ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

常微分方程式

索引 常微分方程式

常微分方程式(じょうびぶんほうていしき、ordinary differential equation, O.D.E.)とは、数学において、未知関数とその導関数からなる等式で定義される方程式である微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 の未知関数 に対して、(既知の)関数 を用いて という形にできるような関数方程式を常微分方程式と呼ぶ。 は未知関数 の 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。 \left(\boldsymbol^(t).

21 関係: 偏微分方程式変数分離媒介変数微分微分方程式ルジャンドルの微分方程式ローレンツ方程式パンルヴェ方程式フックス型微分方程式ベッセル関数ガウスの微分方程式線型微分方程式複雑系関数方程式NAG数値計算ライブラリ求積法方程式数学数式数ベクトル空間

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 常微分方程式と偏微分方程式 · 続きを見る »

変数分離

変数分離(へんすうぶんり、separation of variables)は、常微分方程式や偏微分方程式を解くための手法。方程式を変形することにより、2つあるいはそれ以上の変数が式の右辺・左辺に分かれるようにすること。 常微分方程式に対して用いるときと、偏微分方程式に対して用いるときは、そのやり方がかなり異なっているが、それぞれの変数に依存する部分を両辺に分けるという点では共通している。.

新しい!!: 常微分方程式と変数分離 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 常微分方程式と媒介変数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 常微分方程式と微分 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 常微分方程式と微分方程式 · 続きを見る »

ルジャンドルの微分方程式

ルジャンドルの微分方程式(るじゃんどるのびぶんほうていしき)とは、アドリアン=マリ・ルジャンドルにその名をちなむ、以下の形の常微分方程式の事である。 これはガウスの微分方程式において、α.

新しい!!: 常微分方程式とルジャンドルの微分方程式 · 続きを見る »

ローレンツ方程式

ーレンツ方程式 (ローレンツほうていしき)は、カオス的ふるまいを示す非線型方程式の一つである。次に式を示す。 x, y, zの3つの変数についての方程式で、システムのふるまいは、3つの定数p, r, bにより決まる。 大気変動モデルを研究していたマサチューセッツ工科大学の気象学者、エドワード・N・ローレンツ (Edward N. Lorenz) が、論文「決定論的非周期な流れ( Deterministic Nonperiodic Flow)」 (1963) の中で提示した。図では、この論文でローレンツが与えた p.

新しい!!: 常微分方程式とローレンツ方程式 · 続きを見る »

パンルヴェ方程式

数学においてパンルヴェ方程式(パンルヴェほうていしき、Painlevé equations)は、(動く特異点が極であるという)パンルヴェ性 (Painlevé property) を備えた特定の種類の二階非線型の複素常微分方程式である。パンルヴェ方程式は一般には初等関数の範囲で解くことはできず、パンルヴェ方程式の解としてパンルヴェ超越関数 (Painlevé transcendents) と呼ばれる複素変数の特殊関数が定義される。名の由来は後にフランス首相の座に就くポール・パンルヴェの著した論文 から。.

新しい!!: 常微分方程式とパンルヴェ方程式 · 続きを見る »

フックス型微分方程式

複素解析におけるフックス型微分方程式(フックスがたびぶんほうていしき、Fuchsian equations)は、(解析的)函数係数線型常微分方程式で、その係数函数が無限遠点を含むリーマン球面上で有理型かつ任意の特異点がとなるようなものを言う。 二階の例を挙げれば: がフックス型とは定義域の任意の点 において および は正則であるか、さもなくば は の一位の極 かつ の高々二位の極となるときに言う。 この常微分方程式は量子力学などの分野で広く応用される。 またフックス型の微分方程式は必ずガウスの微分方程式(超幾何微分方程式)の形に書き換え可能であることが知られている。.

新しい!!: 常微分方程式とフックス型微分方程式 · 続きを見る »

ベッセル関数

ベッセル関数(ベッセルかんすう、Bessel function)とは、最初にスイスの数学者ダニエル・ベルヌーイによって定義され、フリードリヒ・ヴィルヘルム・ベッセルにちなんで名づけられた関数。円筒関数と呼ばれることもある。以下に示す、ベッセルの微分方程式におけるy(x)の特殊解の1つである。 上の式において、\alphaは、任意の実数である(次数と呼ばれる)。\alphaが整数nに等しい場合がとくに重要である。 \alpha及び-\alphaはともに同一の微分方程式を与えるが、慣例としてこれら2つの異なる次数に対して異なるベッセル関数が定義される(例えば、\alphaの関数としてなるべく滑らかになるようにベッセル関数を定義する、など)。 そもそもベッセル関数は、惑星軌道の時間変化に関するケプラー方程式を、ベッセルが解析的に解いた際に導入された。.

新しい!!: 常微分方程式とベッセル関数 · 続きを見る »

ガウスの微分方程式

ウスの微分方程式(-びぶんほうていしき)あるいは超幾何微分方程式(ちょうきかびぶんほうていしき)とはガウスにその名をちなむ、以下の形をした常微分方程式である。 ここで α, β, γ は複素定数である。.

新しい!!: 常微分方程式とガウスの微分方程式 · 続きを見る »

線型微分方程式

線型微分方程式線形等の用字・表記の揺れについては線型性を参照。(せんけいびぶんほうていしき、linear differential equation)は、微分を用いた線型作用素(線型微分作用素) と未知関数 と既知関数 を用いて の形に書かれる微分方程式のこと。.

新しい!!: 常微分方程式と線型微分方程式 · 続きを見る »

複雑系

複雑系(ふくざつけい、complex system)とは、相互に関連する複数の要因が合わさって全体としてなんらかの性質(あるいはそういった性質から導かれる振る舞い)を見せる系であって、しかしその全体としての挙動は個々の要因や部分からは明らかでないようなものをいう。 これらは狭い範囲かつ短期の予測は経験的要素から不可能ではないが、その予測の裏付けをより基本的な法則に還元して理解する(還元主義)のは困難である。系の持つ複雑性には非組織的複雑性と組織的複雑性の二つの種類がある。これらの区別は本質的に、要因の多さに起因するものを「組織化されていない」(disorganized) といい、対象とする系が(場合によってはきわめて限定的な要因しか持たないかもしれないが)創発性を示すことを「組織化された」(organized) と言っているものである。 複雑系は決して珍しいシステムというわけではなく、実際に人間にとって興味深く有用な多くの系が複雑系である。系の複雑性を研究するモデルとしての複雑系には、蟻の巣、人間経済・社会、気象現象、神経系、細胞、人間を含む生物などや現代的なエネルギーインフラや通信インフラなどが挙げられる。 複雑系は自然科学、数学、社会科学などの多岐にわたる分野で研究されている。また、複雑系科学の記事も参照のこと。.

新しい!!: 常微分方程式と複雑系 · 続きを見る »

解(かい).

新しい!!: 常微分方程式と解 · 続きを見る »

関数方程式

数学、及びその応用分野において、関数方程式(かんすうほうていしき、functional equation)は、単一の(または複数の)関数のある点と他の点での値の関係を示す方程式である。関数の性質は、与えられた条件を満たす関数方程式の種類などをもとに決定することができる。通常は代数方程式に帰着できない方程式を指す。 リーマンゼータ関数やその類似物が満たす特殊な関数方程式は、関数等式と呼ばれることが多い。.

新しい!!: 常微分方程式と関数方程式 · 続きを見る »

NAG数値計算ライブラリ

NAG ライブラリは、Numerical Algorithms Group(NAG社)により販売されているFortran、C言語、Java、などで使用可能な数値計算、統計解析用ライブラリである。線型方程式、固有値問題、補間、微積分、非線型方程式、微分方程式などの数学関数のほかに、相関係数、共分散、多変量解析、乱数発生などの統計計算や金融工学に必要な関数を多く取り揃えている。Windows、Linux、Solaris、HP-UX、IBM AIX、SGI IRIX, その他NECや富士通のスーパーコンピュータなどのプラットフォームで動作する。英国 The Numerical Algorithms Group Ltd. が開発、日本国内では日本ニューメリカルアルゴリズムズグループ株式会社が販売、サポートを行なっている。 NAG数値計算ライブラリでは利用言語や環境などにより以下の5種類のライブラリが用意されている。.

新しい!!: 常微分方程式とNAG数値計算ライブラリ · 続きを見る »

求積法

求積法(きゅうせきほう、quadrature)とは、定積分を求める方法のこと。特に、平面上の領域や曲面の面積を求める方法を意味することもある。 微分方程式論においては、有限回の不定積分を用いて常微分方程式の解を表す方法を意味する日本数学会編『岩波数学辞典』第4版、岩波書店、2007年 ISBN 978-4000803090。求積法で解くことができる常微分方程式は限られているが、例えば一階線型常微分方程式やクレローの方程式は求積法で解ける。この他にも求積法で解ける常微分方程式は数多く知られている長島 隆廣 『常微分方程式80余例とその厳密解』 近代文芸社、2005年 ISBN 4-7733-7282-6.

新しい!!: 常微分方程式と求積法 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 常微分方程式と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 常微分方程式と数学 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: 常微分方程式と数式 · 続きを見る »

数ベクトル空間

数ベクトル空間(すうべくとるくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間数空間のことを座標空間と呼ぶこともあるが、「座標系を備えた空間」という意味で座標空間と呼ぶこともあるので紛らわしい(の項も参照)。)を自然にベクトル空間と見たものである。.

新しい!!: 常微分方程式と数ベクトル空間 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »