ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

線型方程式系

索引 線型方程式系

数学において、線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式等とも呼ぶこともある。.

35 関係: 単射変数 (数学)媒介変数対応信号処理ヒソカニュートン法ベクトルベクトル空間アフィン空間ガウスの消去法クラメルの公式写像問題全射共役勾配法約物線型代数学線型写像線型計画問題線型近似線型部分空間線型方程式線型性疎行列特異値分解行列行列の基本変形行列の階数零空間LU分解正則行列有限要素法方程式数学

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 線型方程式系と単射 · 続きを見る »

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: 線型方程式系と変数 (数学) · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 線型方程式系と媒介変数 · 続きを見る »

対応

対応は、.

新しい!!: 線型方程式系と対応 · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: 線型方程式系と信号処理 · 続きを見る »

ヒソカ

ヒ.

新しい!!: 線型方程式系とヒソカ · 続きを見る »

ニュートン法

数値解析の分野において、ニュートン法(ニュートンほう、Newton's method)またはニュートン・ラフソン法(Newton-Raphson method)は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとに由来する。.

新しい!!: 線型方程式系とニュートン法 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 線型方程式系とベクトル · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 線型方程式系とベクトル空間 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 線型方程式系とアフィン空間 · 続きを見る »

ガウスの消去法

ウスの消去法(ガウスのしょうきょほう、Gaussian elimination)あるいは掃き出し法(はきだしほう、row reduction)とは、連立一次方程式を解くための多項式時間アルゴリズムであり、通常は問題となる連立一次方程式の係数からなる拡大係数行列に対して行われる一連の変形操作を意味する。 同様のアルゴリズムは歴史的には前漢に九章算術で初めて記述された。連立一次方程式の解法以外にも.

新しい!!: 線型方程式系とガウスの消去法 · 続きを見る »

クラメルの公式

線型代数学におけるクラメルの法則あるいはクラメルの公式(クラメルのこうしき、Cramer's rule; クラメルの規則)は、未知数の数と方程式の本数が一致し、かつ一意的に解ける線型方程式系の解を明示的に書き表す行列式公式である。これは、方程式の解を正方係数行列とその各列ベクトルを一つずつ方程式の右辺のベクトルで置き換えて得られる行列の行列式で表すものになっている。名称はガブリエル・クラーメル (1704–1752) に因むもので、クラーメルは任意個の未知数に関する法則を1750年に記している。なお特別の場合に限れば、コリン・マクローリンが1748年に公表している(また、恐らくはそれを1729年ごろにはすでに知っていたと思われる)。.

新しい!!: 線型方程式系とクラメルの公式 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 線型方程式系と写像 · 続きを見る »

問題

問題(もんだい、problem)とは、(問題解決の分野では)現状と目標との間にある障害(差、ギャップ)のことである。 その他に、一般には次のような意味をもつ。.

新しい!!: 線型方程式系と問題 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 線型方程式系と全射 · 続きを見る »

共役勾配法

線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密には''n''次の係数行列に対して高々''n''ステップで収束する(ここでは''n''.

新しい!!: 線型方程式系と共役勾配法 · 続きを見る »

約物

約物(やくもの、punctuation mark)とは、言語の記述に使用する記述記号類の総称で、専らフォントなど組版を意識して使われる用語である。具体的には、句読点・疑問符・括弧・アクセントなどのこと。元は印刷用語で、「しめくくるもの」の意。または、煉瓦・タイルなどで、縁に配置するために他と形状を変えてあるものを約物(「役物」とも書く)と称する。 約物は普通発音されないが、慣用的に用いられたり、文に意味付けを加えたり、音の表現でしかない平仮名や片仮名で表現しきれない意味付けを表現するのに使われる。マークアップ言語とも似ているが、マークアップ言語は形式言語であるのに対し、約物の一般的な使い方としては、自然言語の一部として、それなりの約束事はあるものの厳密に規定されているわけではなく、編集者や筆者の裁量に任されている部分が多い。最近では文字しか使えない電子メールや電子掲示板などで使われるアスキーアートで約物を使うこともあるが、これには約物としての意味はない。 約物の歴史は世界的に古く、〃等の一部の記号は印刷技術がない紀元前から使用されている。 約物は禁則処理(句読点が行頭にあってはいけないなどの制限)の対象となることが多い。.

新しい!!: 線型方程式系と約物 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 線型方程式系と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 線型方程式系と線型写像 · 続きを見る »

線型計画問題

線型計画問題 (せんけいけいかくもんだい、英語:linear programming problem) とは、最適化問題において、目的関数が線型関数で、なおかつ線型関数の等式と不等式で制約条件が記述できる問題である。この問題を解く手法を線型計画法という。.

新しい!!: 線型方程式系と線型計画問題 · 続きを見る »

線型近似

数学における線型近似(せんけいきんじ、linear approximation)とは、一般の関数を一次関数を用いて(より正確に言えばアフィン写像を用いて)近似することである。 例えば、2回微分可能な一変数関数 f は、テイラーの定理の n.

新しい!!: 線型方程式系と線型近似 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: 線型方程式系と線型部分空間 · 続きを見る »

線型方程式

線型方程式(せんけいほうていしき、linear equation)とは、線型性を持つ写像(関数・作用素)の等式で表される方程式のことである。線形等の用字・表記の揺れについては線型性を参照。 線型方程式においては、その線型性から解の重ね合わせが成り立つなどいくつものよい性質が成り立つ。線型方程式(特に多変数の一次代数方程式)の研究から行列などの手法が整備され、線型代数学という一分野が形成された。 線型代数学の整備により、多くの場合に線型方程式の係数を実数や複素数に限らず、四則演算が自由にできる(つまり体と呼ばれる代数的構造をもつ)集合からとったとして広く適用できる結果が知られている。 以下、特に断らない場合は係数をとる集合 K を(可換な)体とする。多くの場合 K は、実数全体の成す集合 R または複素数全体の成す集合 C のことと思って差し支えない。.

新しい!!: 線型方程式系と線型方程式 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: 線型方程式系と線型性 · 続きを見る »

疎行列

行列(そぎょうれつ、sparse matrix)とは、成分のほとんどが零である行列のことをいう。スパース行列とも言う。 有限差分法、有限体積法、有限要素法などで離散化された偏微分方程式は一般に疎行列を係数行列とした連立一次方程式となる。 数値解析の分野では、疎行列を前提とした解法が多い。疎行列であれば格納方式を工夫することで次元数を増やすことができる上に、ベクトル-行列積が比較的低計算量で求められるためである。.

新しい!!: 線型方程式系と疎行列 · 続きを見る »

特異値分解

特異値分解(とくいちぶんかい、singular value decomposition; SVD)とは、線形代数学における、複素数あるいは実数を成分とする行列に対する行列分解の一手法である。信号処理や統計学の分野で用いられる。特異値分解は、行列に対するスペクトル定理の一般化とも考えられ、正方行列に限らず任意の形の行列を分解できる。.

新しい!!: 線型方程式系と特異値分解 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 線型方程式系と行列 · 続きを見る »

行列の基本変形

行列の基本変形(ぎょうれつのきほんへんけい)とは、行列の変形のうち下の六つである。.

新しい!!: 線型方程式系と行列の基本変形 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: 線型方程式系と行列の階数 · 続きを見る »

零空間

数学、とくに関数解析学において、線型作用素 A: V → W の零空間(ぜろくうかん、れいくうかん、null space)あるいは核空間(かくくうかん、kernel space)とは、 のことである。Nul(A) は N(A) や Ker(A) などとも書かれる。とくに Ker は零空間が線型写像としての A の核 (kernel) にあたることを意味するのであるが、零空間という語を用いる文脈においては、核ということばを熱核 などの積分核に対して用いていることがほとんどであろうから注意されたい。 また、零空間という語をもちいる文脈においては、線型写像の像 は値域 と呼ばれ、線型作用素 A の値域は Ran(A) や R(A) と綴るのが通例のようである。 零空間は、ベクトル空間 V の部分空間である。さらに、 商空間 V/(Ker A) は、 A の像 Ran(A) に同型である; 特に次元について が成り立つ。 Nul A.

新しい!!: 線型方程式系と零空間 · 続きを見る »

LU分解

数学における行列のLU分解(エルユーぶんかい)とは、正方行列 A を下三角行列 L と上三角行列 U の積に分解すること。すなわち A.

新しい!!: 線型方程式系とLU分解 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 線型方程式系と正則行列 · 続きを見る »

有限要素法

有限要素法(ゆうげんようそほう、Finite Element Method, FEM)は数値解析手法の一つ。解析的に解くことが難しい微分方程式の近似解を数値的に得る方法の一つである。方程式が定義された領域を小領域(要素)に分割し、各小領域における方程式を比較的単純で共通な補間関数で近似する。構造力学分野で発達し、他の分野でも広く使われている手法。その背景となる理論は、関数解析と結びついて、数学的に整然としている。.

新しい!!: 線型方程式系と有限要素法 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 線型方程式系と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 線型方程式系と数学 · 続きを見る »

ここにリダイレクトされます:

ベクトル方程式斉次線型方程式線形方程式系連立1次方程式連立一次方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »