ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

代数方程式

索引 代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

57 関係: 可換体同値多項式対数三次方程式一次方程式幾何学二次方程式二次曲面五次方程式代数幾何学代数的代数的閉包代数的数体論ルネ・デカルトレオンハルト・オイラーパオロ・ルフィニピエール・ド・フェルマーピタゴラスの定理ディオファントス方程式フェリックス・クラインフェルマーの最終定理ニュートン法ニールス・アーベル判別式アルゴリズムアーベル–ルフィニの定理エヴァリスト・ガロアシャルル・エルミート冪根円錐曲線因数定理固有値四次方程式算術群論環論直交座標系複素数誤差超幾何級数重根零点J-不変量求根アルゴリズム指数関数有理数浮動小数点数方程式...数学数値解析整数17世紀19世紀1の冪根20世紀 インデックスを展開 (7 もっと) »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 代数方程式と可換体 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 代数方程式と同値 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 代数方程式と多項式 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 代数方程式と対数 · 続きを見る »

三次方程式

三次方程式(さんじほうていしき、cubic equation)とは、次数が 3 であるような代数方程式の事である。この項目では主に、実数を係数とする一変数の三次方程式を扱う。.

新しい!!: 代数方程式と三次方程式 · 続きを見る »

一次方程式

数学における一次方程式(いちじほうていしき、first-degree polynomial equation, linear equation)は一次多項式の根を求めるものである。.

新しい!!: 代数方程式と一次方程式 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: 代数方程式と幾何学 · 続きを見る »

二次方程式

数学の特に代数学において二次方程式(にじほうていしき、quadratic equation)は、二次の多項式函数のを記述する。多変数の二次方程式については(特に実数係数のものについて)その零点集合に対する幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 初等代数学における二次方程式は未知数 および既知数 を用いて ax^2+bx+c.

新しい!!: 代数方程式と二次方程式 · 続きを見る »

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

新しい!!: 代数方程式と二次曲面 · 続きを見る »

五次方程式

五次方程式(ごじほうていしき、英語:quintic equation)とは、次数が5であるような代数方程式のこと。.

新しい!!: 代数方程式と五次方程式 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 代数方程式と代数幾何学 · 続きを見る »

代数的

* 代数拡大.

新しい!!: 代数方程式と代数的 · 続きを見る »

代数的閉包

数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつMcCarthy (1991) p.21Kaplansky (1972) pp.74-76ことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。.

新しい!!: 代数方程式と代数的閉包 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 代数方程式と代数的数 · 続きを見る »

体論

数学において体論(たいろん、英語:field theory)とは、体の性質を研究する分野のことである。体は四則演算が定義されている数学的対象である。.

新しい!!: 代数方程式と体論 · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 代数方程式とルネ・デカルト · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 代数方程式とレオンハルト・オイラー · 続きを見る »

パオロ・ルフィニ

パオロ・ルフィニ(Paolo Ruffini、1765年9月22日-1822年5月10日)はイタリアの数学者、哲学者、医者。.

新しい!!: 代数方程式とパオロ・ルフィニ · 続きを見る »

ピエール・ド・フェルマー

ピエール・ド・フェルマー ピエール・ド・フェルマー(Pierre de Fermat、1607年末または1608年初頭 - 1665年1月12日)はフランスの数学者。「数論の父」とも呼ばれる。ただし、職業は弁護士であり、数学は余暇に行ったものである。.

新しい!!: 代数方程式とピエール・ド・フェルマー · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 代数方程式とピタゴラスの定理 · 続きを見る »

ディオファントス方程式

ディオファントス方程式(ディオファントスほうていしき、Diophantine equation)とは、整係数多変数高次不定方程式である。文脈として、整数解や有理数解を問題にしたい場合に用いられる用語であり、主に数論の研究課題と考えられている。古代アレクサンドリアの数学者ディオファントスの著作『算術』で、その有理数解が研究されたのにちなんだ名称である。.

新しい!!: 代数方程式とディオファントス方程式 · 続きを見る »

フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

新しい!!: 代数方程式とフェリックス・クライン · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: 代数方程式とフェルマーの最終定理 · 続きを見る »

ニュートン法

数値解析の分野において、ニュートン法(ニュートンほう、Newton's method)またはニュートン・ラフソン法(Newton-Raphson method)は、方程式系を数値計算によって解くための反復法による求根アルゴリズムの1つである。対象とする方程式系に対する条件は、領域における微分可能性と2次微分に関する符号だけであり、線型性などは特に要求しない。収束の速さも2次収束なので古くから数値計算で使用されていた。名称はアイザック・ニュートンとに由来する。.

新しい!!: 代数方程式とニュートン法 · 続きを見る »

ニールス・アーベル

ニールス・ヘンリック・アーベル(Niels Henrik Abel、1802年8月5日 - 1829年4月6日)はノルウェーの数学者である。.

新しい!!: 代数方程式とニールス・アーベル · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: 代数方程式と判別式 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 代数方程式とアルゴリズム · 続きを見る »

アーベル–ルフィニの定理

アーベル–ルフィニの定理(アーベル–ルフィニのていり、Abel–Ruffini theorem)は、五次以上の代数方程式には解の公式が存在しない、と主張する定理である。より正確には、5以上の任意の整数 n に対して、一般の n 次方程式を代数的に解く方法は存在しない、という定理である。.

新しい!!: 代数方程式とアーベル–ルフィニの定理 · 続きを見る »

エヴァリスト・ガロア

ヴァリスト・ガロア(Évariste Galois, 1811年10月25日 - 1832年5月31日)は、フランスの数学者および革命家である。フランス語の原音()に忠実に「ガロワ」と表記されることもある。.

新しい!!: 代数方程式とエヴァリスト・ガロア · 続きを見る »

シャルル・エルミート

ャルル・エルミート(Charles Hermite、1822年12月24日-1901年1月14日)は、フランスの数学者。1869年からエコール・ポリテクニークの教授、1876年からソルボンヌ大学の教授を務めた。 エルミートは、エルミート内積、エルミート行列やエルミート作用素(エルミート演算子)、エルミート多項式などにその名を残している。また、オイラー、ラグランジュ、アーベル、ガロア等、数多くの偉大な数学者が挑んだ五次方程式の解法を見つけるという難問に挑み、1858年に楕円関数を用いて、初めて一般的な五次方程式を解くことに成功した。1873年にネイピア数 が超越数であることを証明したことでも知られる。この結果を引き継いで、1882年にフェルディナント・フォン・リンデマンにより円周率 が超越数であることが証明され、円積問題が否定的に解決された(エルミート.

新しい!!: 代数方程式とシャルル・エルミート · 続きを見る »

冪根

冪根「冪」の字の代わりに略字の「巾」を用いることがある。(べきこん)、または累乗根(るいじょうこん)は、冪乗(累乗)に相対する概念で、冪乗すると与えられた数になるような新たな数のことをいう。数 の冪根はしばしば と書き表される。冪根 は以下の関係を満たす。 つまり、冪根 の 乗は に等しく、この意味で を の 乗根 と呼ぶ。 は指数 と呼ばれ、記号 は根号 と呼ばれる。また、根号の中に書かれた数 は時に被開平数 と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 と呼び、特に 乗根の主要根を主平方根 と呼ぶ。 数 の主要根 は指数関数と結び付けられ、 という関係が成り立つ は自然指数関数、 は自然対数。。.

新しい!!: 代数方程式と冪根 · 続きを見る »

円錐曲線

円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。.

新しい!!: 代数方程式と円錐曲線 · 続きを見る »

因数定理

初等代数学における因数定理(いんすうていり、factor theorem)は、と多項式の根を結びつける定理である。因数定理は剰余の定理の特別の場合になっている。; 定.

新しい!!: 代数方程式と因数定理 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 代数方程式と固有値 · 続きを見る »

四次方程式

四次方程式(よじほうていしき、quartic equation)とは、次数が 4 であるような代数方程式の事である。この項目では主に一変数の四次方程式を扱う。.

新しい!!: 代数方程式と四次方程式 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: 代数方程式と算術 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 代数方程式と群論 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: 代数方程式と環論 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: 代数方程式と直交座標系 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 代数方程式と複素数 · 続きを見る »

誤差

誤差(ごさ、error)は、測定や計算などで得られた値 M と、指定値あるいは理論的に正しい値あるいは真値 T の差 ε であり、 で表される。.

新しい!!: 代数方程式と誤差 · 続きを見る »

超幾何級数

数学において、超幾何級数(ちょうきかきゅうすう、hypergeometric series)は、一般に の形式で表される級数である。但し、 (x)_0 &.

新しい!!: 代数方程式と超幾何級数 · 続きを見る »

重根

重根.

新しい!!: 代数方程式と重根 · 続きを見る »

零点

複素解析における正則函数 の零点(れいてん、ぜろてん、zero)は函数が非自明でない限り孤立する。零点が孤立することは、一致の定理あるいは解析接続の一意性の成立において重要である。 孤立零点には重複度 (order of multiplicity) が定まる。代数学における類似の概念として非零多項式の根の重複度(あるいは重根)が定義されるが、多項式函数はその不定元を複素変数と見れば整函数を定めるから、これはその一般化である。.

新しい!!: 代数方程式と零点 · 続きを見る »

J-不変量

数学では、複素変数 τ の函数としたときのフェリックス・クライン(Felix Klein)の j-不変量 (j-invariant)、(もしくは、j-函数と呼ぶこともある)とは、複素数の上半平面上に定義された のウェイト 0 のモジュラー函数を言う。j-不変量は、 であり尖点(カスプ)で一位の極を持つ以外は正則な、一意的な函数である。 の有理函数はモジュラーであり、実はすべてのモジュラー函数を与える。古典的には、-不変量は 上の楕円曲線のパラメータ化として研究されていたが、驚くべきことに、モンスター群の対称性との関係を持っている(この関係はモンストラス・ムーンシャインと呼ばれる)。 j\left(e^\right).

新しい!!: 代数方程式とJ-不変量 · 続きを見る »

求根アルゴリズム

求根アルゴリズムは、与えられた関数f について、f (x).

新しい!!: 代数方程式と求根アルゴリズム · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 代数方程式と指数関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 代数方程式と有理数 · 続きを見る »

浮動小数点数

浮動小数点数(ふどうしょうすうてんすう、英: floating point number)は、浮動小数点方式による数のことで、もっぱらコンピュータの数値表現において、それぞれ固定長の仮数部と指数部を持つ、数値の表現法により表現された数である。.

新しい!!: 代数方程式と浮動小数点数 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 代数方程式と方程式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 代数方程式と数学 · 続きを見る »

数値解析

バビロニアの粘土板 YBC 7289 (紀元前1800-1600年頃) 2の平方根の近似値は60進法で4桁、10進法では約6桁に相当する。1 + 24/60 + 51/602 + 10/603.

新しい!!: 代数方程式と数値解析 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 代数方程式と整数 · 続きを見る »

17世紀

ルイ14世の世紀。フランスの権勢と威信を示すために王の命で壮麗なヴェルサイユ宮殿が建てられた。画像は宮殿の「鏡の間」。 スペインの没落。国王フェリペ4世の時代に「スペイン黄金時代」は最盛期を過ぎ国勢は傾いた。画像は国王夫妻とマルガリータ王女を取り巻く宮廷の女官たちを描いたディエゴ・ベラスケスの「ラス・メニーナス」。 ルネ・デカルト。「我思う故に我あり」で知られる『方法序説』が述べた合理主義哲学は世界の見方を大きく変えた。画像はデカルトとその庇護者であったスウェーデン女王クリスティナ。 プリンキピア』で万有引力と絶対空間・絶対時間を基盤とするニュートン力学を構築した。 オランダの黄金時代であり数多くの画家を輩出した。またこの絵にみられる実験や観察は医学に大きな発展をもたらした。 チューリップ・バブル。オスマン帝国からもたらされたチューリップはオランダで愛好され、その商取引はいつしか過熱し世界初のバブル経済を生み出した。画像は画家であり園芸家でもあったエマヌエル・スウェールツ『花譜(初版は1612年刊行)』の挿絵。 三十年戦争の終結のために開かれたミュンスターでの会議の様子。以後ヨーロッパの国際関係はヴェストファーレン体制と呼ばれる主権国家を軸とする体制へと移行する。 チャールズ1世の三面肖像画」。 ベルニーニの「聖テレジアの法悦」。 第二次ウィーン包囲。オスマン帝国と神聖ローマ帝国・ポーランド王国が激突する大規模な戦争となった。この敗北に続いてオスマン帝国はハンガリーを喪失し中央ヨーロッパでの優位は揺らぐことになる。 モスクワ総主教ニーコンの改革。この改革で奉神礼や祈祷の多くが変更され、反対した人々は「古儀式派」と呼ばれ弾圧された。画像はワシーリー・スリコフの歴史画「貴族夫人モローゾヴァ」で古儀式派の信仰を守り致命者(殉教者)となる貴族夫人を描いている。 スチェパン・ラージン。ロシアではロマノフ朝の成立とともに農民に対する統制が強化されたが、それに抵抗したドン・コサックの反乱を率いたのがスチェパン・ラージンである。画像はカスピ海を渡るラージンと一行を描いたワシーリー・スリコフの歴史画。 エスファハーンの栄華。サファヴィー朝のシャー・アッバース1世が造営したこの都市は「世界の半分(エスファハーン・ネスフェ・ジャハーン・アスト)」と讃えられた。画像はエスファハーンに建てられたシェイク・ロトフォラー・モスクの内部。 タージ・マハル。ムガル皇帝シャー・ジャハーンが絶世の美女と称えられた愛妃ムムターズ・マハルを偲んでアーグラに建てた白亜の霊廟。 アユタヤ朝の最盛期。タイでは中国・日本のみならずイギリスやオランダの貿易船も来訪し活況を呈した。画像はナーラーイ王のもとで交渉をするフランス人使節団(ロッブリーのプラ・ナーライ・ラーチャニーウエート宮殿遺跡記念碑)。 イエズス会の中国宣教。イエズス会宣教師は異文化に対する順応主義を採用し、中国の古典教養を尊重する漢人士大夫の支持を得た。画像は『幾何原本』に描かれたマテオ・リッチ(利瑪竇)と徐光啓。 ブーヴェの『康熙帝伝』でもその様子は窺える。画像は1699年に描かれた読書する40代の康熙帝の肖像。 紫禁城太和殿。明清交代の戦火で紫禁城の多くが焼亡したが、康熙帝の時代に再建がなされ現在もその姿をとどめている。 台湾の鄭成功。北京失陥後も「反清復明」を唱え、オランダ人を駆逐した台湾を根拠地に独立政権を打ち立てた。その母が日本人だったこともあり近松門左衛門の「国姓爺合戦」などを通じて日本人にも広く知られた。 江戸幕府の成立。徳川家康は関ヶ原の戦いで勝利して征夷大将軍となり、以後260年余にわたる幕府の基礎を固めた。画像は狩野探幽による「徳川家康像」(大阪城天守閣蔵)。 日光東照宮。徳川家康は死後に東照大権現の称号を贈られ日光に葬られた。続く三代将軍徳川家光の時代までに豪奢で絢爛な社殿が造営された。画像は「日暮御門」とも通称される東照宮の陽明門。 歌舞伎の誕生。1603年に京都北野社の勧進興業で行われた出雲阿国の「かぶき踊り」が端緒となり、男装の女性による奇抜な演目が一世を風靡した。画像は『歌舞伎図巻』下巻(名古屋徳川美術館蔵)に描かれた女歌舞伎の役者采女。 新興都市江戸。17世紀半ばには江戸は大坂や京都を凌ぐ人口を擁するまでとなった。画像は明暦の大火で焼失するまで威容を誇った江戸城天守閣が描かれた「江戸図屏風」(国立歴史民俗博物館蔵)。 海を渡る日本の陶磁器。明清交代で疲弊した中国の陶磁器産業に代わり、オランダ東インド会社を通じて日本から陶磁器が数多く輸出された。画像は1699年に着工されたベルリンのシャルロッテンブルク宮殿の「磁器の間」。 海賊の黄金時代。西インド諸島での貿易の高まりはカリブ海周辺に多くの海賊を生み出した。画像はハワード・パイルが描いた「カリブ海のバッカニーア」。 スペイン副王支配のリマ。リマはこの当時スペインの南米支配の拠点であり、カトリック教会によるウルトラバロックとも呼ばれる壮麗な教会建築が並んだ。画像は1656年の大地震で大破したのちに再建されたリマのサン・フランシスコ教会・修道院。 17世紀(じゅうしちせいき、じゅうななせいき)は、西暦1601年から西暦1700年までの100年間を指す世紀。.

新しい!!: 代数方程式と17世紀 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: 代数方程式と19世紀 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: 代数方程式と1の冪根 · 続きを見る »

20世紀

摩天楼群) 20世紀(にじっせいき、にじゅっせいき)とは、西暦1901年から西暦2000年までの100年間を指す世紀。2千年紀における最後の世紀である。漢字で二十世紀の他に、廿世紀と表記される場合もある。.

新しい!!: 代数方程式と20世紀 · 続きを見る »

ここにリダイレクトされます:

多項式方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »