ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

周波数スペクトル

索引 周波数スペクトル

鉄の輝線スペクトル 周波数スペクトル(しゅうはすうスペクトル、Frequency spectrum)とは、周波数、色、音声や電磁波の信号などと関係の深い概念である。光源は様々な色の混合であり、それぞれの色の強さは異なる。プリズムを使うと、光が周波数によって別々の方向に屈折し、虹のような色の帯が現れる。周波数を横軸として、それぞれの成分の強さをグラフに示したものが、光の周波数スペクトルである。可視光がどの周波数についても同じ強さであれば、その光は白く見え、スペクトルは平坦な線となる。 音源も同様に様々な周波数の成分の混合である。周波数が異なれば、人間の耳には違った音として聞こえ、特定の周波数の音だけが聞こえる場合、それが何らかの音符の音として識別される。雑音は一般に様々な周波数の音を含んでいる。このため、スペクトルが平坦な線となるノイズを(光の場合からのアナロジーで)ホワイトノイズと呼ぶ。ホワイトノイズという用語は、音声以外のスペクトルについても使用される。 ラジオやテレビの放送は、割り当てられた周波数の電磁波(チャンネル)を使用する。受信機のアンテナは、それらを周波数に関係なく受信し、チューナー部がそこから1つのチャンネルを選択する。アンテナの受信した全周波数について、周波数毎の強さをグラフに表せば、それが信号の周波数スペクトルとなる。.

39 関係: 励起子可視光線位相信号 (電気工学)ノイズラジオプリズムテレビデジタイズフーリエ変換フォノンフォルマントホワイトノイズ周波数周波数領域和音アンテナウィーナー=ヒンチンの定理スペクトル密度スペクトル分析スペクトログラム光子確率論空間ベクトル素励起相関関数音声音符音源複素数量子力学離散フーリエ変換電磁スペクトル電磁波極座標系波形時間領域

励起子

励起子(れいきし、exciton)とは、半導体又は絶縁体中で電子と正孔の対がクーロン力によって束縛状態となったもの。エキシトンとも呼ばれる。.

新しい!!: 周波数スペクトルと励起子 · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 周波数スペクトルと可視光線 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: 周波数スペクトルと位相 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: 周波数スペクトルと信号 (電気工学) · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: 周波数スペクトルとノイズ · 続きを見る »

ラジオ

ラジオ()とは、.

新しい!!: 周波数スペクトルとラジオ · 続きを見る »

プリズム

プリズム()とは、光を分散・屈折・全反射・複屈折させるための、周囲の空間とは屈折率の異なるガラス・水晶などの透明な媒質でできた多面体。 光学部品の1つであり、もとは「角柱」という意味。日本語では三稜鏡(さんりょうきょう)とも呼ばれた。.

新しい!!: 周波数スペクトルとプリズム · 続きを見る »

テレビ

テレビは、テレビジョン及び「テレビ受像機(テレビジョンセット、television set)」の略語。一般には次のような文脈で用いられる。.

新しい!!: 周波数スペクトルとテレビ · 続きを見る »

デジタイズ

デジタイズ(digitize)は連続的な値を離散的な値に変換すること。その手法全般を含めてデジタイゼーション (digitaization)ともいう。離散値をデジタル値(digital value)といい、コンピュータを用いた手法では2値のビット(bit)を使った量子化が主流となっている。発展した情報理論を応用して、既存のオブジェクト・画像・信号(通常アナログ信号)などの情報をデジタイズすることを電子化 、またはデジタル化(digitalize)という。デジタイズの結果で得られた情報は、元の情報との対比として「デジタル表現」あるいは「デジタル形式」、画像であれば「デジタル画像」などと呼ぶ。 デジタル化された情報はビット量子化された単なる数列であるため、人間が知覚や認識ができるようにデータを画像としてディスプレイで表示させたり、文字列を割り当てて印字したり、電気信号へ変換してスピーカーから発音させたりなどの加工を行う。これをレンダリング(rendering)といい、レンダリングを行う仕組みや装置をレンダラー(renderer)という。 近年では、非デジタルの情報をデジタイズするだけでなく、情報そのものが作成された時点ですでにデジタル化されている場合が増えた。このような情報やコンテンツをボーン・デジタル (born-digital)という。書籍や出版では文章をワープロ、図版をデジタイザ (digitaizer)などで入力し、紙媒体への印刷を後から行う(デジタルファースト - digital-first、ペーパーレイター - paper-later) ことも一般化してきている。 以下ではデジタイズ、電子化の両方について述べる。.

新しい!!: 周波数スペクトルとデジタイズ · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 周波数スペクトルとフーリエ変換 · 続きを見る »

フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

新しい!!: 周波数スペクトルとフォノン · 続きを見る »

フォルマント

ペクトログラム:アメリカ英語のi, u, ɑのF1とF2 フォルマントまたはホルマント()とは、言葉を発している人の音声のスペクトルを観察すると分かる、時間的に移動している複数のピークのこと。周波数の低い順に、第一フォルマント、第二フォルマント…というように数字を当てて呼び、それぞれF1, F2とも表記する(第0フォルマント、F0を数える場合もある)。フォルマントの周波数は声道の形状と関係し、個体差や性差もフォルマントの違いを生む原因となる。発音する音韻が同じであれば、各フォルマント周波数は近い値になる。.

新しい!!: 周波数スペクトルとフォルマント · 続きを見る »

ホワイトノイズ

ホワイトノイズ (White noise)とは、ノイズの分類で、パワースペクトルで見ると対象となるそれなりに広い範囲で同程度の強度となっているノイズを指す。「ホワイト」とは、可視領域の広い範囲をまんべんなく含んだ光が白色であることから来ている形容である。派生語のようなものにピンクノイズがあり、周波数成分が右肩下がりの光がピンク色であることによる。よく聞くノイズの例で擬音語で表現するなら、「ザー」という音に聞こえる雑音がピンクノイズで、「シャー」と聞こえる音がホワイトノイズである。 0)とレッドノイズ(1/f2, ブラウニアンノイズともいう)の中間(1/f1であるから、という説明がなされている。Pink noise)-->.

新しい!!: 周波数スペクトルとホワイトノイズ · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 周波数スペクトルと周波数 · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: 周波数スペクトルと周波数領域 · 続きを見る »

和音

和音(わおん、chord(コード)、Akkord)は、高さが異なる複数のピッチクラスの楽音が同時にひびく音のことである。三つのピッチクラスからなる和音を「三和音」、四つのピッチクラスからなる和音を「四和音」などと呼ぶが、同時に8つの高さの音が鳴っても、ピッチクラスが3または4であれば、それは基本的には三和音または四和音とみなされる。つまり、「○和音」と「○声部」とは示す意味が異なっており、かつては携帯電話機の着信メロディ表現力の表示などで、16声部を「16和音」とするような間違った用法もしばしば見られた。 古典的な西洋音楽の音楽理論では、三和音を基本として考えることが多く(実際の音楽では2音だけが同時に鳴ることもあるが、これらはすべて三和音のいずれかの音が省略されたものと考える)、ポピュラー音楽では四和音を基本として考えることが多い。 それぞれの和音の機能や使用例などは和声を参照。.

新しい!!: 周波数スペクトルと和音 · 続きを見る »

アンテナ

アンテナ(antenna)とは、高周波エネルギーを電波(電磁波)として空間に放射(送信)したり、逆に空間の電波(電磁波)を高周波エネルギーへ相互に変換(受信)する装置のことで、日本語だと空中線と呼ばれ、英語における本来の意味だと昆虫の触角を意味している。  アンテナは、その用途から送信用と受信用に分けられるが、可逆性を備えている物なら送受信の兼用が可能である。.

新しい!!: 周波数スペクトルとアンテナ · 続きを見る »

ウィーナー=ヒンチンの定理

ウィーナー=ヒンチンの定理(Wiener–Khinchin theorem)は、広義定常確率過程のパワースペクトル密度が、対応する自己相関関数のフーリエ変換であることを示した定理。ヒンチン=コルモゴロフの定理(Khinchine-Kolmogorov theorem)とも。.

新しい!!: 周波数スペクトルとウィーナー=ヒンチンの定理 · 続きを見る »

スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

新しい!!: 周波数スペクトルとスペクトル密度 · 続きを見る »

スペクトル分析

ペクトル分析(スペクトルぶんせき)とは、時系列データを周期がシステマティックに決められた三角関数の和に恒等的に置き換え、周期ごとの影響度の強さを分析する手法である。スペクトラル分析ともいう。 もとの時系列データの値と、周期および強度(振幅)の集合の間には恒等的な関係があるため、時系列変動の周期性を分析する手法として有用である。一方で、位相に関する情報が欠落したり、十分に長い(データ点の多い)時系列を必要とするなどの欠点もある。1960年代に景気循環の分析に大いに用いられた。.

新しい!!: 周波数スペクトルとスペクトル分析 · 続きを見る »

スペクトログラム

バイオリンのスペクトログラム(縦軸は線形周波数、横軸は時間)。色の線(すなわち輝点の連続)が周波数成分の経時変化を表す。色の明度は対数的(黒は −120dBFS) スペクトログラム(Spectrogram)とは、複合信号を窓関数に通して、周波数スペクトルを計算した結果を指す。3次元のグラフ(時間、周波数、信号成分の強さ)で表される。 スペクトログラムは声紋の鑑定、動物の鳴き声の分析、音楽、ソナー/レーダー、音声処理などに使われている。スペクトログラムを声紋と呼ぶこともある。スペクトログラムを生成する機器をソノグラフ(sonograph)という。.

新しい!!: 周波数スペクトルとスペクトログラム · 続きを見る »

光子

|mean_lifetime.

新しい!!: 周波数スペクトルと光子 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 周波数スペクトルと確率論 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: 周波数スペクトルと空間ベクトル · 続きを見る »

素励起

素励起(それいき、elementary excitation)とは、量子力学における基本的な励起のこと。一般に、多体系の励起状態は素励起の複合と考えることができる『物理学辞典』 培風館、1984年。.

新しい!!: 周波数スペクトルと素励起 · 続きを見る »

相関関数

物理学において相関関数(そうかんかんすう、correlation function)は、2つの物理量の間の相関を表す量である。様々な分野に登場する極めて広い概念であり、問題設定に応じて定義も僅かに異なる。.

新しい!!: 周波数スペクトルと相関関数 · 続きを見る »

音声

音声(おんせい)とは人の声、すなわち人が発声器官を通じて発する音である。 基本要素として母音と子音がある。さらに、これらを細かく分類して、特定の言語で意味の違いを弁別・認識する音声の基本単位を音素といい、特定の言語に依存せずに、音声学で分類・定義する音声の基本単位を単音という。.

新しい!!: 周波数スペクトルと音声 · 続きを見る »

音符

音符(おんぷ)とは、西洋音楽の楽譜において、音を書き表すのに使われる符号である。 音符は五線譜などの中で、相対的な音の長さ(音価)と時間的な位置、および高さ(音高)を表す。また、音価によってその形が異なる。それぞれの音符は、符頭(たま)、符幹(ぼう)、符尾(符鈎)(はた)の3部分から成るが、符尾を欠くもの、符幹と符尾を欠くものや、符頭が白抜きのものがある(符幹と符尾をまとめて符尾と呼ぶこともある)。時間的な位置と音高は、五線譜の中で符頭の位置によって示される。 音符の対になるものに休符がある。休符は音の出ないことを表す。休符には音高がないので、原則として譜表上の一定の場所に書かれるが、1つの譜表に複数の声部が書かれるときや、連桁で繋がった音符の間に短い休符を挟むときなどは、適宜上下に移動させる。2分休符以上の休符は、譜線との対応関係を乱さないように移動させ、五線の外に出た場合や譜線がない場合には加線を用いる。 音符や休符は原則として続けて演奏される。.

新しい!!: 周波数スペクトルと音符 · 続きを見る »

音源

音源(おんげん)は、音の発生源。あるいは、音のデータ・ソース元。.

新しい!!: 周波数スペクトルと音源 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 周波数スペクトルと複素数 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 周波数スペクトルと量子力学 · 続きを見る »

色(いろ、color)は、可視光の組成の差によって感覚質の差が認められる視知覚である色知覚、および、色知覚を起こす刺激である色刺激を指す『色彩学概説』 千々岩 英彰 東京大学出版会。 色覚は、目を受容器とする感覚である視覚の機能のひとつであり、色刺激に由来する知覚である色知覚を司る。色知覚は、質量や体積のような機械的な物理量ではなく、音の大きさのような心理物理量である。例えば、物理的な対応物が擬似的に存在しないのに色を知覚する例として、ベンハムの独楽がある。同一の色刺激であっても同一の色知覚が成立するとは限らず、前後の知覚や観測者の状態によって、結果は異なる。 類語に色彩(しきさい)があり、日本工業規格JIS Z 8105:2000「色に関する用語」日本規格協会、p.

新しい!!: 周波数スペクトルと色 · 続きを見る »

離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

新しい!!: 周波数スペクトルと離散フーリエ変換 · 続きを見る »

電磁スペクトル

電磁スペクトル(でんじすぺくとる、)とは、存在し得る、すべての電磁波の周波数(または波長)帯域のことである。 電磁スペクトルの周波数は、超低周波(長波長側)からガンマ線(短波長側)にわたって広がっており、その規模は数千 km の長さから原子の幅をも下回る長さまで無限にわたっている。 波長 λ における電磁波エネルギーは 周波数 ν における光子のエネルギーと関連している。故に、電磁スペクトルはこれらの等価な3種類の値によって表現される。これら3つの値は真空中において以下のような関係にある。 ここで.

新しい!!: 周波数スペクトルと電磁スペクトル · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 周波数スペクトルと電磁波 · 続きを見る »

虹(画像の主虹の上部に薄く副虹が見える) 滝の水飛沫による虹(アイスランド・グトルフォス) 波の水飛沫による虹 虹(にじ)とは、赤から紫までの光のスペクトルが並んだ、円弧状の光である。気象現象の中でも、大気光学現象に含まれる。 太陽の光が、空気中の水滴によって屈折、反射されるときに、水滴がプリズムの役割をするため、光が分解されて、複数色(日本では七色とされる)の帯に見える。雨上がり、水しぶきをあげる滝、太陽を背にしてホースで水まきをした時などによく見ることができる。虹色は多色の一つとも言える。.

新しい!!: 周波数スペクトルと虹 · 続きを見る »

極座標系

極座標系(きょくざひょうけい、polar coordinates system)とは、n 次元ユークリッド空間 R 上で定義され、1 個の動径 r と n − 1 個の偏角 θ, …, θ からなる座標系のことである。点 S(0, 0, x, …,x) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。.

新しい!!: 周波数スペクトルと極座標系 · 続きを見る »

波形

波形(はけい、英語:waveform)とは、.

新しい!!: 周波数スペクトルと波形 · 続きを見る »

時間領域

時間領域(じかんりょういき、Time domain)とは、数学的関数、物理的信号、経済学やのデータ等の時間についての解析を意味する用語である。 時間領域には、信号あるいは関数値が連続的な実数で表される連続時間と、ある間隔で値が示される離散時間がある。オシロスコープは、実世界の信号を時間領域で視覚化するツールである。 時間領域のグラフは、時間によって信号がどう変化するかを示し、周波数領域のグラフは、それぞれの周波数帯域にどれだけの信号が存在するかを示す。.

新しい!!: 周波数スペクトルと時間領域 · 続きを見る »

ここにリダイレクトされます:

スペクトル解析

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »