ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

表現論

索引 表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

161 関係: Annals of Mathematics半単純加群半単純リー代数半双線型形式単射単位元単純加群反対称関係可微分多様体可換体双対ベクトル空間双線型形式同型写像多変数複素関数多元体多元環の表現多項式実数対称群射 (圏論)射影射影幾何学射影空間局所コンパクト空間局所コンパクト群上半平面一般線型群幾何学幾何学的不変式論交換子二次形式互いに素代数多様体代数幾何学代数的閉体代数的構造代数群位相幾何学位相空間の圏位相群位数作用素微分幾何学微分形式微分作用素保型形式忠実表現圏 (数学)圏論マクドナルド恒等式...マシュケの定理像 (数学)ハメル次元ハール測度バナッハ空間ポントリャーギン双対モノイドモジュラー形式モジュラー表現論ヤコビ恒等式ユークリッドの運動群ユークリッド空間ユージン・ウィグナーユニタリ作用素ユニタリ表現ラングランズ・プログラムリー代数リー代数の表現リーマン・ロッホの定理リー群ロバート・ラングランズヴィクトル・カッツヘルマン・ワイルプランシュレルの定理ヒルベルト空間デヴィッド・マンフォードフーリエ変換フーリエ級数フェリックス・クラインホップ代数ベクトル空間アレクサンドル・グロタンディークアデール的代数群アフィン空間ウィグナーの分類ウェイト (表現論)エリ・カルタンエルランゲン・プログラムカルタン部分環グラフ理論コンパクト群ザリスキー位相シューアの補題シュプリンガー・サイエンス・アンド・ビジネス・メディアシローの定理ジャン=ピエール・セールセルバーグ跡公式内積写像の合成商線型空間全単射共形場理論因数分解理論物理学空間群符号理論等質空間素数線型代数学線型写像置換 (数学)群 (数学)群の表現群作用群環群準同型結合多元環組合せ数学環上の加群物理学直交補空間直和直積直既約加群違いを除いて行列行列の乗法行列式複素数解析学解析的整数論解析関数調和解析跡 (線型代数学)関数 (数学)関手量子力学量子群自己同型自己準同型離散群零射零空間集合集合の圏Lp空間PermutationP進数抽象代数学接ベクトル空間標数正則行列淡中圏測度論準同型指標理論指標表有限体数学数論普遍包絡代数 インデックスを展開 (111 もっと) »

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: 表現論とAnnals of Mathematics · 続きを見る »

半単純加群

数学、とくに加群論という抽象代数学の分野において、半単純加群(はんたんじゅんかぐん、semisimple module)または完全可約加群(かんぜんかやくかぐん、completely reducible module)はその既約部分加群から容易に理解できるようなタイプの加群である。自分自身の上で半単純加群であるような環はアルティン的半単純環として知られている。有限群の標数0の体上の群環のようないくつかの重要な環は半単純環である。アルティン環ははじめはその最大の半単純商を通じて理解される。アルティン的半単純環の構造はアルティン・ウェダーバーンの定理によってよく理解される。これはこれらの環を行列環の有限個の直積として表示するものである。.

新しい!!: 表現論と半単純加群 · 続きを見る »

半単純リー代数

数学においてリー代数が半単純であるとは単純リー代数(自分自身と0以外にイデアルを持たないような非可換リー代数)の直和となる事をいう。 この記事内では特に注意しない限り \mathfrak g を標数0の体上の有限次元リー代数とする。以下の条件は全て同値である。.

新しい!!: 表現論と半単純リー代数 · 続きを見る »

半双線型形式

数学の特に線型代数学における 上の半双線型形式(はんそうせんけいけいしき、sesquilinear form; 準双線型形式。)とは、写像 で一方の引数に関して線型かつ他方の引数に関してとなるようなものを言う。名称は「1 と 1/2」を意味するラテン語の ''sesqui-'' に由来する。これと対照して、双線型形式は両引数に関して線型であることを意味するが、特に専ら複素数体上の空間を扱うような多くの文献において、半双線型形式の意味で「双線型形式」と呼ぶものがある。 動機付けとなる例は複素ベクトル空間上の内積で、これは双線型ではないがその代わり半双線型である。後述の幾何学的動機付けの節も参照。.

新しい!!: 表現論と半双線型形式 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 表現論と単射 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 表現論と単位元 · 続きを見る »

単純加群

上の左加群 が非自明な部分 -加群をもたないとき、 を単純加群(たんじゅんかぐん、simple module)または既約加群(きやくかぐん、irreducible module)という。これは任意の について となることと同値である。 これは左 -加群の圏 において、すべてのゼロでない準同型写像 は単射である、あるいはすべてのゼロでない準同型写像 は全射であることとしても特徴づけられる。 右加群に対しても同様に定義される。.

新しい!!: 表現論と単純加群 · 続きを見る »

反対称関係

反対称関係(はんたいしょうかんけい、antisymmetric relation)とは、集合 X に関する二項関係 R であって、次の条件を満たすものをいう。 すなわち、X の任意の元 a と b に対して「a から b への関係、および b から a への関係がともに成り立つならば、a.

新しい!!: 表現論と反対称関係 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 表現論と可微分多様体 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 表現論と可換体 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 表現論と双対ベクトル空間 · 続きを見る »

双線型形式

数学の特に抽象代数学および線型代数学における双線型形式(そうせんけいけいしき、bilinear form)とは、スカラー値の双線型写像、すなわち各引数に対してそれぞれ線型写像となっている二変数函数を言う。より具体的に、係数体 上のベクトル空間 で定義される双線型形式 は.

新しい!!: 表現論と双線型形式 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 表現論と同型写像 · 続きを見る »

多変数複素関数

数学における多変数複素函数論(たへんすうふくそかんすうろん、)は、複素多変数の複素数値関数、すなわち、 個の複素数の組全体の成す空間 上の複素数値函数 を扱う分野である。複素解析(これは の場合に当たる理論ではあるが、 の場合とは一線を画す性質を持つ)と同様、任意の単なる函数を扱うものではなく、'''正則''' (holomorphic) あるいは複素解析的 (complex analytic) な函数、つまり局所的に変数 たちの冪級数で書けるような関数を扱う。そのような函数は結局のところ、多項式列の局所一様極限として得られるような函数ということもできるし、 次元コーシー=リーマン方程式の局所解と言っても同じことであるということが分かる。.

新しい!!: 表現論と多変数複素関数 · 続きを見る »

多元体

数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。.

新しい!!: 表現論と多元体 · 続きを見る »

多元環の表現

抽象代数学において,結合多元環の表現はその環の加群である.ここで結合多元環は(単位的とは限らない)環である.多元環が単位的でないとき,標準的な方法で単位的にでき(随伴関手のページを参照),得られる単位的環(単位元は恒等写像として作用する)の加群と多元環の表現の間に本質的な違いは存在しない..

新しい!!: 表現論と多元環の表現 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 表現論と多項式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 表現論と実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 表現論と対称群 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 表現論と射 (圏論) · 続きを見る »

射影

射影(しゃえい、projection)とは、物体に光を当ててその影を映すこと、またその影のことである。; 集合論; 圏論; 線型代数学: 内積空間における(正)射影→射影作用素; 位相幾何学: 束の射影→ファイバー束、ベクトル束等を参照; 関係代数の射影演算: 関係代数 (関係モデル)#射影.

新しい!!: 表現論と射影 · 続きを見る »

射影幾何学

数学における射影幾何学(しゃえいきかがく、projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系(斉次座標系)の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば不変式論、代数幾何学イタリア学派、あるいは古典群の研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては総合幾何学 (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と射影微分幾何学(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。.

新しい!!: 表現論と射影幾何学 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 表現論と射影空間 · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: 表現論と局所コンパクト空間 · 続きを見る »

局所コンパクト群

数学において、局所コンパクト群 (locally compact group) とは、位相空間として局所コンパクトかつハウスドルフな位相群 G である。数学で現れる群の多くの例は局所コンパクトでありそのような群はハール測度と呼ばれる自然な測度を持っているから局所コンパクト群は重要である。これによって G 上のボレル可測関数の積分を定義することができフーリエ変換や L^p 空間といった標準的な解析学の概念を一般化することができる。 有限群の表現論の結果の多くは群上平均化することによって証明される。コンパクト群に対しては、これらの証明の修正は正規化されたに関して平均を取ることによって類似の結果をもたらす。一般の局所コンパクト群では、そのような技術が使えるとは限らない。得られる理論は調和解析の中心的な部分である。局所コンパクトアーベル群の表現論はポントリャーギン双対によって記述される。.

新しい!!: 表現論と局所コンパクト群 · 続きを見る »

上半平面

数学、とくにリーマン幾何学あるいは(局所)コンパクト群の調和解析において上半平面(じょうはんへいめん、upper half plane)は、虚部が正である複素数全体の成す集合をいう。上半平面は連結な開集合であり、それがリーマン球面に埋め込まれているとみなしたとき、その閉包を閉上半平面と呼ぶ。閉上半平面は上半平面に実軸と無限遠点を含めたものである。(開いた)上半平面を慣例的に H や H あるいは \mathfrak と記す(このとき、下半平面は H− や H− などと書かれ、対比的に上半平面を H+ などと記すこともある)。上半平面は、リー群の表現論やロバチェフスキーの双曲幾何学などの舞台として数論・表現論的、幾何学的に重要な役割を果たす。 または.

新しい!!: 表現論と上半平面 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 表現論と一般線型群 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 表現論と幾何学 · 続きを見る »

幾何学的不変式論

数学では、幾何学的不変式論(Geometric invariant theory)(もしくは、GIT)は、代数幾何学でモジュライ空間を構成に使用する目的で、群作用による商を構成する方法である。幾何学的不変論は、デヴィッド・マンフォード(David Mumford)により、1965年、古典的(invariant theory)での論文 のアイデアを使って開発された。 幾何学的不変式論は、代数多様体(もしくは、スキーム)上の群 G による群作用を研究し、合理的な性質を持つスキームとして G による X の「商」を構成するテクニックをもたらす。動機の一つは、代数幾何学でのモジュライ空間を、マークされた対象をパラメトライズするスキームの商として構成することにあった。1970年代と1980年代には、シンプレクティック幾何学や(equivariant topology)と相互作用しながら発展し、(instanton)や(monopoles)のような微分幾何学での対象のモジュライ空間の構成に使われた。.

新しい!!: 表現論と幾何学的不変式論 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: 表現論と交換子 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: 表現論と二次形式 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 表現論と互いに素 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 表現論と代数多様体 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 表現論と代数幾何学 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: 表現論と代数的閉体 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 表現論と代数的構造 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: 表現論と代数群 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 表現論と位相幾何学 · 続きを見る »

位相空間の圏

数学の一分野である圏論における位相空間の圏(いそうくうかんのけん、category of topological spaces) あるいは \mathcal\!\!op は、位相空間を対象とし、連続写像を射とする圏を言う。ただし、しばしば対象や射を特定のものに制限したり適当なものに取り換えたりするので注意が必要である(例えば、対象はしばしばと仮定する)。これが圏を成すことは、二つの連続写像の合成がふたたび連続となることによる。圏 およびを圏論の手法を用いて研究する分野を圏論的位相空間論 (categorical topology) と言う。 注意: 記号 を位相多様体と連続写像の圏の意味で用いる文献があるので注意が必要である。必要ならば や などと書けば混乱は避けられる。.

新しい!!: 表現論と位相空間の圏 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: 表現論と位相群 · 続きを見る »

位数

数学において位数 (いすう、 order)とは,階数・次数などと同じくある種の指標 (index) として働く数に用いられる。.

新しい!!: 表現論と位数 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 表現論と作用素 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 表現論と微分幾何学 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 表現論と微分形式 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 表現論と微分作用素 · 続きを見る »

保型形式

調和解析や数論において、保型形式(ほけいけいしき、automorphic form)は、位相群 上で定義された複素数(あるいは複素ベクトル空間)値の函数で、離散部分群 の作用の下に不変なものである。保型形式は、ユークリッド空間における周期函数(これは離散位相群としての 1 次元トーラス上の函数と見なされる)を、一般の位相群に対して一般化したものである。 モジュラー形式は、モジュラー群あるいはのひとつを離散部分群として持つ SL2('''R''')(特殊線型群)や PSL2('''R''')(射影特殊線型群)の上に定義された保型形式である。この意味では、保型形式の理論はモジュラー形式の理論の拡張である。 アンリ・ポアンカレ (Henri_Poincaré) は、三角函数や楕円函数の一般化として、最初に保型形式を発見した。ラングランズ予想を通して、保型形式は現代の数論で重要な役割を果たす。.

新しい!!: 表現論と保型形式 · 続きを見る »

忠実表現

数学、特に表現論という抽象代数学の一分野において、群 のベクトル空間 上の忠実表現(ちゅうじつひょうげん、faithful representation) とは、 の異なる元 が異なる線型写像 によって表現される線型表現のことである。 より抽象的な言葉では、これが意味するのは群準同型 が単射であるということである。 注意: の体 上の表現は事実上 加群と同じである( は群 の群環を表す)が、 の忠実表現が群環の忠実加群であるとは限らない。実は任意の忠実 加群は の忠実表現であるが、逆は成り立たない。例えば対称群 の置換行列による 次元の自然表現を考えると、これは確かに忠実であるが、群の位数は である一方 行列の全体は 次元のベクトル空間をなすので、 が 以上であれば、次元勘定により( だから)置換行列の間に線型独立性が生じなければならず、したがって群環上の加群は忠実ではない。.

新しい!!: 表現論と忠実表現 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 表現論と圏 (数学) · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 表現論と圏論 · 続きを見る »

マクドナルド恒等式

数学において,マクドナルド恒等式(Macdonald identities)は,アフィンルート系に付随したある無限積の等式であり, によって導入された.特別な場合としてヤコビの三重積等式やワトソンの五重積等式, によって発見されたいくつかの等式や によって発見された10重積等式を含んでいる. と はマクドナルド恒等式がアフィンカッツ・ムーディ代数や超代数のの類似物であることを指摘した..

新しい!!: 表現論とマクドナルド恒等式 · 続きを見る »

マシュケの定理

数学、特に群の表現論においてマシュケの定理(マシュケのていり、Maschke's theorem)とは、有限群の表現の既約表現への分解に関する定理である。ハインリヒ・マシュケに名を因む。有限群 G のある標数 0 の体上の有限次元表現 (V, ρ) に対し、任意の G-不変部分空間 U は G-不変な直和補因子 W を持つこと、言い換えれば、表現 (V, ρ) が完全可約であることを述べるものである。より一般に、有限体のような正標数 p の体に対しても、p が群 G の位数を割り切らないならば、マシュケの定理は成り立つ。.

新しい!!: 表現論とマシュケの定理 · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 表現論と像 (数学) · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: 表現論とハメル次元 · 続きを見る »

ハール測度

解析学におけるハール測度(ハールそくど、Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者にその名を因む。.

新しい!!: 表現論とハール測度 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 表現論とバナッハ空間 · 続きを見る »

ポントリャーギン双対

数学、殊に調和解析および位相群の理論においてポントリャーギン双対性(ポントリャーギンそうついせい、Pontryagin duality)はフーリエ変換の一般的な性質を説明する。ポントリャーギン双対は実数直線あるいは有限アーベル群上の函数の、たとえば.

新しい!!: 表現論とポントリャーギン双対 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 表現論とモノイド · 続きを見る »

モジュラー形式

モジュラー形式は、モジュラー群という大きな群についての対称性をもつ上半平面上の複素解析的函数である。歴史的には数論で興味をもたれる対象であり、現代においても主要な研究対象である一方で、代数トポロジーや弦理論などの他分野にも現れる。 モジュラー函数(modular function): ここでいうモジュラー函数以外にも、「モジュラー函数」という術語はいくつか別の意味で用いられることがあるので注意が必要である。例えば、ハール測度の理論に現れる群の共軛作用から定まる函数 Δ(g) もモジュラー函数と呼ばれることがあるが、別な概念である。は重さ 0 、つまりモジュラー群の作用に関して不変であるモジュラー形式のことを言う。そしてそれゆえに、直線束の切断としてではなく、モジュラー領域上の函数として理解することができる。また、「モジュラー函数」はモジュラー群について不変なモジュラー形式であるが、無限遠点で f(z) が正則性を満たすという条件は必要ない。その代わり、モジュラー函数は無限遠点では有理型である。 モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。.

新しい!!: 表現論とモジュラー形式 · 続きを見る »

モジュラー表現論

数学の一分野としてのモジュラー表現論(モジュラーひょうげんろん、modular representation theory)は表現論の一部として、有限群 G の正標数の体 K 上での線型表現を研究する。群論への応用を持つのみならず、モジュラー表現論は代数幾何学、符号理論、組合せ論、数論など他の数学分野においても自然に生じてくる。 有限群論において、ブラウアーがモジュラー表現論を用いて証明した指標理論的な結果は、有限単純群の分類の過程で、特にそのシロー 2-群が適当な意味において小さすぎるために純群論的手法では従順でないと特徴付けられる単純群に対して、重要な役割を果たした。また、グローバーマンがブラウアーの展開した理論を用いて示した、有限群の位数 2 の元の埋め込みに関する一般的な結果は、''Z''∗-定理と呼ばれ、分類を進めるうえで特に有効であった。 係数体 K の標数が群 G の位数を整除しないならば、マシュケの定理によりモジュラー表現は完全可約となり、これは通常表現(標数 0 の表現)と同様である。マシュケの定理の証明は群の位数が割れないことに依拠しており、これは K の標数が G の位数を整除するときには意味を成さない。この場合、表現は必ずしも完全可約に限らず、通常表現の場合あるいは標数が群の位数と互いに素の場合とは対照的である。以下ではほとんどの場合、体 K は十分大きい(例えば K が代数閉体ならば十分)ものと暗黙に仮定する(さもなくば、主張をもう少し仔細に込み入ったものとせねばならないであろう)。.

新しい!!: 表現論とモジュラー表現論 · 続きを見る »

ヤコビ恒等式

数学におけるヤコビ恒等式(Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。.

新しい!!: 表現論とヤコビ恒等式 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: 表現論とユークリッドの運動群 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 表現論とユークリッド空間 · 続きを見る »

ユージン・ウィグナー

ユージン・ポール・ウィグナー (Eugene Paul Wigner, Wigner Jenő Pál (ヴィグネル・イェネー・パール), 1902年11月17日 ブダペシュト - 1995年1月1日 プリンストン)は、ハンガリー出身の物理学者。ユダヤ系。「 原子核と素粒子の理論における対称性の発見」により1963年ノーベル物理学賞受賞。.

新しい!!: 表現論とユージン・ウィグナー · 続きを見る »

ユニタリ作用素

数学の一分野、函数解析学におけるユニタリ作用素(ユニタリさようそ、unitary operator)は、ヒルベルト空間上の自己同型写像、すなわち構造(今の場合は、作用する対象となる空間の線型空間の構造、内積構造およびそこから定まる位相構造)を保つ全単射である。与えられたヒルベルト空間 からそれ自身へのユニタリ作用素全体の成す集合は群を成し、 のヒルベルト群 と呼ばれることもある。.

新しい!!: 表現論とユニタリ作用素 · 続きを見る »

ユニタリ表現

数学において、群 のユニタリ表現(unitary representation)とは、複素ヒルベルト空間 上の の線型表現 であって、 が任意の に対してユニタリ作用素となるようなものである。一般論は が局所コンパクト(ハウスドルフ)位相群であり表現がである場合にはよく発展している。 理論は1920年代から量子力学において広く応用されており、とくにヘルマン・ワイルの1928年の本 に影響を受けている。応用において有用な特定の群だけでなく任意の群 に対してユニタリ表現の一般論を構成したパイオニアの1人はであった。.

新しい!!: 表現論とユニタリ表現 · 続きを見る »

ラングランズ・プログラム

ラングランズプログラム(Langlands program) 代数的整数論におけるガロア群の理論を、局所体およびそのアデール上で定義された代数群の表現論および保型形式論に結び付ける非常に広汎かつ有力な予想網である。同プログラムは により提唱された。.

新しい!!: 表現論とラングランズ・プログラム · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 表現論とリー代数 · 続きを見る »

リー代数の表現

数学の一分野である表現論では、リー代数の表現(リーだいすうのひょうげん、representation of a Lie algebra)は、リー代数を行列の集合(ベクトル空間の準同型)として記述する方法である。この方法により、リーブラケットは交換子により与えられる。 考え方はリー群の表現の考え方と密接に関連する。大まかには、リー代数の表現は、リー群の表現の微分した形であり、一方、リー群の普遍被覆の表現は、リー代数の表現の積分した形である。 リー代数の表現の研究で、リー代数に付随する普遍包絡代数と呼ばれる特別な環は、決定的役割を果たす。この環の構成の普遍性は、リー代数の表現の圏が、この普遍包絡代数上の加群の圏と同じであることを言っている。.

新しい!!: 表現論とリー代数の表現 · 続きを見る »

リーマン・ロッホの定理

リーマン・ロッホの定理(リーマン・ロッホのていり、Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。.

新しい!!: 表現論とリーマン・ロッホの定理 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 表現論とリー群 · 続きを見る »

ロバート・ラングランズ

バート・ラングランズ(Robert Pbelan Langlands, 1936年10月8日 - )は、カナダの数学者。プリンストン高等研究所教授。専門は表現論、保型形式、保型表現論、志村多様体、統計力学。 ブリティッシュコロンビア州ニューウエストミンスター生まれ。1957年、ブリティッシュコロンビア大学卒業。1960年、イェール大学大学院で博士号を取得。1960年からプリンストン大学准教授、1967年からイェール大学准教授を経て、1972年から現職。 一般アイゼンシュタイン級数に関する業績、パーコレーションに関する業績、保型表現のスペクトル分解などの業績があるが、最大の業績にラングランズ・プログラム(ラングランズ哲学やラングランズ予想とも呼ばれる)の提唱がある。 ラングランズプログラムは、ガロワ表現のゼータと保型表現のゼータの間の双対性に関する壮大なプログラムで、数学における統一理論とも呼ばれる。 これが完成すると非可換類体論も構築されるという。.

新しい!!: 表現論とロバート・ラングランズ · 続きを見る »

ヴィクトル・カッツ

ヴィクトル・カッツ(Виктор Гершевич Кац, Victor Gershevich Kac, 1943年12月19日 - )は、ソビエト連邦生まれの数学者である。 表現論に貢献し、カッツ・ムーディ代数を定義した。.

新しい!!: 表現論とヴィクトル・カッツ · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: 表現論とヘルマン・ワイル · 続きを見る »

プランシュレルの定理

数学におけるプランシュレルの定理(プランシュレルのていり、Plancherel theorem)は、1910年にの得た調和解析における結果で、函数の平方絶対値 (squared modulus) の積分は、その周波数スペクトルの平方絶対値の積分に等しいことを述べるものである。 より明確に定式化すると、函数が ''L''1('''R''') にも L2(R) にも属するならば、そのフーリエ変換は L2(R) に属し、フーリエ変換写像は L2-ノルムに関して等距変換になる。このことから、フーリエ変換写像を L1(R) ∩ L2(R) に制限したものは、線型等距変換写像 L2(R) → L2(R) に一意的に拡張できることがわかる。この等距変換は実際にはユニタリ作用素になる。実質的に、これは自乗可積分函数のフーリエ変換について考えることを可能にするものである。 プランシュレルの定理は n-次元ユークリッド空間 Rn 上の主張としてもやはり有効である。またより一般に局所コンパクト可換群に対してもこの定理は成立する。非可換な局所コンパクト群についても適当な技術的仮定を満足するものについては、プランシュレルの定理の一種で意味を持つようなものが存在するが、これは非可換調和解析に属する主題である。 フーリエ変換のユニタリ性は、自然科学や工学の分野でしばしばパーシヴァルの定理 と呼ばれる。これは旧来の(より一般性の少ない)フーリエ級数のユニタリ性を示した結果の名称の流用である。.

新しい!!: 表現論とプランシュレルの定理 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 表現論とヒルベルト空間 · 続きを見る »

デヴィッド・マンフォード

デヴィッド・ブライアント・マンフォード(David Bryant Mumford, 1937年6月11日 - )は、イギリスのサセックス出身の数学者。専門は代数幾何学、幾何的不変式論。 1961年にオスカー・ザリスキの指導の下で博士号を取得。同門下に広中平祐やMichael Artinらがいた。1967年にハーバード大学教授。1974年にフィールズ賞を受賞。1996年からブラウン大学教授。 業績として、幾何学的不変式論、リーマン面のモジュライ空間上のコホモロジー類の森田・マンフォード類、マンフォード・テイト群、安定曲線による曲線のモジュライ空間のコンパクト化(トロイダルコンパクト化)、トーリック幾何学等がある。.

新しい!!: 表現論とデヴィッド・マンフォード · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 表現論とフーリエ変換 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 表現論とフーリエ級数 · 続きを見る »

フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

新しい!!: 表現論とフェリックス・クライン · 続きを見る »

ホップ代数

数学において,ホップ代数(ホップだいすう,Hopf algebra)は,に因んで名づけられた代数的構造であり,同時に(単位的結合)代数かつ(余単位的余結合的)余代数であり,これらの構造の整合性により双代数になっており,さらにある性質を満たすを備えたものである.ホップ代数の表現論は特に見事である,なぜならば整合的な余積,余単位射,対合射の存在により,表現のテンソル積,自明表現,双対表現を構成できるからである. ホップ代数は,その起源であり の概念と関係する代数的位相幾何学,の理論,群論(群環の概念によって),そして多数の他の場所で,自然に生じ,おそらく双代数の最もよく知られた種類となっている.ホップ代数はそれ自身も研究されていて,一方では例の特定のクラスが,他方では分類問題が,多く研究されている.それらは物性物理学や量子的場の理論から弦理論まで多様な応用を持つ. 定理 (ホップ) を標数 0 の体上の有限次元次数付き余可換ホップ代数とする.このとき は(代数として)奇数次の生成元による自由外積代数である..

新しい!!: 表現論とホップ代数 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 表現論とベクトル空間 · 続きを見る »

アレクサンドル・グロタンディーク

アレクサンドル・グロタンディーク(Alexander Grothendieck, 1928年3月28日 - 2014年11月13日)は主にフランスで活躍した、ドイツ出身のユダヤ系フランス人の数学者である。 日本の数学界では彼は「グロタンディク」、「グロタンディック」、「グロタンディエク」、「グロタンディエック」、「グロテンディーク」、「グローテーンディーク」などと表記されているGrothendieck という名は、オランダ起源です。オランダにはこの名と類似の名(en dyck など)はよくあるものです。それは『大きな堤防』の意味です。私は(オランダ語よみやフランス語よみでなく)ドイツ語の発音―グロテンディーク―にしたがっています。。.

新しい!!: 表現論とアレクサンドル・グロタンディーク · 続きを見る »

アデール的代数群

抽象代数学において,アデール的代数群(アデールてきだいすうぐん,adelic algebraic group)は数体 上の代数群 と のアデール環 によって定義されるである.それは に値を持つ の点からなる;適切な位相の定義は がのときに限り簡単である. がアーベル多様体のときにはそれは技術的な障害を表す.概念は潜在的には玉河数との関係で有用であることが知られてはいるが.アデール的代数群は数論において広く用いられ,特に保型表現論と二次形式の数論において用いられる. が線型代数群のとき,それはアファイン -空間におけるアファイン代数多様体である.アデール的代数群 上の位相はアデール環の 個のコピーのデカルト積 の部分空間位相が取られる..

新しい!!: 表現論とアデール的代数群 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 表現論とアフィン空間 · 続きを見る »

ウィグナーの分類

ウィグナーの分類(Wigner's classification) とは、数学と理論物理学において、ポアンカレ群の、質量の鋭敏な固有値を持つ、非負のエネルギー E ≥ 0 の既約ユニタリ表現の分類である。物理学における素粒子論での素粒子や場の量子論での場の数学的表現を分類するために、ユージン・ウィグナーによって提唱された。分類はポアンカレ群の安定化部分群に依拠し、さまざまな質量状態のウィグナー小群(Wigner little groups)と呼ぶ。 質量 m \equiv \sqrt はポアンカレ群のであり、その表現を名づけるのには役に立つかもしれない。 この表現は m > 0 の場合、m.

新しい!!: 表現論とウィグナーの分類 · 続きを見る »

ウェイト (表現論)

表現論という数学の分野において,体 上の代数 のウェイト(weight)とは, から へのである,あるいは同じことだが, の 上の1次元表現である.それは群のの代数の類似である.しかしながら,概念の重要性は,リー環の表現への,したがって代数群やリー群の表現への,その応用から生じる.この文脈では,表現のウェイトは固有値の概念の一般化であり,対応する固有空間はウェイト空間と呼ばれる..

新しい!!: 表現論とウェイト (表現論) · 続きを見る »

エリ・カルタン

エリ・カルタン(Élie Joseph Cartan, 1869年4月9日 - 1951年5月6日)はフランスの数学者。リー群、微分幾何学に大きな業績を残した。数学界の巨人のひとり。 イゼール県ドロミューで、父親は鍛冶屋、母は絹織物工で、幼時より非凡な才能を示し、記憶力は抜群であった。 高等師範学校にすすみ、碩学エミール・ピカールなどの講義をうける。ソルボンヌ大学も通い、グルサやエルミートの講義などに感激した。 25歳の時に出した学位論文「有限次元連続変換群の構造について」は学者としての地位を約束するものであった。この論文によりみとめられ、1894年、モンペリエ大学の講師に任命される。 その後、40歳でパリ大学の講師に任命される。研究は多岐におよび、対称空間の発見、接続の概念の提唱など基本的な重要な仕事をした。リー群論、スピノル理論、連続群論、微分幾何学、積分不変式など。 子供は4人、3男1女、長男アンリは関数論の専門家、次男ジャンは作曲家だが夭逝、三男ルイは物理学者、長女のエレーヌは数学教師とのことである。 690409 -690409 Category:フランスの数学者 Category:微分幾何学者 Category:王立協会外国人会員 Category:フランス科学アカデミー会員 Category:モンペリエ大学の教員 Category:イゼール県出身の人物 Category:数学に関する記事 Category:1869年生 Category:1951年没.

新しい!!: 表現論とエリ・カルタン · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: 表現論とエルランゲン・プログラム · 続きを見る »

カルタン部分環

数学において,カルタン部分環(カルタンぶぶんかん,Cartan subalgebra,しばしば CSA と略される)とは,リー環 \mathfrak の冪零部分環 \mathfrak であって,なもの(すべての X \in \mathfrak に対して \in \mathfrak であるならば,Y \in \mathfrak であるもの)のことである.エリ・カルタンによって彼の博士論文において導入された..

新しい!!: 表現論とカルタン部分環 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: 表現論とグラフ理論 · 続きを見る »

コンパクト群

数学において,コンパクト(位相)群とは位相がコンパクトな位相群である.コンパクト群は離散位相をいれた有限群の自然な一般化であり,重要な性質が持ち越される.コンパクト群は群作用と表現論に関してよく理解された理論を持つ. 以下では常に群はハウスドルフと仮定する..

新しい!!: 表現論とコンパクト群 · 続きを見る »

ザリスキー位相

代数幾何学と可換環論において、ザリスキ位相は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。.

新しい!!: 表現論とザリスキー位相 · 続きを見る »

シューアの補題

数学において、シューアの補題(シューアのほだい、Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ.

新しい!!: 表現論とシューアの補題 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 表現論とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

新しい!!: 表現論とシローの定理 · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: 表現論とジャン=ピエール・セール · 続きを見る »

セルバーグ跡公式

ルバーグ跡公式 (Selberg trace formula) とは、 で導入された、二乗可積分函数の空間 L2(G/Γ) 上の G のユニタリ表現の指標の表現である。ここに G はリー群で Γ は余有限 (cofinite) な離散群とする。指標は、G 上のある函数のトレースにより与えられる。 Γ がな場合とは、離散的な和へ表現が分解するときのことを言う。ここで、跡公式とは、有限群の誘導表現の指標の(Frobenius formula)の拡張である。Γ が実数 G.

新しい!!: 表現論とセルバーグ跡公式 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 表現論と内積 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 表現論と写像の合成 · 続きを見る »

商線型空間

線型代数学において商線型空間(しょうせんけいくうかん、quotient vector space)あるいは単に商空間 (quotient space) とは、ベクトル空間 V とその部分線型空間 N に対して、N に属する全てのベクトルを 0 に「潰して」得られるベクトル空間である。これを部分空間 N による V の商空間あるいは N を法とする V の商空間といい、V/N で表す。.

新しい!!: 表現論と商線型空間 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 表現論と全単射 · 続きを見る »

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。 共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。 共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。.

新しい!!: 表現論と共形場理論 · 続きを見る »

因数分解

数学における因数分解(いんすうぶんかい、factorization)は(数、多項式、行列といったような、積の定義される)代数的対象を、(それらを掛け合わせると元に戻る)別の対象、つまり因数 (factor) の積に分解することである。たとえば、15 という数は 3 × 5 という因数の積に分解され、多項式 x2 − 4 は (x − 2)(x + 2) という因数の積に分解される。このようにより単純な対象の積になっている。 因数分解の反対は、因数を掛け合わせてもとの展開された対象を得る過程であるところの、展開である。 因数分解の目的はふつう、何らかのものを(自然数ならば素数、多項式ならば既約多項式といったような)「基本的な構成要素」に帰着させることである。1でない自然数が素数の積で表せることは算術の基本定理で、定数でない一変数複素係数多項式が一次式の積で表せることは代数学の基本定理で保障されている。ヴィエタの公式は多項式の根と係数の関係を記述するものである。 巨大整数の素因数分解は困難な問題で、これを一般に短時間に行う方法は知られていない。この複雑性はRSA暗号のような公開鍵暗号によるセキュリティの信頼性の基礎になっている。 行列も(応用に際して利用しやすい)特別な種類の行列の積に分解することができる。よく用いられるのはたとえば、直交行列やユニタリ行列あるいは三角行列などである。ほかに、QR, LQ, QL, RQ, RZ のような分解が知られる。 他の例としては、写像を特定の性質を持つ写像の合成の形に分解することが挙げられる。たとえば、任意の写像は全射と単射の合成と見ることができる。これはによって一般化される。.

新しい!!: 表現論と因数分解 · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: 表現論と理論物理学 · 続きを見る »

空間群

間群(くうかんぐん、)は、結晶構造の対称性を記述するのに用いられる群である。群の元となる対称操作は、点群での対称操作(恒等操作、回転操作、鏡映操作、反転操作、回映操作、回反操作)に加え、並進操作(すべての点を平行に移動させる操作)である。 空間群は全部で230種類あり、すべての結晶はそのうちの1つに属している。ただし、原子の配列は原子の性質や化学結合によるため、大半の結晶構造は100種類程度の空間群に含まれる。 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがある。.

新しい!!: 表現論と空間群 · 続きを見る »

符号理論

号理論(ふごうりろん、Coding theory)は、情報を符号化して通信を行う際の効率と信頼性についての理論である。符号は、データ圧縮・暗号化・誤り訂正・ネットワーキングのために使用される。符号理論は、効率的で信頼できるデータ伝送方法を設計するために、情報理論・電気工学・数学・言語学・計算機科学などの様々な分野で研究されている。通常、符号理論には、冗長性の除去と、送信されたデータの誤りの検出・訂正が含まれる。 符号化は、以下の4種類に分けられる。.

新しい!!: 表現論と符号理論 · 続きを見る »

等質空間

数学、とくにリー群、代数群、位相群の理論において、群 の等質空間(とうしつくうかん、homogeneous space)は、 が推移的に作用するような空でない多様体あるいは位相空間 である。 の元は の対称変換 (symmetry) と呼ばれる。特別な場合は、問題の が空間 の自己同型群であるときである――ここで「自己同型群」は、微分同相群、あるいはの意味である。この場合 が等質空間であるとは、直感的には が、等長写像(リジッド幾何学)、微分同相写像(微分幾何学)、あるいは同相写像(位相幾何学)の意味において、各点で局所的に同じに見えるということである。著者によっては の作用が忠実である(非単位元は非自明に作用する)ことを要求するが、本記事ではそうしない。したがって、 上のある「幾何学的構造」を保ち を単一の G-軌道にすると考えられるような の への群作用が存在する。.

新しい!!: 表現論と等質空間 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 表現論と素数 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 表現論と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 表現論と線型写像 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 表現論と置換 (数学) · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 表現論と群 (数学) · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 表現論と群の表現 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: 表現論と群作用 · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: 表現論と群環 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 表現論と群準同型 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: 表現論と結合多元環 · 続きを見る »

組合せ数学

組合せ数学(くみあわせすうがく、combinatorics)や組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学の分野。特に問題とされることとして、集合に入っている対象を数えたり(数え上げ的組合せ論)、いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザインやマトロイド理論)、「最大」「最小」「最適」な対象をみつけたり(極値組合せ論や組合せ最適化)、それらの対象が持ちうる代数的構造をみつけたり(代数的組合せ論)することが挙げられる。.

新しい!!: 表現論と組合せ数学 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 表現論と環上の加群 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 表現論と物理学 · 続きを見る »

直交補空間

数学の線型代数学および関数解析学の分野において、部分線型空間の直交補空間(ちょっこうほくうかん、; perp)とは、その部分空間内のすべてのベクトルと直交するようなベクトル全体の成す集合を言い、直交補空間はそれ自身部分線型空間を成す。.

新しい!!: 表現論と直交補空間 · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: 表現論と直和 · 続きを見る »

直積

数学において、直積を考えられる対象は様々ある。そのうちの一部を以下に挙げる。.

新しい!!: 表現論と直積 · 続きを見る »

直既約加群

抽象代数学において、加群が直既約(ちょくきやく、indecomposable)であるとは、その加群が0でなく、2つの0でない部分加群の直和として書けないということである。直既約でない加群は直可約(ちょくかやく、decomposable)と言う。 直既約は単純(既約)よりも弱い概念である。加群 M が単純であるとは「真の部分加群 の形の加群( を含む、このとき になる)は直既約である。すべての有限生成 -加群はこれらの直和である。これが単純であることは (または )であることと同値であることに注意せよ。例えば、位数4の巡回群 は直既約であるが単純でない。この群は位数 の部分群 しか非自明な部分群を持たないが、これは直和因子でない。 整数環 上の加群はアーベル群である。有限生成アーベル群が直既約であることとそれが か素数 と正整数 について.

新しい!!: 表現論と直既約加群 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 表現論と違いを除いて · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 表現論と行列 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: 表現論と行列の乗法 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 表現論と行列式 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 表現論と複素数 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 表現論と解析学 · 続きを見る »

解析的整数論

数学において、解析的整数論(かいせきてきせいすうろん、analytic number theory)あるいは解析的数論、解析数論とは、整数についての問題を解くために解析学の手法を用いる、数論の一分野である。解析数論の始まりはペーター・グスタフ・ディリクレ (Peter Gustav Lejeune Dirichlet) がディリクレの算術級数定理の最初の証明を与えるためにディリクレの ''L''-関数を導入したときであるとしばしば言われている。(素数定理やリーマンのゼータ関数を含む)素数に関する結果や(ゴールドバッハの予想やウェアリングの問題のような)の結果が広く知られている。.

新しい!!: 表現論と解析的整数論 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 表現論と解析関数 · 続きを見る »

調和解析

数学の一分野としての調和解析(ちょうわかいせき、Harmonic analysis)は、関数や信号を基本波の重ね合わせとして表現することに関わるもので、フーリエ級数やフーリエ変換及びその一般化について研究する分野である。19世紀から20世紀を通じて、調和解析の扱う主題は広く、応用も信号処理、量子力学、神経科学など多岐にわたる。 「調和 (harmonic)」の語は、もとは物理的な固有値問題から来たもので、(楽器の弦における調和振動の周波数のように)周波数が他の周波数の整数倍となっているような波を意図したものであるが、現在ではその原義を超えて一般化した使い方をされる。 上の古典フーリエ変換は未だ活発な研究の成されている領域であり、特により一般の緩増加超関数などの対象についてのフーリエ変換に関心が持たれる。例えば、シュワルツ超関数 に適当な仮定を課すときに、それらの仮定を のフーリエ変換に関する仮定に翻訳することを考えることができる。はその一例である。ペイリー・ウィーナーの定理からすぐに従うことに、 がコンパクト台を持つ非零超関数(これにはコンパクト台を持つ関数ももちろん含まれる)ならばそのフーリエ変換がコンパクト台を持つことは起こりえない。これは調和解析的な設定のもとでの非常に初等的な形の不確定性原理と言うことができる(フーリエ級数の収束も参照)。 フーリエ級数はヒルベルト空間論の文脈でも有効に調べられており、調和解析と関数解析学とを結ぶものとなっている。.

新しい!!: 表現論と調和解析 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: 表現論と跡 (線型代数学) · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 表現論と関数 (数学) · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 表現論と関手 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 表現論と量子力学 · 続きを見る »

量子群

数学と理論物理学において、用語量子群(りょうしぐん、quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。 用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト (Володи́мир Дрі́нфельд) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。同じ用語は古典リー群あるいはリー環を変形したあるいはそれに近い他のホップ代数に対しても用いられる。例えば、ドリンフェルトと神保の仕事の少し後にによって導入された、量子群の `bicrossproduct' のクラスである。 ドリンフェルトのアプローチでは、量子群は補助的なパラメーター q あるいは h に依存したホップ代数として生じる。この代数は、q.

新しい!!: 表現論と量子群 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 表現論と自己同型 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: 表現論と自己準同型 · 続きを見る »

離散群

数学において,位相群 の離散部分群(りさんぶぶんぐん,discrete subgroup)とは,部分群 であって, の開被覆で任意の開部分集合が の元をちょうどひとつ含むようなものが存在するものである.言い換えると, の における部分空間位相は離散位相である.例えば,整数の全体 は実数の全体 (標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散群の圏の間には同型がある.離散群はしたがってその(抽象)群と同一視できる. 位相群あるいはリー群に「自然に逆らって」離散位相を入れると有用な場合がある.例えばの理論やリー群の群コホモロジーにおいてである. 離散は距離空間の任意の点に対して等長変換のもとでの点の像の集合が離散集合であるような等長変換群である.離散は離散等長変換群である対称変換群である..

新しい!!: 表現論と離散群 · 続きを見る »

零射

数学の一分野圏論における零射(れいしゃ、ゼロしゃ、zero morphism)は特別な種類の射で、零対象への射と零対象からの射の性質を併せ持つ。.

新しい!!: 表現論と零射 · 続きを見る »

零空間

数学、とくに関数解析学において、線型作用素 A: V → W の零空間(ぜろくうかん、れいくうかん、null space)あるいは核空間(かくくうかん、kernel space)とは、 のことである。Nul(A) は N(A) や Ker(A) などとも書かれる。とくに Ker は零空間が線型写像としての A の核 (kernel) にあたることを意味するのであるが、零空間という語を用いる文脈においては、核ということばを熱核 などの積分核に対して用いていることがほとんどであろうから注意されたい。 また、零空間という語をもちいる文脈においては、線型写像の像 は値域 と呼ばれ、線型作用素 A の値域は Ran(A) や R(A) と綴るのが通例のようである。 零空間は、ベクトル空間 V の部分空間である。さらに、 商空間 V/(Ker A) は、 A の像 Ran(A) に同型である; 特に次元について が成り立つ。 Nul A.

新しい!!: 表現論と零空間 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 表現論と集合 · 続きを見る »

集合の圏

数学の一分野である圏論において、集合の圏(しゅうごうのけん、category of sets)Set (あるいは \mathcal などとも書く) は、その対象の成す類が集合全体の成す類であるような圏である。ただし、対象の間の射の類は、集合 に対して を任意の写像とするとき、 の形に書ける三つ組全体の成す集合によって与えられる。.

新しい!!: 表現論と集合の圏 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: 表現論とLp空間 · 続きを見る »

Permutation

Permutation.

新しい!!: 表現論とPermutation · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 表現論とP進数 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 表現論と抽象代数学 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 表現論と接ベクトル空間 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 表現論と標数 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 表現論と正則行列 · 続きを見る »

淡中圏

淡中圏(たんなかけん、tannakian category)とは与えられた体Kに関係するある付加的な構造を備えた、ある種のモノイダル圏Cである。そのような圏Cの役割は、K上定義された代数群Gの線形表現の圏をおおよそ見積もることにある。 この理論の多数の応用が今までになされてきた。 名前の由来はコンパクト群Gとそれらの表現に関する淡中-Krein双対性(Tannaka–Krein duality)である。 この理論ははじめアレクサンドル・グロタンディークのセミナーで発展し、その後 ドリーニュによって再考され幾分簡易化された。理論は副有限群あるいはコンパクト群Gの有限組み合わせ的な表現に関する理論であるグロタンディークのガロア理論に似ている。 より詳しくはSaavedra Rivanoの論評にあるが、 理論の要点はガロア理論のファイバー関手\PhiをCから K_へのテンソル関手Tに置き換えることにある。 \Phiからそれ自身への自然変換がなす群、すなわちガロア理論における副有限群はTからそれ自身へのテンソル構造を保つ自然変換のなす群(単にモノイドとする場合もある)に置き換える。これは代数群ではないが、代数群の逆極限(すなわち副代数群)である。.

新しい!!: 表現論と淡中圏 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: 表現論と測度論 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 表現論と準同型 · 続きを見る »

指標理論

数学,特に群論において,群の表現の指標(しひょう,character)は,群の各元に対応する行列のトレースを対応させる写像である.指標は表現の本質的な情報をより凝縮された形で持っている.ゲオルク・フロベニウスは最初に,指標のみに基づいて,表現の明示的な行列表示は用いずに,を発展させた.これは有限群の複素表現はその指標によって(同型を除いて)決定されるから可能である.正標数の体上の表現,いわゆる「モジュラー表現」の場合には,状況はより繊細であるが,はこの場合にも指標の強力な理論を発展させた.有限群の構造に関する多くの深い定理はモジュラー表現の指標を用いる..

新しい!!: 表現論と指標理論 · 続きを見る »

指標表

抽象代数学の一分野である群論において、指標表(しひょうひょう、character table)とは、与えられた群について、その全ての既約表現の指標を表にまとめたものである。これは直交関係などにより対象としている群についての比較的少ない情報から計算できて、群の性質をそこから引き出すことができる。 化学・結晶学・分光学において点群の指標表は、対称性の観点から分子振動を分類したり、2つの量子状態間の遷移が可能かどうかを考える場合に用いられる。.

新しい!!: 表現論と指標表 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: 表現論と有限体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 表現論と数学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 表現論と数論 · 続きを見る »

普遍包絡代数

(普遍)包絡代数(ふへんほうらくだいすう、universal enveloping algebra, algèbre enveloppante)あるいは(普遍)展開代数とは、任意のリー代数 \mathfrak から構成される、ある性質を満たす単位的結合代数 U(\mathfrak) と準同型写像 i\colon\mathfrak\to U(\mathfrak) の組 (U(\mathfrak), i) のことをいう。.

新しい!!: 表現論と普遍包絡代数 · 続きを見る »

ここにリダイレクトされます:

同値表現線型表現

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »