ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

擬リーマン多様体

索引 擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

30 関係: 可微分多様体双線型写像双曲型偏微分方程式同値類多様体実数一般相対性理論座標二次形式位相幾何学微分幾何学ミンコフスキー空間ユークリッド空間リーマン多様体リーマン幾何学の基本定理リーマン曲率テンソルレヴィ・チヴィタ接続ヘンドリック・ローレンツベクトル空間アトラス (多様体)シルヴェスターの慣性法則因果性符号の規約符号数計量テンソル部分多様体退化形式接ベクトル空間曲線時空

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 擬リーマン多様体と可微分多様体 · 続きを見る »

双線型写像

数学において双線型写像(そうせんけいしゃぞう、)とは、二つのベクトル空間それぞれの元の対に対しての第三のベクトル空間の元を割り当てる写像であって、各引数に関して線型となるようなものを言う。その一つの例が、行列の積である。.

新しい!!: 擬リーマン多様体と双線型写像 · 続きを見る »

双曲型偏微分方程式

数学の分野における、n 階の双曲型偏微分方程式(そうきょくがたへんびぶんほうていしき、)とは、大まかには、n−1 階微分まで良設定な初期値問題を含む偏微分方程式のことを言う。より正確には、非特性的超曲面に沿った任意の初期データに対して局所的に解くことの出来るコーシー問題のことを言う。力学に現れる多くの方程式は双曲型であるため、その研究は本質的に重要かつ時代の要求に即したものとして、興味の注がれるものである。双曲型方程式の代表例として、波動方程式が挙げられる。空間が一次元の場合では、その方程式は として与えられる。この方程式には、もし u とその一階微分が(十分に滑らかな性質を備えた)初期直線 t.

新しい!!: 擬リーマン多様体と双曲型偏微分方程式 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: 擬リーマン多様体と同値類 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 擬リーマン多様体と多様体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 擬リーマン多様体と実数 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 擬リーマン多様体と一般相対性理論 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 擬リーマン多様体と座標 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: 擬リーマン多様体と二次形式 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 擬リーマン多様体と位相幾何学 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 擬リーマン多様体と微分幾何学 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: 擬リーマン多様体とミンコフスキー空間 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 擬リーマン多様体とユークリッド空間 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: 擬リーマン多様体とリーマン多様体 · 続きを見る »

リーマン幾何学の基本定理

リーマン幾何学において、リーマン幾何学の基本定理(fundamental theorem of Riemannian geometry)は、任意のリーマン多様体(あるいは、擬リーマン多様体)には、捩れのない計量接続が一意的に存在するという定理である。この接続は、与えられた計量のレヴィ・チヴィタ接続(Levi-Civita connection)と呼ばれる。ここに、計量接続(あるいは、リーマン接続)は、計量テンソルを保存する接続である。正確には、 リーマン幾何学の基本定理:(M, g) をリーマン多様体(あるいは、擬リーマン多様体)とすると、一意に次の条件を満たす接続 ∇ が存在する。.

新しい!!: 擬リーマン多様体とリーマン幾何学の基本定理 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: 擬リーマン多様体とリーマン曲率テンソル · 続きを見る »

レヴィ・チヴィタ接続

リーマン幾何学では、レヴィ・チヴィタ接続 (Levi-Civita connection) は多様体の接バンドル上の特別な接続であり、特別とは捩れをもたない(metric connection)、つまり、捩れを持たない与えられた(擬)リーマン計量を保存する接バンドル上の接続(アフィン接続)である。 リーマン幾何学の基本定理は、これらの性質を満たす接続が一意的に決まることを言っている。 リーマン多様体や擬リーマン多様体の理論では、共変微分はレヴィ・チヴィタ接続のために使われる。局所座標系の観点からは、この接続の成分はクリストッフェル記号と呼ばれる。.

新しい!!: 擬リーマン多様体とレヴィ・チヴィタ接続 · 続きを見る »

ヘンドリック・ローレンツ

ヘンドリック・アントーン・ローレンツ(Hendrik Antoon Lorentz、1853年7月18日 - 1928年2月4日)は、オランダの物理学者。ゼーマン効果の発見とその理論的解釈により、ピーター・ゼーマンとともに1902年のノーベル物理学賞を受賞した。ローレンツ力、ローレンツ変換などに名を残し、特に後者はアルベルト・アインシュタインが時空間を記述するのに利用した。.

新しい!!: 擬リーマン多様体とヘンドリック・ローレンツ · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 擬リーマン多様体とベクトル空間 · 続きを見る »

アトラス (多様体)

数学の特に微分位相幾何学におけるアトラス (atlas; 地図帳) あるいは座標近傍系(ざひょうきんぼうけい、co­ordinate neighbourhood system)は多様体を記述するために必要である。アトラスはチャート (chart; 地図) あるいは座標近傍 (co­ordinate neighbourhood) と呼ばれる元の族であり、各チャートは簡単に言えば多様体の各点の周りの適当な領域に座標を入れて考えられるようにするものである。例えば地表を多様体と見なせば、アトラスとその各チャートは日常的な意味で言う地図帳と各地図と考えられる。一般には、アトラスは多様体の厳密な定義の一部として含まれ、あるいは多様体と関連深いベクトル束などのファイバー束においても同様である。.

新しい!!: 擬リーマン多様体とアトラス (多様体) · 続きを見る »

シルヴェスターの慣性法則

線型代数学におけるシルヴェスターの慣性法則(シルヴェスターのかんせいほうそく、Sylvester's law of inertia)は実二次形式の係数行列の基底変換で不変なある種の性質を記述する。 具体的に二次形式を定義する対称行列 と が対角行列となるような任意の正則行列 に対して、 の主対角線に並ぶ正の成分の数および負の成分の数は に依らず同じである。 名称は、 においてこの性質を証明したジェームス・ジョセフ・シルベスターに因む。.

新しい!!: 擬リーマン多様体とシルヴェスターの慣性法則 · 続きを見る »

因果性

ここでは因果性(いんがせい、)について解説する。.

新しい!!: 擬リーマン多様体と因果性 · 続きを見る »

符号の規約

物理学において、ある量の集合についてそれぞれ正か負かの符号を任意に選択できる場合があり、このときの符号の付け方を符号の規約(ふごうのきやく, sign convention)という。ここでいう「任意」とは、この符号について異なる規約を(一貫して)用いたとしても、同一の物理系として正確に記述されるという意味である。このため符号選択は(論文や書籍の)著者によって様々であり、しばしば科学研究における混乱や不満、誤解や過誤の源となっている。一般に、符号の規約は1つの次元についての座標系の選択の、特別な場合である。 また「符号の規約」の用語は、虚数単位 や の因子を含む、より広い意味で用いられることもある。.

新しい!!: 擬リーマン多様体と符号の規約 · 続きを見る »

符号数

数学、とくに線型代数学における符号数(ふごうすう、signature)は固有値の符号(正・負・零)を重複度を込めて数えたものである。.

新しい!!: 擬リーマン多様体と符号数 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 擬リーマン多様体と計量テンソル · 続きを見る »

部分多様体

部分多様体(submanifold)とは多様体 M の部分集合 S であって、それ自体も多様体構造を持つものを指す。このとき、包含写像 i: S → M の性質によって、部分多様体はいくつかの種類に分けられる。.

新しい!!: 擬リーマン多様体と部分多様体 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: 擬リーマン多様体と退化形式 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 擬リーマン多様体と接ベクトル空間 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 擬リーマン多様体と曲線 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: 擬リーマン多様体と時空 · 続きを見る »

ここにリダイレクトされます:

ローレンツ多様体ローレンツ計量擬リーマン計量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »