ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

双対

索引 双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

74 関係: AdS/CFT対応可換体双対多面体双対ベクトル空間存在記号対合対称性 (物理学)強磁性強誘電体圧電効果ミラー対称性 (弦理論)ノートンの定理ポントリャーギン双対リアクタンスローレンツ変換テブナンの定理ファラデー効果ファラデーの電磁誘導の法則ホログラフィック原理ベクトル空間アンペールの法則アーベル群アドミタンスインピーダンスインダクタンスカー効果ガウスの法則キルヒホッフの法則 (電気回路)コンダクタンスサセプタンス全称記号共役図形の相似短絡磁場磁束密度磁歪磁気単極子磁性粒子と波動の二重性線型写像物理学特殊相対性理論直列回路と並列回路静電容量静電モーター類推誘電率論理和...論理積電場電位電圧電動機電石電磁気学電荷電束密度電気電気工学電気抵抗電流透磁率M理論S-双対T-双対東京リーガルマインド正多面体永久磁石準同型指標指標群数学 インデックスを展開 (24 もっと) »

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

新しい!!: 双対とAdS/CFT対応 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 双対と可換体 · 続きを見る »

双対多面体

双対多面体(そうついためんたい)、ある立体の頂点と面を入れ替えた立体のことをいう。 具体的には、面の重心を新たな頂点とし、辺で接する面の重心同士を辺で結び(したがって辺の数は変わらない)、頂点で接する面の重心を結ぶ多角形を面とする。ただし、定量的な長さや角度を問題とせず、トポロジー(頂点・辺・面の接する関係)だけを問題とすることもある。 3次元における双対多胞体である。多面体について述べていることが自明なときは単に双対という。 双対多面体の双対多面体は元の多面体である。自身と双対関係にある多面体を自己双対多面体という。.

新しい!!: 双対と双対多面体 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 双対と双対ベクトル空間 · 続きを見る »

存在記号

存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「∃」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。 これとは対照的に全称記号は、何かが常に真であることを示す。.

新しい!!: 双対と存在記号 · 続きを見る »

対(つい、たい)とは、2つ一組で存在するものの場合に、その2つを一組とする見方の元でそれを指していう表現で、それらが対をなすという。特に、その2つが対象物の中で反対に位置するものをこう言うことが多い。つまり、そのものの軸に対して向かい合った位置に同等のものが存在する場合に、それらをまとめて言う表現である。 また名詞の前に置いて「~に対する」という意味で使うこともある。対戦車兵器や対米従属などの用例がある。二つの語に挟んで用いる場合は、双方が競争の相手、比較の対象であることを意味するようになる(「阪神対巨人」、「二対一」など)。そのほか、引き分けを意味するタイ(tie)の音訳としてや、対屋(ついのや)の略称としての用例が存在する。.

新しい!!: 双対と対 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: 双対と対合 · 続きを見る »

対称性 (物理学)

対称性ラベルを示す面心立方格子構造の第一ブリュアンゾーン 物理学における対称性(たいしょうせい、symmetry)とは、物理系の持つ対称性 — すなわち、ある特定の変換の下での、系の様相の「不変性」である。.

新しい!!: 双対と対称性 (物理学) · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 双対と強磁性 · 続きを見る »

強誘電体

強誘電体(きょうゆうでんたい、Ferroelectrics)とは誘電体の一種で、外部に電場がなくても電気双極子が整列しており、かつ双極子の方向が電場によって変化できる物質を指す。また、このように電気双極子モーメントが自発的に整列した状態を強誘電状態、この性質を強誘電性と呼ぶ。 代表的な物質としてチタン酸バリウム BaTiO3 やチタン酸ジルコン酸鉛 Pb(Zr,Ti)O3 があり、FeRAM(強誘電体メモリ)などに使用されている。また強誘電体は全て圧電効果を有するため、アクチュエータなどとして使用されるものも多い。.

新しい!!: 双対と強誘電体 · 続きを見る »

圧電効果

圧電効果(あつでんこうか )とは、物質(特に水晶や特定のセラミック)に圧力(力)を加えると、圧力に比例した分極(表面電荷)が現れる現象。また、逆に電界を印加すると物質が変形する現象は逆圧電効果と言う。なお、これらの現象をまとめて圧電効果と呼ぶ場合もある。これらの現象を示す物質は圧電体と呼ばれ、ライターやガスコンロの点火、ソナー、スピーカー等に圧電素子として幅広く用いられている。圧電体は誘電体の一種である。 アクチュエータに用いた場合、発生力は比較的大きいが、変位が小さくドリフトが大きい。また、駆動電圧も高い。STMやAFMのプローブまたは試料の制御などナノメートルオーダーの高精度な位置決めに用いられることが多い。 なお、 は圧電気のほかピエゾ電気とも訳され、ギリシャ語で「圧搾する」、または「押す()」を意味する からハンケルにより名付けられた。.

新しい!!: 双対と圧電効果 · 続きを見る »

ミラー対称性 (弦理論)

数学や理論物理学において、ミラー対称性(mirror symmetry)はカラビ・ヤウ多様体と呼ばれる幾何学的な対象の間の関係であり、2つの カラビ・ヤウ多様体が幾何学的には全く異なっているにもかかわらず、弦理論の余剰次元としてそれらを扱うと等価となる対称性のことを言う。この場合、多様体は互いに「ミラー多様体」であると呼ばれる。 ミラー対称性はもともとは、物理学者によって発見された。数学者がミラー対称性に興味を持ち始めたのは1990年頃で、特に、(Philip Candelas)、ゼニア・デ・ラ・オッサ(Xenia de la Ossa)、パウル・グリーン(Paul Green)、リンダ・パークス(Linda Parks)らによって、ミラー対称性を数々の方程式の解の数を数える数学の分野である数え上げ幾何学で使うことができることが示されていた。実際、キャンデラスたちは、ミラー対称性を使いカラビ・ヤウ多様体の上の有理曲線を数えることができ、長きにわたり未解決であった問題を解明できることを示した(参照項目:ミラー対称性の応用)。元来のミラー対称性へのアプローチは、理論物理学者からの必ずしも数学的には厳密(mathematical rigor)ではないアイデアに基づいているにもかかわらず、数学者はミラー対称性予想のいくつかを数学的に厳密な証明に成功しつつある。 今日では、ミラー対称性は純粋数学の主要な研究テーマであり、数学者は物理学者の直感に基づくミラー対称性を数学的に深く理解しつつある。ミラー対称性は弦理論の計算を実行する際の基本的なツールでもある。ミラー対称性への主要なアプローチは、マキシム・コンツェビッチ(Maxim Kontsevich)のホモロジカルミラー対称性予想のプログラムやアンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)のSYZ予想を含んでいる。 Yau and Nadis 2010 Although the original approach to mirror symmetry was based on nonrigorous ideas from theoretical physics, mathematicians have gone on to rigorously prove some of the mathematical predictions of mirror symmetry.

新しい!!: 双対とミラー対称性 (弦理論) · 続きを見る »

ノートンの定理

ノートンの定理(ノートンのていり、Norton's theorem) は、多数の電源を含む電気回路に負荷を接続したときに得られる電圧や負荷に流れる電流を、単一の内部コンダクタンスのある電流源に変換して、求める方法である。「ノルトンの定理」とも表記する。.

新しい!!: 双対とノートンの定理 · 続きを見る »

ポントリャーギン双対

数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば.

新しい!!: 双対とポントリャーギン双対 · 続きを見る »

リアクタンス

リアクタンス(reactance)とは、交流回路のインダクタ(コイル)やキャパシタ(コンデンサ)における電圧と電流の比である。 リアクタンスは電気抵抗と同じ次元を持ち、単位としてはオームを持つが、リアクタンスはエネルギーを消費しない擬似的な抵抗である。誘導抵抗、感応抵抗ともいう。 リアクタンスは、電流の微分方程式の1次微分項の係数および1次積分項の係数であり、ずれた位相成分の比率を示す係数である。.

新しい!!: 双対とリアクタンス · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: 双対とローレンツ変換 · 続きを見る »

テブナンの定理

テブナンの定理(テブナンのていり、Thevenin's theorem)は、多数の直流電源を含む電気回路に負荷を接続したときに得られる電圧や負荷に流れる電流を、単一の内部抵抗のある電圧源に変換して求める方法である。 1883年にフランス郵政・電信省の技術者、 (Léon Charles Thévenin) により発表され、「テブナンの定理」と呼ばれていたが、それより前の1853年にドイツの物理学者、ヘルマン・フォン・ヘルムホルツにより発表されていたことが、1950年にドイツの物理学者 (Hans Ferdinand Mayer) により指摘されたため、ヘルムホルツ-テブナンの定理 (Helmholtz–Thevenin's theorem) とも呼ばれる。また、ヘルムホルツが最初の発表者であることを尊重する立場から、数学(ベクトル解析)におけるヘルムホルツの定理と区別して、「ヘルムホルツ等価回路」と呼ばれることもある。 日本では等価電圧源表示(とうかでんあつげんひょうじ)、また交流電源の場合に成立することを1922年に発表した鳳秀太郎の名を取って、鳳-テブナンの定理(ほう・テブナンのていり)ともいう。これは早稲田大学教授だった黒川兼三郎の発意による。.

新しい!!: 双対とテブナンの定理 · 続きを見る »

ファラデー効果

ファラデー効果(ファラデーこうか)あるいは磁気旋光(じきせんこう)とは、磁場に平行な進行方向に、直線偏光を物質に透過させたときに偏光面が回転する現象のことである。また、この回転をファラデー回転(Faraday Rotation)と呼ぶ。 1845年にマイケル・ファラデーによって発見された。.

新しい!!: 双対とファラデー効果 · 続きを見る »

ファラデーの電磁誘導の法則

ファラデーの電磁誘導の法則(ファラデーのでんじゆうどうのほうそく、Faraday's law of induction)とは、電磁誘導において、1つの回路に生じる誘導起電力の大きさはその回路を貫く磁界の変化の割合に比例するというもの。ファラデーの誘導法則ともよばれる。また、ファラデーの電気分解の法則との混同のおそれのない場合は、単にファラデーの法則と呼称されることもある。.

新しい!!: 双対とファラデーの電磁誘導の法則 · 続きを見る »

ホログラフィック原理

ホログラフィック原理 (holographic principle) は、空間の体積の記述はある領域の境界、特にのような光的境界の上に符号化されていると見なすことができるという量子重力および弦理論の性質である。ヘーラルト・トホーフトによって最初に提唱され、レオナルド・サスキンドによって精密な弦理論による解釈が与えられた。サスキンドはトホーフトとのアイデアを組み合わせることからこの解釈を導いた。ソーンは1978年に弦理論はより低次元の記述が可能であり、ここから現在ホログラフィック的と呼ばれるやり方で重力が現れることを見出していた。 より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない。 ホログラフィック原理はブラックホール熱力学から着想された。ブラックホール熱力学ではどんなスケールの領域でも最大エントロピーはその領域の半径の三乗ではなく二乗に比例することを示唆する。ブラックホールの場合、ブラックホールに落ち込んだすべての物体が持つ情報は事象の地平面の表面の変動に完全に含まれることが推測される。ホログラフィック原理はブラックホール情報パラドックスを弦理論の枠組み内で解決する。.

新しい!!: 双対とホログラフィック原理 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 双対とベクトル空間 · 続きを見る »

アンペールの法則

アンペールの法則(アンペールのほうそく; Ampère's circuital law)は電流とそのまわりにできる磁場との関係をあらわす法則である。1820年にフランスの物理学者アンドレ=マリ・アンペール(André-Marie Ampère)が発見した。.

新しい!!: 双対とアンペールの法則 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 双対とアーベル群 · 続きを見る »

アドミタンス

アドミタンス(admittance、アドミッタンス)は、交流回路における電流と電圧の比である。慣習的に記号 Y、単位としてはジーメンス(表記は)が用いられる。計算を簡略化するため複素数表示(フェーザ表示)で表されることが多い。直流回路における電気伝導の代わりに用いられる。 交流回路における電圧と電流の比である インピーダンス Z とは次の関係がある。 以下では、j: 虚数単位、ω: 交流の角周波数とする。.

新しい!!: 双対とアドミタンス · 続きを見る »

インピーダンス

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。.

新しい!!: 双対とインピーダンス · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

新しい!!: 双対とインダクタンス · 続きを見る »

カー効果

ー効果(―こうか、)は、1875年、スコットランドの物理学者であるジョン・カーが発見した2次の電気光学効果のことである。ジョン・カーは、2次の電気光学効果だけでなく、磁気光学効果も発見したため、特に2次の電気光学効果の方を電気光学カー効果(でんきこうがくかあこうか、)と呼ぶ。 電気光学カー効果と、磁気光学カー効果を総称してカー効果と呼ぶことがある。この項目では狭義のカー効果である電気光学カー効果について説明する。磁気光学カー効果についてはリンク先を参照すること。.

新しい!!: 双対とカー効果 · 続きを見る »

ガウスの法則

ウスの法則とは(ガウスのほうそく、)とは、カール・フリードリヒ・ガウスが1835年に発見し、1867年に発表した電荷と電場の関係をあらわす方程式である。この式はジェームズ・クラーク・マクスウェルにより数学的に整備され、マクスウェルの方程式の1つとなった。電気におけるアンペールの法則とみなすこともできる。 ちなみに、単位のガウスは磁束密度の単位であり、電場を扱うこの法則とは全く関係がない。.

新しい!!: 双対とガウスの法則 · 続きを見る »

キルヒホッフの法則 (電気回路)

ルヒホッフの法則(キルヒホッフのほうそく、Kirchhoffsches Strahlungsgesetz)は、電気回路において任意の節点に流れ込む電流の総和、および任意の閉路の電圧の総和に関する法則である。線型回路、非線型回路を問わず成り立つ。電気工学で広く用いられる。ドイツの1845年物理学者グスタフ・キルヒホフが発見した。 キルヒホッフの法則には電流則と電圧則がある。両法則ともマクスウェルの方程式から直接得ることはできるが、キルヒホッフはマクスウェルに先行して、代わりにゲオルク・オームによる研究を一般化した。.

新しい!!: 双対とキルヒホッフの法則 (電気回路) · 続きを見る »

コンダクタンス

ンダクタンス (conductance) とは、回路における電流の流れやすさのこと。すなわち、直流回路では電気抵抗の逆数、交流回路ではインピーダンスの逆数の実数部。記号 G。単位ジーメンス(記号 S )、またはモー(記号\mho )。電気伝導力とも言う。.

新しい!!: 双対とコンダクタンス · 続きを見る »

サセプタンス

プタンス(susceptance)は、交流回路において位相を変化させる要素である。アドミタンスの虚数成分と等しい。単位は国際単位系では、ジーメンス (S) が用いられる。かつては、パーミタンスという言葉が用いられた。アドミタンスとの関係は以下のように表される。 Y.

新しい!!: 双対とサセプタンス · 続きを見る »

全称記号

全称記号(ぜんしょうきごう、universal quantifier)とは、数理論理学において「全ての」(全称量化)を表す記号である。通常「∀」と表記され、全称量化子(ぜんしょうりょうかし)、全称限量子(ぜんしょうげんりょうし)、全称限定子(ぜんしょうげんていし)、普遍量化子(ふへんりょうかし)、普通限定子(ふつうげんていし)などとも呼ばれる。.

新しい!!: 双対と全称記号 · 続きを見る »

共役

共軛、共役(きょうやく)は2つのものがセットになって結びついていること、同様の働きをすること。共軛の「軛」(くびき)は、人力車や馬車において2本の梶棒を結びつけて同時に動かすようにするための棒のことである。「軛」が常用漢字表外であったため、音読みの同じ「役」の字で代用され、現在では共役と書かれることが多い。いくつかの分野で用法がある。.

新しい!!: 双対と共役 · 続きを見る »

図形の相似

2つの図形 F と G が相似(そうじ、similar)であるとは、一方を適当に一様スケール変換(拡大 または縮小)して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。記号では、欧米では F ∽ G と表すが、日本では「∽」でなく S を横に倒したような記号で表すことが多い。G を r 倍に一様スケール変換して F と合同であるとき、r: 1 を F と G の相似比という。F と G の相似比は、対応する線分の長さの比(一定)に等しい。 相似な直線図形(多角形など)においては、対応する辺の長さの比は一定で相似比に等しくなり、対応する角はそれぞれ等しくなる。 特に r.

新しい!!: 双対と図形の相似 · 続きを見る »

短絡

短絡(たんらく, Short circuit)は、電気回路の二点が相対的に低いインピーダンスで電気的に接続される状態。英語で短絡を意味する short circuit から「ショート」または「ショート回路」ともいう。「ショート」はこれの日本式省略である。 ここでは、事故による短絡に限定して述べる。.

新しい!!: 双対と短絡 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 双対と磁場 · 続きを見る »

磁束密度

磁束密度(じそくみつど、)とは、文字通り磁束の単位面積当たりの面密度のことであるが、単に磁場と呼ばれることも多い。磁束密度はベクトル量である。 記号 B で表されることが多い。国際単位系 (SI)ではテスラ (T)、もしくはウェーバ毎平方メートル (Wb/m2)である。.

新しい!!: 双対と磁束密度 · 続きを見る »

磁歪

磁歪(じわい)あるいは磁気ひずみ(じき-)は、強磁性体の特性であり、強磁性体に磁場を印加し磁化させると形状にひずみ(歪、形状変化)が現れる現象である。印加された磁場による材料の磁化の変化は、飽和値λに達するまで磁歪歪みを変化させる。 この現象は1842年にジェームズ・プレスコット・ジュールにより、鉄で現れることが発見された。 まれに彼の名を冠して磁気ジュール現象、ジュール効果ともよばれる(ただし一般的な呼称ではない)。 この効果は影響を受けやすい強磁性体コアに摩擦加熱によるエネルギー損失を引き起こす。 また、同様に変圧器などのコイル鳴きを引き起こす。形状変化の振動を利用し、磁歪振動子が作られ、魚群探知機や超音波洗浄機などに利用されている。 本効果とは逆に、張力や圧力を加えることによって磁化の強さが変化することをビラリ現象(逆磁歪効果)と呼び、円筒状の強磁性体に円形および縦の磁界を同時に加えるとねじれを起こす現象をウィーデマン効果、また円形磁界をかけた状態で円筒状の強磁性体をねじると縦方向の磁化の強さが変化する現象を逆ウィーデマン効果と呼ぶ。.

新しい!!: 双対と磁歪 · 続きを見る »

磁気単極子

磁気単極子、磁気モノポール(magnetic monopole)とは単一の磁荷のみを持つもののことである。2015年現在に至るまで素粒子としては発見されておらず、現在では、宇宙のインフレーションの名残として生み出されたと仮定されるものの一つである。現在でも磁気単極子の素粒子を観測する試みがスーパーカミオカンデなどで続けられている。.

新しい!!: 双対と磁気単極子 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 双対と磁性 · 続きを見る »

粒子と波動の二重性

粒子と波動の二重性(りゅうしとはどうのにじゅうせい、Wave–particle duality)とは、量子論・量子力学における「量子」が、古典的な見方からすると、粒子的な性質と波動的な性質の両方を持つという性質のことである。 光のような物理現象が示す、このような性質への着目は、クリスティアーン・ホイヘンスとアイザック・ニュートンにより光の「本質」についての対立した理論(光の粒子説と光の波動説)が提出された1600年代に遡る。その後19世紀後半以降、アルベルト・アインシュタインやルイ・ド・ブロイらをはじめとする多くの研究によって、光や電子をはじめ、そういった現象を見せる全てのものは、古典的粒子のような性質も古典的波動のような性質も持つ、という「二重性」のある「量子」であると結論付けられた。この現象は、素粒子だけではなく、原子や分子といった複合粒子でも見られる。実際にはマクロサイズの粒子も波動性を持つが、干渉のような波動性に基づく現象を観測するのは、相当する波長の短さのために困難である。.

新しい!!: 双対と粒子と波動の二重性 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 双対と線型写像 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 双対と物理学 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 双対と特殊相対性理論 · 続きを見る »

直列回路と並列回路

列回路と並列回路(ちょくれつかいろとへいれつかいろ、英語:series and parallel circuits)とは、電子回路や電気回路の回路構成である。 電子部品の回路上の接続方法には直列(series)と並列(parallel)がある。2つの端子を持つ部品を数珠繋ぎに接続した回路を直列回路(series circuit)、2つの端子をそれぞれ互いに接続した回路を並列回路(parallel circuit)と呼ぶ。直列回路では、電流の経路が1つであり、同じ電流が各部品を順に流れる。並列回路では、電流の経路が分岐して各部品に同じ電圧がかかる。 例えば、2つの豆電球と電池を使った簡単な回路を考えてみよう。電池から伸びた導線が1つの豆電球に接続され、そこから次の豆電球に接続され、最終的に電池に戻るという回路構成は直列回路である。電池から2本の導線が伸びて、それぞれ別の豆電球に繋がり、そこからまた別々に電池に戻る場合、回路構成は並列回路である。.

新しい!!: 双対と直列回路と並列回路 · 続きを見る »

静電容量

静電容量(せいでんようりょう、)は、コンデンサなどの絶縁された導体において、どのくらい電荷が蓄えられるかを表す量である。電気容量(でんきようりょう、)、またはキャパシタンスとも呼ばれる。.

新しい!!: 双対と静電容量 · 続きを見る »

静電モーター

静電モーター(せいでんもーたー、英:Electrostatic motor)とは電動機の一種で、静電荷同士の吸引と反発(クーロン力)を原理として動力を発生する装置のこと。電磁誘導を利用する通常の電動機とは原理が異なる。非常に小型のものは低電圧で駆動されるが、通常は高電圧を必要とし流れる電流は僅かである。対して、通常の電動機は低電圧・大電流を必要とする。 最初の静電モーター(通称フランクリン・モーター)は1750年代にベンジャミン・フランクリンとアンドリュー・ゴードンにより製作された。今日では静電モーターは100V以下で駆動されるようなMEMSにしばしば用いられる。このような用途では、電荷により駆動される板状の物体の方が、コイルと鉄芯より遥かに作りやすいためである。また、生きた細胞中の分子機械は、それがリニア型か回転型かによらず静電モーターを基礎とする場合がしばしば見られる。.

新しい!!: 双対と静電モーター · 続きを見る »

類推

類推(るいすい)は類比(るいひ)、アナロジー(Analogy)ともいい、特定の事物に基づく情報を、他の特定の事物へ、それらの間の何らかの類似に基づいて適用する認知過程である。古代ギリシャ語で「比例」を意味する ἀναλογία アナロギアーに由来する。 類推は、問題解決、意思決定、記憶、説明(メタファーなどの修辞技法)、科学理論の形成、芸術家の創意創造作業などにおいて重要な過程であるが、論理的誤謬を含む場合が高いため、脆弱な論証方法である。科学的な新概念の形成過程は、チャールズ・パースによるアブダクション理論として区別される場合が多い。 異なる事象に対し類推することで、共通性を見出す言語的作業が比喩である。 言語学では、言語自体に対する類推が言語の変化の大きな要因とされる。.

新しい!!: 双対と類推 · 続きを見る »

誘電率

誘電率(ゆうでんりつ、permittivity)は物質内で電荷とそれによって与えられる力との関係を示す係数である。電媒定数ともいう。各物質は固有の誘電率をもち、この値は外部から電場を与えたとき物質中の原子(あるいは分子)がどのように応答するか(誘電分極の仕方)によって定まる。.

新しい!!: 双対と誘電率 · 続きを見る »

論理和

''P'' ∨ ''Q'' のベン図による表現 数理論理学において論理和(ろんりわ、Logical disjunction)とは、与えられた複数の命題のいずれか少なくとも一つが真であることを示す論理演算である。離接(りせつ)、選言(せんげん)とも呼び、ORとよく表す。 二つの命題 P, Q に対する論理和を P ∨ Q と書き、「P または Q」と読む。後述のように、日常会話における「または」とは意味が異なる。.

新しい!!: 双対と論理和 · 続きを見る »

論理積

数理論理学において論理積(ろんりせき、logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 ベン図による論理積P \wedge Q の表.

新しい!!: 双対と論理積 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 双対と電場 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: 双対と電位 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 双対と電圧 · 続きを見る »

電動機

様々な電動機。006P型電池との比較。 電動機(でんどうき、Electric motor)とは、電気エネルギーを力学的エネルギーに変換する電力機器、原動機の総称。モーター、電気モーターとも呼ばれる「モーター」というカタカナ表記に関して、電気学会に於いては「モータ」という表記方を定めている他、電動機メーカーによっては「モーター」のドイツ語表記“Motor”の20世紀前半までドイツ語発音の模範とされた「舞台発音」に基づいた発音方に倣って「モートル」(或いは「モトール」)という表記方を用いているところが見られる《日本電産Webサイト内『』ページ後半に掲載されているコラム『モーターの語源』より;なお「モートル」という表記は、現在、少なくとも日立系列の日立産機システムと東芝系列の東芝産業機器システムに於いて、主にブランド名の中で用いられている》。 一般に、磁場(磁界)と電流の相互作用(ローレンツ力)による力を利用して回転運動を出力するものが多いが、直線運動を得るリニアモーターや磁場を用いず超音波振動を利用する超音波モータなども実用化されている。静電気力を利用した静電モーターも古くから知られている。 なお、本来、「モータ(ー)」("motor")という言葉は「動力」を意味し、特に電動機に限定した用語ではない。それゆえ、何らかの動力の役割を果たす装置は、モーターと形容されることもよくある(ロケットモーターなど)。 以下では、電磁力により回転力を生み出す一般的な電動機を中心に説明し、それ以外のリニアモーターや超音波モータは末尾で簡単に説明する。.

新しい!!: 双対と電動機 · 続きを見る »

電石

電石(、エレクトレット)とは、電場を形成し続ける物質のこと。磁石に対比される。1919年に江口元太郎が発見した。.

新しい!!: 双対と電石 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 双対と電磁気学 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: 双対と電荷 · 続きを見る »

電束密度

電束密度(でんそくみつど、)は、電荷の存在によって生じるベクトル場である。 電気変位()とも呼ばれる。電場の強度は電荷に力を及ぼす場であり、電束密度とは由来が全く異なる場であるが、真空においては普遍定数により結び付けられてその違いが現れない。誘電体を考える場合には両者の違いが現れるが、誘電体を真空における電荷の分布であると考えることで、電束密度をあらわに用いる必要はなくなる。SIにおける単位はクーロン毎平方メートル(記号: C m)が用いられる。.

新しい!!: 双対と電束密度 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 双対と電気 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: 双対と電気工学 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 双対と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: 双対と電流 · 続きを見る »

透磁率

透磁率(とうじりつ、magnetic permeability)または導磁率(どうじりつ)は、磁場(磁界)の強さ H と磁束密度 B との間の関係を B.

新しい!!: 双対と透磁率 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

新しい!!: 双対とM理論 · 続きを見る »

S-双対

論物理学では、S-双対(S-duality)は、2つの物理理論の等価のことで、この物理理論は場の量子論でも弦理論でもよい。S-双対は、計算することが難しい理論をより計算し易い理論に結びつけるので、理論物理で計算する際に有益である。Frenkel 2009, p.2 場の量子論では、S-双対性は、古典電磁気学で良く知られた事実、すなわち、電場と磁場の交換の下にマクスウェルの方程式の不変であると言う事実を一般化したものである。場の量子論で最も早く知られたS-双対の例の一つは、(Montonen-Olive duality)で、N.

新しい!!: 双対とS-双対 · 続きを見る »

T-双対

T-双対(T-duality)は、様々な弦理論の小さな距離と長い距離の間の関係の古典的記述が、それらの特別な場合となるという場の量子論の対称性である。 ブッシャー(T. H. Buscher)の論文の中でこの話題の議論が始まり、(Martin Rocek)と(Erik Verlinde)によりさらに深められた。T-双対は、通常の素粒子物理学の中には存在しない。弦が粒子の動きとは点粒子とは基本的に異なる方法で時空を伝播する。T-双対が理解される以前には、関連がないと考えられていた異なる弦理論を関連づける。T-双対は、の中で進化した。 article Looking for extra dimensions by of which the relationship between small and large distances in various string theories is a special case.

新しい!!: 双対とT-双対 · 続きを見る »

東京リーガルマインド

株式会社東京リーガルマインド(とうきょうリーガルマインド、TOKYO LEGAL MIND K.K.)は、日本の株式会社。通称はLEC(レック、Legal Education Center)で、資格取得支援予備校「LEC東京リーガルマインド」などを運営する。 東京本部は東京都中野区中野4-11-10 アーバンネット中野ビル。大阪本部は大阪府大阪市北区茶屋町1-27 ABC-MART梅田ビルである。 現在まで代表取締役を務めている反町勝夫(弁護士)が、司法試験に合格した翌年の1979年に設立した。反町勝夫が全株式を保有する。.

新しい!!: 双対と東京リーガルマインド · 続きを見る »

正多面体

正多面体(せいためんたい、regular polyhedron)、またはプラトンの立体(プラトンのりったい、Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形に関する制限から、正多面体が先に示した五種類のみであることが証明できる。このことは、オイラーの多面体公式からも証明できる。しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。正多面体の構成面を正 p 角形、頂点に集まる面の数を q として のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。.

新しい!!: 双対と正多面体 · 続きを見る »

永久磁石

永久磁石(えいきゅうじしゃく、permanent magnet)とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことである。強磁性ないしはフェリ磁性を示す物体であってヒステリシスが大きく常温での減磁が少ないものを磁化して用いる。永久磁石材料に関するJIS規格としてJIS C2502、その試験法に関する規格としてJIS C2501が存在する。 実例としてはアルニコ磁石、フェライト磁石、ネオジム磁石などが永久磁石である。これに対して、電磁石や外部磁場による磁化を受けた時にしか磁石としての性質を持たない軟鉄などは一時磁石と呼ばれる。.

新しい!!: 双対と永久磁石 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 双対と準同型 · 続きを見る »

指標

指標(しひょう)とは、物事を判断したり評価したりするための目じるしとなるもの。.

新しい!!: 双対と指標 · 続きを見る »

指標群

数学において、指標群 (character group) は複素数値関数による群の表現の群である。これらの関数は一次元行列表現と考えることができ、したがって関連した文脈である指標理論において生じる群指標の特別な場合である。群が行列によって表現されるときにはいつでも、行列のトレースによって定義される関数は指標 (character) と呼ばれる。しかしながら、これらのトレースは一般には群をなさない。これらの 1 次元指標のいくつかの重要な性質は一般の指標に適用する:.

新しい!!: 双対と指標群 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 双対と数学 · 続きを見る »

ここにリダイレクトされます:

双対 (数学)双対性双対性 (数学)

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »