のいまんきょうかいじょうけん、Neumann boundary condition)あるいは第2種境界条件とは、数学者のの名にちなむ境界条件のことである。常微分方程式あるいは偏微分方程式に対し、その解の微分が定義域の境界でとる値を定める。 例えば、常微分方程式 に対し、定義域 上のノイマン境界条件は次のような形をとる: ここで α および β は与えられた数である。 別の例では、偏微分方程式 (ただし、∇2 はラプラシアンを表す)に対し、定義域 \Omega \subset \mathbb^n 上のノイマン境界条件は次のような形をとる: ここで n は境界 ∂Ω への法線ベクトルを表し、f は与えられたスカラー関数である。 上式の左辺に現れるは で定義される。ここで ∇ はグラディエント(ベクトル)を表し、中点は内積を表す。 熱伝導の問題において、定義域の境界から熱の出入りが全く無いという状況に出くわすことはよくある(すなわち、定義域は完全に断熱されている)。これは、法線微分がゼロであるようなノイマン境界条件に対応する。 ノイマン境界条件の他にも多くの境界条件が存在する。例えば、コーシー境界条件や、ノイマンとディリクレの条件が組み合わされた混合境界条件などがある。.

新しい!!: 境界値問題とノイマン境界条件 · 続きを見る »

ポテンシャル論

数学および数理物理学におけるポテンシャル論(ポテンシャルろん、)とは、調和函数に関する理論のことを言う。 19世紀の物理学において、自然界における基本的な力はラプラス方程式を満たすポテンシャルによってモデル化出来ることが知られ、そのときに「ポテンシャル論」という語が初めて用いられた。その後、例えば古典静電気学やニュートン重力などのより精確な理論の発展があったが、依然として「ポテンシャル論」という語は残されている。 ポテンシャル論とラプラス方程式の理論には、重複する点が少なからず存在する。それら二つの理論の明白な区別は、内容というよりも次に示す一つの明白な強調点に依っている:ポテンシャル論では「函数」の性質に焦点が置かれるが、ラプラス方程式の理論では「方程式」の性質に焦点が置かれる。例えば、調和函数の特異性に関する結果はポテンシャル論に属すると言えるが、その函数が境界値にどのように依存するかという点に関する結果はラプラス方程式の理論に属すると言えよう。もちろん、これは絶対的な区別ではなく、それら二つの理論における手法や結果には、実際には重複する点も多い。 近代のポテンシャル論はまた、確率論やマルコフ連鎖の理論とも密接に関連している。また連続の場合には、解析理論と密接に関連している。状態空間が有限の場合、その空間上の電気ネットワーク、推移確率に反比例する点の間の抵抗、ポテンシャルに比例する密度を導入することによって、そのような関連性が導かれる。そのような有限の場合であっても、ポテンシャル論におけるラプラシアンの analogue I-K はそれ自身の極大原理や一意性原理、バランス原理やその他の原理を備えるものである。.

新しい!!: 境界値問題とポテンシャル論 · 続きを見る »

ラプラス方程式

ラプラス方程式(ラプラスほうていしき、Laplace's equation)は、2階線型の楕円型偏微分方程式 である。ここで、 はラプラシアン(ラプラス作用素、ラプラスの演算子)である。なお、∇ についてはナブラを参照。ラプラス方程式は、発見者であるピエール=シモン・ラプラスから名づけられた。ラプラス方程式の解は、電磁気学、天文学、流体力学など自然科学の多くの分野で重要である。ラプラス方程式の解についての一般理論はポテンシャル理論という一つの分野となっている。 の場合に標準座標を用いてラプラス方程式を書くと次のようになる: \phi(x,y,z) + \phi(x,y,z) + \phi(x,y,z).

新しい!!: 境界値問題とラプラス方程式 · 続きを見る »

ロビン境界条件

数学の分野におけるロビン境界条件(ろびんきょうかいじょうけん、Robin boundary condition)あるいは第3種境界条件とは、数学者の(1855–1897)の名にちなむ境界条件である。常微分方程式あるいは偏微分方程式に対し、解の定義域の境界上における値と、その微分の値の線型結合により表される。 ロビン境界条件はディリクレ境界条件とノイマン境界条件の組み合わせであり、境界上の異なる部分集合に対してそれぞれ異なる境界条件を定める混合境界条件とは区別される。電磁気学の問題へと応用される関係上、インピーダンス境界条件と呼ばれることもある。 与えられた方程式の解の定義域を Ω とし、\partial\Omega をその境界とするとき、ロビン境界条件は と記述される。ここで、a および b はゼロでない定数、g は境界 \partial\Omega 上定義される関数である。また、u は Ω 上の未知関数で、/ はそのを表す。より一般的なケースでは、a と b は定数でなく関数となる。 一次元で \Omega.

新しい!!: 境界値問題とロビン境界条件 · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 境界値問題とブラックホール · 続きを見る »

ディリクレの原理

ディリクレの原理(ディリクレのげんり、Dirichlet's Principle)とは、調和関数に関するディリクレ問題の解を、あるクラスの関数の中でディリクレ積分を最小にするものとして調和関数を発見する方法である。ディリクレ問題の解決方法でもっとも重要な一般的方法がディリクレの原理である。 ディリクレの原理は の解を、次のディリクレ積分 を最小にするものを探すことで見つける方法である。.

新しい!!: 境界値問題とディリクレの原理 · 続きを見る »

ディリクレ境界条件

ディリクレ境界条件(ディリクレきょうかいじょうけん)あるいは第1種境界条件は、微分方程式における境界条件の一つの形状であり、境界条件上の点の値を直に与えるものである。 より厳密に言うと、y に関する微分方程式で、ディリクレ境界上の点の集合をΩとしたときに、Ωに含まれる点x があれば という形で表現できるような境界条件である。 例えば、偏微分方程式 において、一般解は となるが、ディリクレ条件としてx.

新しい!!: 境界値問題とディリクレ境界条件 · 続きを見る »

ディリクレ問題

ラプラス方程式をある領域Ωで、境界上でφ.

新しい!!: 境界値問題とディリクレ問題 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 境界値問題と初期値問題 · 続きを見る »

グリーン関数

リーン関数(グリーンかんすう)は.

新しい!!: 境界値問題とグリーン関数 · 続きを見る »

コーシー境界条件

数学の分野におけるコーシー境界条件(こーしーきょうかいじょうけん、Cauchy boundary condition)は、常微分方程式あるいは偏微分方程式に対し、定義域の境界上での解の値およびそのの値を定めるような条件のことを言う。ディリクレ境界条件とノイマン境界条件を両方とも課すような状況に対応する。19世紀のフランスの数学者であるオーギュスタン=ルイ・コーシーの名にちなむ。 コーシー境界条件は、特殊解を持つように初期点あるいは境界点における解の値とその微分の値を定めるような、二階の常微分方程式に関する理論から理解することが出来る。それはすなわち および である解を考えるような理論である。ここで a \ は初期点あるいは境界点である。 コーシー境界条件は、そのようなタイプの境界条件の一般化である。以下、議論を簡略化するために、偏微分に関する次のような記法を導入する: u_x &.

新しい!!: 境界値問題とコーシー境界条件 · 続きを見る »

凝固点

凝固点(ぎょうこてん、英語:freezing point)とは、液体が凝固し固化する温度のことを言い、相転移点の一種である。なお、水が凍る温度のことは氷点(ひょうてん)とも言う。ヒステリシスが無い場合には融点(固体が融解する温度)と一致する。.

新しい!!: 境界値問題と凝固点 · 続きを見る »

固有関数

波動関数\left.

新しい!!: 境界値問題と固有関数 · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: 境界値問題と絶対零度 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 境界値問題と物理学 · 続きを見る »

静電気学

静電気学(せいでんきがく、または静電学、Electrostatics)は静止またはゆっくり動く電荷による現象を扱う科学の一分野である。 古典古代より、琥珀のような物質をこすると軽い粒子を引き寄せることが知られていた。英語においては、ギリシャ語で琥珀をあらわす という単語が electricity(電気)の語源となった。静電現象の原因となっているのは、電荷が互いに働かせる力である。この電荷による力はクーロンの法則によって記述される。静電的に誘起された力はやや弱いとみなされがちだが、電子と陽子間に働く静電力(水素原子を作り出している)は、同粒子間に働く重力の1040倍もの強さがある。 静電現象には数多くの事例があり、パッケージからはがしたプラスチック包装紙が手に吸い付くという身近で単純なものから、穀物サイロがひとりでに爆発するという現象まである。さらに生産中に電子部品が破損したりと害になることもあれば、一方ではコピー機の原理に用いられていたりする。静電気学には物体の表面に他の物体の表面が接することにより、電荷が蓄積されるという現象が関わっている。荷電交換は2つの表面が接触し、離れるときにはいつでも起きているものの、表面のうちの少なくともどちらか一方が高い電気抵抗をもっていなければ通常その効果には気づかない。高い抵抗をもつ表面には電荷が長時間蓄えられ、その効果が観測されるためである。蓄えられた電荷は接地へとゆっくり減少してゆくか、放電によってすぐに中性化される。例えば静電気ショックの現象は、不導体の表面と接触することにより人体に蓄えられた電荷が、金属などに触れたときに一気に放電し、中性化する現象である。.

新しい!!: 境界値問題と静電気学 · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: 境界値問題と調和関数 · 続きを見る »

良設定問題

良設定問題(well-posed problem)とは数学の用語であり、ジャック・アダマールによって定義された。彼は、物理現象の数学的モデルは、以下の性質を持つべきであると考えた。.

新しい!!: 境界値問題と良設定問題 · 続きを見る »

楕円型作用素

数学の偏微分方程式の理論において、楕円型作用素(だえんがたさようそ、)とは、ラプラス作用素を一般化した微分作用素のことを言う。最高次の微分の係数が正であるという条件によって定義され、このことは主表象が可逆であるか、または同値であるが、実の特性方向が存在しないという重要な性質を意味する。 楕円型作用素は、ポテンシャル論において典型的に現れるものであり、静電気学や連続体力学において頻繁に用いられる。楕円型正則性は、解が(作用素の係数が滑らかであれば)滑らかな函数になる傾向にあることを意味する。双曲型偏微分方程式や放物型偏微分方程式の定常解は一般に楕円型方程式によって解かれる。.

新しい!!: 境界値問題と楕円型作用素 · 続きを見る »

波動

波動(はどう、英語:wave)とは、単に波とも呼ばれ、同じようなパターンが空間を伝播する現象のことである。 海や湖などの水面に生じる波動に関しては波を参照のこと。 量子力学では、物質(粒子)も波動的な性質を持つとされている。.

新しい!!: 境界値問題と波動 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: 境界値問題と波動方程式 · 続きを見る »

混合境界条件

数学の分野における、ある偏微分方程式に対する混合境界条件(こんごうきょうかいじょうけん、Mixed boundary condition)とは、その方程式の定義域の境界の異なる部分に異なる境界条件が用いられていることを意味する。 例えば、境界 \partial\Omega が区分的に滑らかであるような集合 \Omega 上の偏微分方程式の解を u とし、その境界が二つの部分 \Gamma_1 および \Gamma_2 に分かれているとしたとき、\Gamma_1 上ではディリクレ境界条件を、\Gamma_2 上ではノイマン境界条件を用いれば となる。ここで u₀ および g は各境界の部分上で定義された、与えられた関数である。 ロビン境界条件は、また異なる複数の境界条件の混合型である。それはディリクレ境界条件とノイマン境界条件の線型結合である。.

新しい!!: 境界値問題と混合境界条件 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 境界値問題と数学 · 続きを見る »

ここにリダイレクトされます:

境界値

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »