ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ハメル次元

索引 ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

36 関係: 加群の長さ基底基底 (線型代数学)ほとんど (数学)単位行列可換体可換環双代数体の拡大余代数マトロイドバナッハ空間モンスター群ルベーグ被覆次元ヴォルフガング・クルルトレースクラスヒルベルト空間フラクタル次元ベクトル空間クルル次元全単射素イデアル線型写像線型部分空間群 (数学)階数・退化次数の定理選択公理表現論複素数跡 (線型代数学)J-不変量恒等写像核作用素濃度 (数学)指標数学

加群の長さ

抽象代数学において、加群の長さ (length) は加群の「大きさ」の尺度である。それは部分加群の最長の鎖の長さと定義され、ベクトル空間の次元の概念の一般化である。有限の長さをもつ加群は有限次元ベクトル空間と多くの重要な性質を共有する。 環と加群の理論において「大きさを測る」ために使われる他の概念は深さと高さである。これらは両方とも定義するのが幾分デリケートである。これらはまた有用な次元のさまざまなアイデアである。長さ有限の可換環は形式的な代数幾何学の関手的扱いにおいて本質的な役割を果たす。.

新しい!!: ハメル次元と加群の長さ · 続きを見る »

基底

* 一般.

新しい!!: ハメル次元と基底 · 続きを見る »

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: ハメル次元と基底 (線型代数学) · 続きを見る »

ほとんど (数学)

数学において、ほとんど (almost) という語は、ある厳密な意味で用いられる専門用語のひとつである。主に「測度 0 の集合を除いて」という意味であるが、それ単体で用いることはあまりなく、「ほとんど至るところで(almost everywhere)」「ほとんど全ての(almost all)」などの決まり文句でひとつの意味を形成する。.

新しい!!: ハメル次元とほとんど (数学) · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: ハメル次元と単位行列 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ハメル次元と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: ハメル次元と可換環 · 続きを見る »

双代数

数学において,体 上の双代数(そうだいすう,bialgebra)とは, 上のベクトル空間であって,単位的結合代数かつ余代数であるようなものである.代数構造と余代数構造はさらなる公理によって整合性を持つ.具体的には,余積と余単位はともに単位的代数の準同型である,あるいは同じことであるが,代数の積と単位射はともに余代数の準同型である.(これらのステートメントは同じ可換図式によって表されるから同値である.) 類似している双代数は双代数準同型によって関連付けられる.双代数の準同型は代数と余代数両方の準同型であるような線型写像である. 可換図式の対称性に反映されているように,双代数の定義は自己双対であり,したがって, の双対を定義できるならば( が有限次元ならいつでも可能である),自動的に双代数になる..

新しい!!: ハメル次元と双代数 · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: ハメル次元と体の拡大 · 続きを見る »

余代数

余代数(よだいすう、coalgebra)とは、単位元を持つ結合代数に対して、圏の双対をとったものをいう。.

新しい!!: ハメル次元と余代数 · 続きを見る »

マトロイド

マトロイド(matroid)はある公理を満たす集合とそのべき集合の部分集合の組である。歴史的には、行列の一次独立・従属を一般化した概念であるが、多くの組合せ最適化問題をマトロイドあるいはより緩い独立性システムとコスト関数で定式化でき、特徴付けを行える等応用範囲は広い。特に組合せ最適化において、マトロイド上の最適化問題には単純な貪欲法によって多項式時間のアルゴリズムとは限らないものの最適解が得られることは非常に重要である。.

新しい!!: ハメル次元とマトロイド · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: ハメル次元とバナッハ空間 · 続きを見る »

モンスター群

群論という現代代数学の分野において、モンスター群(モンスターぐん、Monster group) とは最大のであり、その位数は である。・モンスターあるいは Friendly Giant と呼ばれることもある。 有限単純群は完全にされている。そのような群は18種類の可算無限族の1つに属するか、あるいはそのような系統的なパターンに従わない26個の散在群の1つである。モンスター群は他の散在群のうち6個を除くすべてをとして含む。 (Robert Griess) はこれら6個の例外を と呼び、他の20個を happy family と呼んでいる。 モンスターの良い構成的定義をすることはその複雑さのため難しい。.

新しい!!: ハメル次元とモンスター群 · 続きを見る »

ルベーグ被覆次元

数学の一分野、位相空間論におけるルベーグ被覆次元(ひふくじげん、Lebesgue covering dimension)あるいは位相次元(いそうじげん、topological dimension)は、位相空間に対して位相不変量となる次元の概念の(いくつかの同値でないものの)うちの一種である。.

新しい!!: ハメル次元とルベーグ被覆次元 · 続きを見る »

ヴォルフガング・クルル

ヴォルフガング・クルル、ゲッティンゲン、1920年 ヴォルフガング・クルル(Wolfgang Krull、1899年8月26日-1971年4月12日)は、可換環論に対して基礎的な貢献を行い、現在はこの分野で中心的になっている概念を導入したドイツの数学者である。 クルルは、バーデン=バーデンで生まれ、学校に通った。アルベルト・ルートヴィヒ大学フライブルク、ロストック大学、そして最終的にはゲオルク・アウグスト大学ゲッティンゲンに通い、ここでフェリックス・クラインの指導の下、博士号を取得した。フライブルク大学で助手、教授として働き、その後、フリードリヒ・アレクサンダー大学エアランゲン=ニュルンベルクに移った。1939年には、ライン・フリードリヒ・ヴィルヘルム大学ボンに移り、終生ここで過ごした。 指導した35人の博士課程学生の中には、ウィルフリード・ブラウアーやユルゲン・ノイキルヒがいる。.

新しい!!: ハメル次元とヴォルフガング・クルル · 続きを見る »

トレースクラス

数学の分野におけるトレースクラス()作用素とは、有限かつ基底の選び方に依らないトレースを定義出来るようなあるコンパクト作用素のことを言う。トレースクラス作用素は、本質的には核作用素と等しいものであるが、多くの研究者は「トレースクラス作用素」の語はヒルベルト空間上の特別な核作用素の場合に対して用い、より一般的なバナッハ空間に対して「核作用素」の語を用いる。.

新しい!!: ハメル次元とトレースクラス · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: ハメル次元とヒルベルト空間 · 続きを見る »

フラクタル次元

フラクタル次元(フラクタルじげん、fractal dimension、D)とは、フラクタル幾何学において、より細かなスケールへと拡大するにつれあるフラクタルがどれだけ完全に空間を満たしているように見えるかを示す統計的な量である。 フラクタル次元にはさまざまな定義がある。最も重要な理論的フラクタル次元はレニー次元、ハウスドルフ次元、の3つである。実用上ではとの2つが実装が容易なこともあり広く使われている。古典的なフラクタルのいくつかではこれらの次元は全て一致するが、一般にはこれらは等価なものではない。 例えば、コッホ雪片の位相次元は1であるが、これは決して曲線ではない――コッホ雪片上の任意の2点の間の弧長は無限大である。コッホ雪片の小片は線のようではないが、かといって平面やその他の何かの一部のようでもない。1次元の物体であると考えるには大きすぎるが、2次元の物体であると考えるには薄すぎるとも言え、ではその次元はある意味1と2の間の数値として表されるのではないかという考察に導かれる。これがフラクタル次元の概念を想像してみる簡単な方法の1つである。.

新しい!!: ハメル次元とフラクタル次元 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: ハメル次元とベクトル空間 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: ハメル次元とクルル次元 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: ハメル次元と全単射 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: ハメル次元と素イデアル · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ハメル次元と線型写像 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: ハメル次元と線型部分空間 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ハメル次元と群 (数学) · 続きを見る »

階数・退化次数の定理

数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、)とは、最も簡単な場合、ある行列の階数(rank)と退化次数(nullity)の和は、その行列の列の数に等しいということを述べた定理である。特に、A がある体上の m×n 行列(行の数が m で、列の数が n)であるなら、 が成立する。 この定理は線型写像に対しても同様に適用される。V と W をある体上のベクトル空間とし、T: V → W をある線型写像とする。このとき、T の階数は T の像の次元であり、T の退化次数は T の核の次元である。したがって、 が成立する。あるいは、同値であるが が成立する。これは実際、V と W が無限次元であることも許しているため、前述の行列の場合よりもより一般的な定理となっている。 この定理の内容は、あるいは後述の証明を用いることで、次元のみならず、空間の間の同型写像に関する内容へと精練することが出来る。 より一般的に、線型代数学の基本定理によって関連付けられる像、核、余像、余核について考えることが出来る。.

新しい!!: ハメル次元と階数・退化次数の定理 · 続きを見る »

選択公理

選択公理(せんたくこうり、、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた。.

新しい!!: ハメル次元と選択公理 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: ハメル次元と表現論 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ハメル次元と複素数 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: ハメル次元と跡 (線型代数学) · 続きを見る »

J-不変量

数学では、複素変数 τ の函数としたときのフェリックス・クライン(Felix Klein)の j-不変量 (j-invariant)、(もしくは、j-函数と呼ぶこともある)とは、複素数の上半平面上に定義された のウェイト 0 のモジュラー函数を言う。j-不変量は、 であり尖点(カスプ)で一位の極を持つ以外は正則な、一意的な函数である。 の有理函数はモジュラーであり、実はすべてのモジュラー函数を与える。古典的には、-不変量は 上の楕円曲線のパラメータ化として研究されていたが、驚くべきことに、モンスター群の対称性との関係を持っている(この関係はモンストラス・ムーンシャインと呼ばれる)。 j\left(e^\right).

新しい!!: ハメル次元とJ-不変量 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: ハメル次元と恒等写像 · 続きを見る »

核作用素

数学の分野における核作用素(かくさようそ、)とは、基底の選び方に依らない有限のトレースを定義出来るような、あるコンパクト作用素のことを言う(ただし、この定義は少なくとも well-behaved な空間におけるものであって、いくつかの空間においては核作用素にトレースが存在しないこともある)。核作用素は、本質的にはトレースクラス作用素と同じものであるが、多くの研究者は「トレースクラス作用素」という呼び名を、特別な場合としてのヒルベルト空間上の核作用素に対して用いている。核作用素の、一般的なバナッハ空間における定義はアレクサンドル・グロタンディークによって与えられた。この記事では、一般的なバナッハ空間上の核作用素について扱う。より重要な、ヒルベルト空間上の核作用素(すなわち、トレースクラス作用素)については、トレースクラス作用素の記事を参照されたい。.

新しい!!: ハメル次元と核作用素 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: ハメル次元と濃度 (数学) · 続きを見る »

指標

指標(しひょう)とは、物事を判断したり評価したりするための目じるしとなるもの。.

新しい!!: ハメル次元と指標 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ハメル次元と数学 · 続きを見る »

ここにリダイレクトされます:

ベクトル空間の次元代数次元次元 (ベクトル空間)次元 (線型代数学)有限次元

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »