ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

デジタル信号処理

索引 デジタル信号処理

デジタル信号処理(デジタルしんごうしょり、Digital Signal Processing、DSPと略されることもある)とは、デジタル化された信号すなわちデジタル信号の信号処理のことである。分野としては、これとアナログ信号処理は信号処理の一部である。この分野の大きな研究・応用領域に音響信号処理、デジタル画像処理、音声処理の三つがある。 目的は実世界の連続的なアナログ信号を計測し、選別することである。その第一段階は一般にアナログ-デジタル変換回路を使って信号をアナログからデジタルに変換することである。また、最終的な出力は別のアナログ信号であることが多く、そこではデジタル-アナログ変換回路が使用される。 処理可能な信号のサンプリングレートを稼ぐ目的に特化したプロセッサを使うことが多い。デジタルシグナルプロセッサという特化型のマイクロプロセッサが使われ、よくDSPと略される。このプロセッサは、典型的な汎用プロセッサに見られる多種多様な機能の内の幾つかを除外し、新たに高速乗算器、積和演算器を搭載している。従って、同程度のトランジスタ個数の汎用プロセッサと比較した場合、条件分岐等の処理では効率が悪化するが、信号を構成するサンプルデータは高効率で処理する事が可能になる。.

71 関係: 双一次変換天気予報変調方式伝達関数法信号信号処理地震学医用画像処理マイクロプロセッサレーダープロセッサパルス符号変調データ圧縮デジタルデジタル-アナログ変換回路デジタル信号デジタル制御デジタルシグナルプロセッサデジタル画像処理デジタイズフーリエ変換フィルタバンク制御工学周波数スペクトル周波数領域アナログ-デジタル変換回路アナログ信号処理アルゴリズムインパルス応答ウィーナー=ヒンチンの定理ウェーブレットケプストラムコンピュータコンピュータグラフィックススペクトル密度ソナーサンプリング周波数線型写像無限インパルス応答畳み込み相互相関関数音声圧縮音声処理音声認識音響信号処理適応フィルタ非線形性高速フーリエ変換量子化自己相関...離散信号離散フーリエ変換離散ウェーブレット変換離散コサイン変換離散時間フーリエ変換電子工学通信工学連続信号LTIシステム理論Z変換携帯電話核磁気共鳴画像法標本化標本化定理漸化式有限インパルス応答情報工学情報理論時不変系時系列時間領域 インデックスを展開 (21 もっと) »

双一次変換

双一次変換(そういちじへんかん Bilinear transform 双一次Z変換 タスティン変換、台形差分法 Trapezoidal methodとも呼ばれる)は、デジタル信号処理において、連続時間領域における線型時不変 (LTI)フィルタの伝達関数 H_a(s) \ (アナログフィルタと呼ばれる)を離散時間領域における線形シフト不変フィルタの伝達関数 H_d(z) \ (スイッチトキャパシタで構成されるアナログフィルタも離散時間フィルタだが、デジタルフィルタと呼ばれる)に変換するのによく用いられる等角写像のひとつである。 この変換では、s平面上の Re.

新しい!!: デジタル信号処理と双一次変換 · 続きを見る »

天気予報

天気予報(てんきよほう)とは、ある地域で天気がどう変化するか予測し、知らせること。気象予報ともいう。 過去の天気や各地の現況の天気・気圧・風向・風速・気温・湿度など大気の状態に関する情報を収集し、これをもとに、特定の地域あるいは広範囲な領域に対し、当日から数日後まで(種類によっては数ヶ月後に及ぶものもある)の天気・風・気温などの大気の状態と、それに関連する水域や地面の状態を予測し伝えるための科学技術である。.

新しい!!: デジタル信号処理と天気予報 · 続きを見る »

変調方式

変調方式(へんちょうほうしき)の記事では、電気通信などにおいて「搬送」と呼ばれる通信方式、すなわち、搬送波を媒体としてその振幅や周波数や位相などを変動させる(変調する)ことによる方式における、各種の方式について解説する。 歴史的に先に現れた有線の電信や電話では、当初は、信号電力の断続や、音波をそのまま電気信号としたものを通信していた。 それに対し無線通信では、「搬送波」と呼ばれる基本信号(素朴には正弦波であることを理想とする)の電波を発生し、それを変調することにより「情報を乗せる」必要がある。これは20世紀の始め頃、三極管に始まる各種の増幅作用を持つ真空管の発明により始まった、エレクトロニクスにより実用的に可能になったものである。有線においても同じ頃に、多重化による設備(電話ケーブル)の有効利用などを目的とし、無線と同様にして搬送波を変調する方式の通信が始まった。現代の、媒体として光ケーブルを用いる光通信でも、搬送波が電気信号でなく光になる以外は同様である。 通信以外にも、磁気記録などのような物理メディアの特性が非線形な場合などにも、高周波の変調によって記録する、といった手法は使われる。例えばビデオテープでは5MHz前後のキャリアに周波数変調でNTSCを記録している。 以上のような伝送方式に対して、音声などを原信号のまま(ベースバンドで)伝送する方法をベースバンド伝送と呼んでいる。 またベースバンド伝送の一種として、ディジタル通信では、0と1の列を、どのようなLとHの列による電気信号とするか、という方式が目的などに応じて各種あり、それらを伝送路符号(line code)という。さらにそれをディジタル変調に乗せることもある。.

新しい!!: デジタル信号処理と変調方式 · 続きを見る »

伝達関数法

伝達関数法(でんたつかんすうほう)とは、複素関数論(ラプラス変換など)を用いた制御系の解析法である。.

新しい!!: デジタル信号処理と伝達関数法 · 続きを見る »

信号

信号 (しんごう).

新しい!!: デジタル信号処理と信号 · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: デジタル信号処理と信号処理 · 続きを見る »

地震学

地震学(じしんがく、)とは、地震の発生機構、およびそれに伴う諸事象を解明する学問である。広義では地震計に記録される波形を扱う様々な研究を含む。.

新しい!!: デジタル信号処理と地震学 · 続きを見る »

医用画像処理

医用画像処理はMedical image processingを意味し、Medical imagingと同意ではない。 以降、医用画像処理を医用イメージングに替えて記述する。 医用イメージング(いよういめーじんぐ、Medical imaging)は、臨床(病気の診断および検査)や医学(解剖学的研究)のために人体(およびその部分)の画像を生成する技法およびプロセスを指す。人間に限らない「生体画像処理」の一部であり、放射線医学、内視鏡検査、サーモグラフィー、医用写真撮影、顕微鏡検査などとも密接に関連する。本来、画像を生成するよう設計されていなかった測定手法や記録手法(脳波や脳磁図)も一種の地図のように表せるデータを生成することから、医用イメージングの一形態と見ることもできる。 画像診断学(放射線診断学)において扱う医用画像には、単純X線画像、CT、MRI、超音波断層画像(US)、血管造影(血管撮影)などがある。画像を(時には撮影も行い)医学的に解釈する医師を放射線診断医あるいは画像診断医と呼び、医師の専門分野のひとつである。診療放射線技師は診断用医用画像の撮影を行う。 撮影された画像に対し必要に応じた画像処理を施すことは、医用イメージングの一分野であり、医療施設内では特にラジオロジストあるいは診療放射線技師がその行為を行うことが多い。 科学的研究としては、その観点に応じて医用生体工学、医用物理学、医学などの一分野に位置づけられる。撮影機器や画像生成機器の研究開発は医用生体工学、医用物理学、情報工学の領域である。そういった機器の利用や画像の解釈は、放射線診断学や撮影部位に対応した医学の下位分野(脳科学、循環器学、精神医学、心理学など)の領域である。医用イメージングのために開発された様々な技術は、他の科学や産業にも応用されている。 医用イメージングは、人体内部を可視化した画像を生成する技法であると見なされることが多い。例えば、超音波検査の場合、超音波を発することで組織内のエコーから内部構造を知ることができる。X線の場合、骨や脂肪などでX線の吸収率が異なることを利用して画像を得る。.

新しい!!: デジタル信号処理と医用画像処理 · 続きを見る »

マイクロプロセッサ

マイクロプロセッサ(Microprocessor)とは、コンピュータなどに搭載される、プロセッサを集積回路で実装したものである。 マイクロプロセッサは小型・低価格で大量生産が容易であり、コンピュータのCPUの他、ビデオカード上のGPUなどにも使われている。また用途により入出力などの周辺回路やメモリを内蔵するものもあり、一つのLSIでコンピュータシステムとして動作するものを特にワンチップマイコンと呼ぶ。マイクロプロセッサは一つのLSIチップで機能を完結したものが多いが、複数のLSIから構成されるものもある(チップセットもしくはビットスライスを参照)。 「CPU」、「プロセッサ」、「マイクロプロセッサ」、「MPU」は、ほぼ同義語として使われる場合も多い。本来は「プロセッサ」は処理装置の総称、「CPU」はシステム上で中心的なプロセッサ、「マイクロプロセッサ」および「MPU(Micro-processing unit)」はマイクロチップに実装されたプロセッサである。本項では、主にCPU用のマイクロプロセッサについて述べる。 当初のコンピュータにおいて、CPUは真空管やトランジスタなどの単独素子を大量に使用して構成されたり、集積回路が開発されてからも、たくさんの集積回路の組み合わせとして構成されてきた。製造技術の発達、設計ルールの微細化が進むにつれてチップ上に集積できる素子の数が増え、一つの大規模集積回路にCPU機能を納めることが出来るようになった。汎用のマイクロプロセッサとして最初のものは、1971年にインテルが開発したIntel 4004である。このマイクロプロセッサは当初電卓用に開発された、性能が非常に限られたものであったが、生産や利用が大幅に容易となったため大量に使われるようになり、その後に性能は著しく向上し、価格も低下していった。この過程でパーソナルコンピュータやRISCプロセッサも誕生した。ムーアの法則に従い、集積される素子数は増加し続けている。現在ではマイクロプロセッサは、大きなメインフレームから小さな携帯電話や家電まで、さまざまなコンピュータや情報機器に搭載されている。.

新しい!!: デジタル信号処理とマイクロプロセッサ · 続きを見る »

レーダー

レーダー用パラボラアンテナ(直径40m) レーダー(Radar)とは、電波を対象物に向けて発射し、その反射波を測定することにより、対象物までの距離や方向を測る装置である。.

新しい!!: デジタル信号処理とレーダー · 続きを見る »

プロセッサ

プロセッサ は、コンピュータシステムの中で、ソフトウェアプログラムに記述された命令セット(データの転送、計算、加工、制御、管理など)を実行する(=プロセス)ためのハードウェアであり、演算装置、命令や情報を格納するレジスタ、周辺回路などから構成される。内蔵されるある程度の規模の記憶装置までを含めることもある。プロセッサー、プロセサ、プロセッシングユニット、処理装置(しょりそうち)ともいう。「プロセッサ」は処理装置の総称で、システムの中心的な処理を担うものを「CPU()」(この呼称はマイクロプロセッサより古くからある)、集積回路に実装したものをマイクロプロセッサ、またメーカーによっては(モトローラなど)「MPU()」と呼んでいる。 プロセッサの構成要素の分類として、比較的古い分類としては、演算装置と制御装置に分けることがある。また、理論的な議論では、厳密には記憶装置であるレジスタすなわち論理回路の用語で言うところの順序回路の部分を除いた、組み合わせ論理の部分のみを指すことがある(状態機械モデルと相性が悪い)。の分類としては、実行すべき命令を決め、全体を制御するユニットと、命令を実行する実行ユニットとに分けることがある。.

新しい!!: デジタル信号処理とプロセッサ · 続きを見る »

パルス符号変調

4ビットPCMにおける信号の標本化と量子化(赤) パルス符号変調(パルスふごうへんちょう、PCM、pulse code modulation)とは音声などのアナログ信号をパルス列に変換するパルス変調の一つである。.

新しい!!: デジタル信号処理とパルス符号変調 · 続きを見る »

データ圧縮

データ圧縮(データあっしゅく)とは、あるデータをそのデータの実質的な性質(専門用語では「情報量」)を保ったまま、データ量を減らした別のデータに変換すること。高効率符号化ともいう-->。アナログ技術を用いた通信技術においては通信路の帯域幅を削減する効果を得るための圧縮ということで帯域圧縮ともいわれた。デジタル技術では、情報を元の表現よりも少ないビット数で符号化することを意味する。 データ圧縮には大きく分けて可逆圧縮と非可逆圧縮がある。というより正確には非可逆圧縮はデータ圧縮ではない。可逆圧縮は統計的冗長性を特定・除去することでビット数を削減する。可逆圧縮では情報が失われない。非可逆圧縮は不必要な情報を特定・除去することでビット数を削減する。しかしここで「不必要な」とは、例えばMP3オーディオの場合「ヒトの聴覚では通常は識別できない」という意味であり、冒頭の「情報量を保ったまま」という定義を破っている。データファイルのサイズを小さくする処理は一般にデータ圧縮と呼ばれるが、データを記録または転送する前に符号化するという意味では情報源符号化である。 圧縮は、データ転送におけるトラフィックやデータ蓄積に必要な記憶容量の削減といった面で有効である。しかし圧縮されたデータは、利用する前に伸長(解凍)するという追加の処理を必要とする。つまりデータ圧縮は、空間計算量を時間計算量に変換することに他ならない。例えば映像の圧縮においては、それをスムースに再生するために高速に伸長(解凍)する高価なハードウェアが必要となるかもしれないが、圧縮しなければ大容量の記憶装置を必要とするかもしれない。データ圧縮方式の設計には様々な要因のトレードオフがからんでおり、圧縮率をどうするか、(非可逆圧縮の場合)歪みをどの程度許容するか、データの圧縮伸長に必要とされる計算リソースの量などを考慮する。 新たな代替技法として、圧縮センシングの原理を使ったリソース効率のよい技法が登場している。圧縮センシング技法は注意深くサンプリングすることでデータ圧縮の必要性を避けることができる。.

新しい!!: デジタル信号処理とデータ圧縮 · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: デジタル信号処理とデジタル · 続きを見る »

デジタル-アナログ変換回路

デジタル-アナログ変換回路(デジタル-アナログへんかんかいろ、D/A変換回路 digital to analog converter)は、デジタル電気信号をアナログ電気信号に変換する電子回路である。D/Aコンバーター(DAC(ダック))とも呼ばれる。 また、デジタル-アナログ変換(デジタル-アナログへんかん、D/A変換)は、デジタル信号をアナログ信号に変換することをいう。 逆はアナログ-デジタル変換回路である。集積回路化されている。.

新しい!!: デジタル信号処理とデジタル-アナログ変換回路 · 続きを見る »

デジタル信号

デジタル信号(Digital signal)は、離散信号の量子化されたもの、あるいはデジタルシステムでの信号の波形を指す。.

新しい!!: デジタル信号処理とデジタル信号 · 続きを見る »

デジタル制御

デジタル制御(デジタルせいぎょ、digital control)は、デジタルコンピュータを制御システムとして使用する制御理論/制御工学の一分野である。デジタル制御システムには、マイクロコントローラや通常のパーソナルコンピュータ向けASICなどの形態もある。デジタルコンピュータは離散的システムであるため、ラプラス変換の代わりにZ変換を使う。 デジタルコンピュータが低価格化していくにつれ、デジタル制御は以下のような理由で重要性を増していった。.

新しい!!: デジタル信号処理とデジタル制御 · 続きを見る »

デジタルシグナルプロセッサ

デジタルシグナルプロセッサ(digital signal processor、DSP)は、デジタル信号処理に特化したマイクロプロセッサであり、一般にリアルタイムコンピューティングで使われる。.

新しい!!: デジタル信号処理とデジタルシグナルプロセッサ · 続きを見る »

デジタル画像処理

デジタル画像処理(デジタルがぞうしょり、Digital image processing)は、デジタル画像にコンピュータを使用した画像処理を行うこと。アナログと対比したデジタル画像処理の利点は、アナログ信号処理に対するデジタル信号処理の利点と同じである。すなわち、入力データに対してノイズや歪みを増やすことをあまり心配せずに、様々な処理を施すことができる。 デジタル画像処理の中でも典型的なものをデジタル画像編集と呼ぶ。.

新しい!!: デジタル信号処理とデジタル画像処理 · 続きを見る »

デジタイズ

デジタイズ(digitize)は連続的な値を離散的な値に変換すること。その手法全般を含めてデジタイゼーション (digitaization)ともいう。離散値をデジタル値(digital value)といい、コンピュータを用いた手法では2値のビット(bit)を使った量子化が主流となっている。発展した情報理論を応用して、既存のオブジェクト・画像・信号(通常アナログ信号)などの情報をデジタイズすることを電子化 、またはデジタル化(digitalize)という。デジタイズの結果で得られた情報は、元の情報との対比として「デジタル表現」あるいは「デジタル形式」、画像であれば「デジタル画像」などと呼ぶ。 デジタル化された情報はビット量子化された単なる数列であるため、人間が知覚や認識ができるようにデータを画像としてディスプレイで表示させたり、文字列を割り当てて印字したり、電気信号へ変換してスピーカーから発音させたりなどの加工を行う。これをレンダリング(rendering)といい、レンダリングを行う仕組みや装置をレンダラー(renderer)という。 近年では、非デジタルの情報をデジタイズするだけでなく、情報そのものが作成された時点ですでにデジタル化されている場合が増えた。このような情報やコンテンツをボーン・デジタル (born-digital)という。書籍や出版では文章をワープロ、図版をデジタイザ (digitaizer)などで入力し、紙媒体への印刷を後から行う(デジタルファースト - digital-first、ペーパーレイター - paper-later) ことも一般化してきている。 以下ではデジタイズ、電子化の両方について述べる。.

新しい!!: デジタル信号処理とデジタイズ · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: デジタル信号処理とフーリエ変換 · 続きを見る »

フィルタバンク

フィルタバンク(英: Filter bank)とは、バンドパスフィルタのアレイであり、入力信号を複数のコンポーネントに分割する回路である。各コンポーネントは元の信号の特定の周波数帯域成分を含む。フィルタバンクの設計に当たっては、そのように分割したコンポーネントを再統合して元の信号が再現できるようにするのが好ましい。分割プロセスを分析(analysis)と呼び、統合プロセスを合成(synthesis)と呼ぶ。分析の出力はフィルタバンク内のフィルタの個数、すなわち部分帯域(サブバンド)の個数だけ存在し、サブバンド信号と呼ぶ。 フィルタバンクは信号を個々の周波数コンポーネントに分離する。多くの応用では、一部の周波数が他の周波数よりも重要であることが多いため、フィルタバンクが便利である。例えば、そのような重要な周波数は高解像度で符号化(デジタイズ)したい。それら周波数の小さな差異は重大であり、そのような差異を保持するような符号体系を使わなければならない。一方、重要でない周波数はそれほど正確である必要は無いので、比較的大雑把な符号体系を使い、細部が失われてもかまわない。 ヴォコーダーはフィルタバンクを使っており、入力信号(声など)のサブバンドの振幅を調べ、出力信号(ギターやシンセサイザーの出力)のサブバンドの振幅の制御に使う。これにより、入力信号の動的特性を出力信号に与える。 ダウンサンプリングやアップサンプリングとフィルタバンクを組み合わせたものは、ポリフェーズ行列で表される。ポリフェーズ行列が与えられると、そのフィルタバンクが完全再構成特性を持つかどうかが容易に分かる。.

新しい!!: デジタル信号処理とフィルタバンク · 続きを見る »

制御工学

制御工学(せいぎょこうがく、英語:control engineering)とは、入力および出力を持つシステムにおいて、その(状態変数ないし)出力を自由に制御する方法全般にかかわる学問分野を指す。主にフィードバック制御を対象にした工学である。 大別すると、制御工学は、数理モデルに対して主に数学を応用する制御理論と、それを実モデルに適用していく制御応用とからなる。応用分野は機械系、電気系、化学プロセスが中心であるが、ものを操ることに関する問題が含まれれば制御工学の対象となるため、広範な分野と関連がある。.

新しい!!: デジタル信号処理と制御工学 · 続きを見る »

周波数スペクトル

鉄の輝線スペクトル 周波数スペクトル(しゅうはすうスペクトル、Frequency spectrum)とは、周波数、色、音声や電磁波の信号などと関係の深い概念である。光源は様々な色の混合であり、それぞれの色の強さは異なる。プリズムを使うと、光が周波数によって別々の方向に屈折し、虹のような色の帯が現れる。周波数を横軸として、それぞれの成分の強さをグラフに示したものが、光の周波数スペクトルである。可視光がどの周波数についても同じ強さであれば、その光は白く見え、スペクトルは平坦な線となる。 音源も同様に様々な周波数の成分の混合である。周波数が異なれば、人間の耳には違った音として聞こえ、特定の周波数の音だけが聞こえる場合、それが何らかの音符の音として識別される。雑音は一般に様々な周波数の音を含んでいる。このため、スペクトルが平坦な線となるノイズを(光の場合からのアナロジーで)ホワイトノイズと呼ぶ。ホワイトノイズという用語は、音声以外のスペクトルについても使用される。 ラジオやテレビの放送は、割り当てられた周波数の電磁波(チャンネル)を使用する。受信機のアンテナは、それらを周波数に関係なく受信し、チューナー部がそこから1つのチャンネルを選択する。アンテナの受信した全周波数について、周波数毎の強さをグラフに表せば、それが信号の周波数スペクトルとなる。.

新しい!!: デジタル信号処理と周波数スペクトル · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: デジタル信号処理と周波数領域 · 続きを見る »

アナログ-デジタル変換回路

アナログ-デジタル変換回路(アナログ-デジタルへんかんかいろ、A/D変換回路)は、アナログ電気信号をデジタル電気信号に変換する電子回路である。A/Dコンバーター(ADC(エーディーシー)、)とも言う。 また、アナログ-デジタル変換(アナログ-デジタルへんかん、A/D変換)は、アナログ信号をデジタル信号に変換することをいう。 逆はデジタル-アナログ変換回路である。 変調方式の一種として見た場合は、A/D変換はパルス符号変調である。A/D変換のような操作をデジタイズということがある。 基本的なA/D変換の操作は、まずサンプリング周波数で入力を標本化し、それを量子化することでおこなう。標本化にともなう折り返し雑音は、重要な問題である。また、量子化にともなう量子化誤差による量子化雑音もある。.

新しい!!: デジタル信号処理とアナログ-デジタル変換回路 · 続きを見る »

アナログ信号処理

アナログ信号処理(アナログしんごうしょり、英: Analog signal processing)とは、アナログ信号についてアナログ的手段で行う信号処理。「アナログ」とは、ここでは数学的に表された連続値の集合を意味する。一方「デジタル」は、信号を表すのに一連の離散的な量を使う。アナログ量は一般に電子機器の部品にかかる電圧、電流、電荷で表される。そのような物理量の誤差やノイズは、それら物理量で表されている信号の誤差を結果として生じる。 アナログ信号処理の例として、スピーカーのクロスオーバーフィルタによる音高の分解、ステレオでの音量調節、テレビでの色調調節がある。典型的なアナログ信号処理部品として、コンデンサ、抵抗器、コイル、トランジスタなどがある。.

新しい!!: デジタル信号処理とアナログ信号処理 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: デジタル信号処理とアルゴリズム · 続きを見る »

インパルス応答

単純な音響システムのインパルス応答の例。上から、元のインパルス、高周波をブーストした場合、低周波をブーストした場合 インパルス応答()とは、インパルスと呼ばれる非常に短い信号を入力したときのシステムの出力である。インパルス反応とも。インパルスとは、時間的幅が無限小で高さが無限大のパルスである。実際のシステムではこのような信号は生成できないが、理想化としては有益な概念である。 LTIシステム(線形時不変系)と呼ばれるシステムは、そのインパルス応答によって完全に特徴付けられる。.

新しい!!: デジタル信号処理とインパルス応答 · 続きを見る »

ウィーナー=ヒンチンの定理

ウィーナー=ヒンチンの定理(Wiener–Khinchin theorem)は、広義定常確率過程のパワースペクトル密度が、対応する自己相関関数のフーリエ変換であることを示した定理。ヒンチン=コルモゴロフの定理(Khinchine-Kolmogorov theorem)とも。.

新しい!!: デジタル信号処理とウィーナー=ヒンチンの定理 · 続きを見る »

ウェーブレット

ウェーブレット(wavelet)やマザーウェーブレット(mother wavelet)とは、数学において、局在する波、つまり、有限の長さの波もしくは速やかに減衰する波の事。ファーザーウェーブレット(father wavelet)とは、多重解像度解析にて使われる、マザーウェーブレット関数とセットで使われるスケーリング関数の事。waveletはwave(波)とlet(小さい)の合成語である。 ウェーブレット変換・ウェーブレット解析とは、ウェーブレットを用いて変換・解析する事。信号表現は入力信号に合致するようなウェーブレット波形の拡大縮小(スケーリング)・平行移動(シフト)により行われる。より正確には、この信号表現はウェーブレット系列と呼ばれ、これは2乗可積分関数のヒルベルト空間における完全正規直交系の基底関数集合(正規直交基底)を用いた線形基底展開である。.

新しい!!: デジタル信号処理とウェーブレット · 続きを見る »

ケプストラム

プストラム(英: Cepstrum)とは、音のスペクトルを信号と見なしてフーリエ変換 (FT) した結果である。"spectrum" の最初の4文字をひっくり返した造語。ケプストラムには、複素数版と実数版がある。.

新しい!!: デジタル信号処理とケプストラム · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: デジタル信号処理とコンピュータ · 続きを見る »

コンピュータグラフィックス

ンピュータグラフィックス(computer graphics、略称: CG)とは、コンピュータを用いて作成される画像である。日本では、和製英語の「コンピュータグラフィック」も使われる。.

新しい!!: デジタル信号処理とコンピュータグラフィックス · 続きを見る »

スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

新しい!!: デジタル信号処理とスペクトル密度 · 続きを見る »

ソナー

ナー(; ソーナーとも)は、水中を伝播する音波を用いて、水中・水底の物体に関する情報を得る装置。.

新しい!!: デジタル信号処理とソナー · 続きを見る »

サンプリング周波数

ンプリング周波数(サンプリングしゅうはすう)は、音声等のアナログ波形を、デジタルデータにするために必要な処理である標本化(サンプリング)で、単位時間あたりに標本を採る頻度。単位はHzが一般に使われるが、sps (sample per second) を使うこともある。 サンプリングレート、サンプルレートとも呼ばれる。.

新しい!!: デジタル信号処理とサンプリング周波数 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: デジタル信号処理と線型写像 · 続きを見る »

無限インパルス応答

無限インパルス応答(むげんインパルスおうとう、Infinite impulse response, IIR)は、信号処理システムの属性の一種。この属性を持つシステムをIIRシステムと呼び、フィルタ回路の場合はIIRフィルタと呼ぶ。これらシステムは、無限長の時間においてゼロでない値を返すインパルス応答関数を持つ。対照的に、有限の時間についてのインパルス応答があるものを有限インパルス応答 (FIR) と呼ぶ。最も単純なアナログIIRフィルタとしてRCフィルタがあり、1つの抵抗器 (R) と1つのコンデンサ (C) で形成される。このフィルタは、RC時定数で決定される指数関数的インパルス応答の特性を持つ。 IIRフィルタはアナログフィルタだけでなく、デジタルフィルタとしても実装される。デジタルIIRフィルタでは、出力フィードバックは出力を定義する方程式から即座に求められる。FIRフィルタとは異なり、IIRフィルタ設計では、フィルタの出力が明確に定義されない「時刻ゼロ」の場合を注意深く扱う必要がある。 デジタルIIRフィルタの設計は、アナログIIRフィルタに基づいてなされてきた。多くの場合、デジタルIIRフィルタを設計するにあたってまずアナログIIRフィルタ(例えば、チェビシェフフィルタ、バターワースフィルタ、楕円フィルタ)を設計し、インパルス不変法や双一次変換といった離散化技法を適用してデジタルに変換する。 IIRフィルタは一般に、FIRフィルタに比較して高速で安価だが、バンドパスフィルタとしての性能や安定性が劣る。 IIRフィルタとしては、チェビシェフフィルタ、バターワースフィルタ、ベッセルフィルタなどがある。 以下では、デジタルシグナルプロセッサで実装できる離散時間IIRフィルタについて解説する。.

新しい!!: デジタル信号処理と無限インパルス応答 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: デジタル信号処理と畳み込み · 続きを見る »

相互相関関数

互相関関数(そうごそうかんかんすう、)は、ふたつの信号、配列(ベクトル)の類似性を確認するために使われる。関数の配列の結果がすべて1であれば相関があり、すべてゼロであれば無相関であり、すべて であれば負の相関がある。しばしば、相関と略されることがあり、相関係数と似ているために混同することがある。 二つの信号を畳み込む畳み込みの式 のうち片方の関数の信号配列の順序をフリップ(逆順に)して畳み込むと、相互相関関数を求めることができる。 さらに、この二つの信号が、全く同じ場合、自己相関関数と呼び、関数の周期性を調べるのに用いられる。 自己相関関数の値がすべて1のときには、その離散関数の波形の周期性はその関数を表す配列と同じであることがわかる。.

新しい!!: デジタル信号処理と相互相関関数 · 続きを見る »

音声圧縮

音声圧縮あるいはオーディオ圧縮(英語: audio compression)とは、音声ファイルのサイズを削減する目的で設計されたデータ圧縮の一種である。音声圧縮アルゴリズムは、「オーディオコーデック」として実装される。汎用データ圧縮アルゴリズムは音声データには適さず、オリジナルの87%以下に圧縮できることがほとんどなく、リアルタイムの再生にも適さない。そのため、音声向けの可逆圧縮アルゴリズムや非可逆圧縮アルゴリズムが生み出された。非可逆圧縮アルゴリズムは圧縮率が非常に高く、一般の音響機器によく使われている。 可逆でも非可逆でも、情報の冗長性を削減するために、符号化手法、パターン認識、線形予測などの手法を駆使して、圧縮を行う。音声品質は若干落ちるが、多くのユーザーはその違いに気づかず、必要なデータ量は大幅に削減される。例えば、1枚のコンパクトディスクで、高品質な音楽データなら1時間しか記録できないが、可逆圧縮すれば2時間ぶんを記録でき、MP3のような非可逆圧縮なら7時間ぶんの音楽を記録できる。.

新しい!!: デジタル信号処理と音声圧縮 · 続きを見る »

音声処理

音声処理(おんせいしょり)とは、主にデジタル化された音声信号をコンピュータ上で処理をすること。 音声処理の実用化の例として、音声圧縮によるMP3や、音声認識を利用した受付案内システムなどがある。.

新しい!!: デジタル信号処理と音声処理 · 続きを見る »

音声認識

音声認識(おんせいにんしき、speech recognition)とは、人間の声などをコンピューターに認識させることであり、話し言葉を文字列に変換したり、あるいは音声の特徴をとらえて声を出している人を識別する機能を指す大辞泉。.

新しい!!: デジタル信号処理と音声認識 · 続きを見る »

音響信号処理

音響信号処理(おんきょうしんごうしょり、Acoustic signal processing)または音声信号処理(おんせいしんごうしょり、Audio signal processing)は、音または音を表す信号を処理することを指す。その表現形態はアナログの場合とデジタルの場合がある。 音響信号や音声信号は最終的に音として人間の耳で聴くものである。従って音響信号処理で最も重視されるのは、信号の中のどの部分が可聴であるかを数学的に解析することである。例えば、信号に様々な変換を施すときも、可聴域の制御が重視される。 信号のどの部分が聞こえて、どの部分が聞こえないかは、人間の聴覚系の生理だけで決まるものではなく、心理学的属性も大きく影響する。そのような面を解析する学問分野を音響心理学と呼ぶ。.

新しい!!: デジタル信号処理と音響信号処理 · 続きを見る »

適応フィルタ

適応フィルタ(英: Adaptive filter)とは、最適化アルゴリズムに従ってその伝達関数を自己適応させるフィルタである。その最適化アルゴリズムは複雑であるため、適応フィルタは一般にデジタル信号処理を行うデジタルフィルタとして実装され、入力信号に基づいて自己適応する。適応フィルタでないフィルタは、フィルタ係数群が固定である(それらが伝達関数を形成する)。 場合によっては、事前に係数を決定できないため、適応型の係数を必要とすることがある(例えば、ノイズ信号の特性が不明な場合)。そのような場合は適応フィルタを使うのが一般的で、フィルタ係数はフィードバックによって変化し、結果として周波数応答が変化する。 一般に適応処理は、フィルタの最適性能(例えば、入力のノイズ成分を最小化する性能)の判定基準である目的関数を使い、次の反復でフィルタ係数をどう修正するかを決定するアルゴリズムを使う。 デジタルシグナルプロセッサの性能向上と共に、適応フィルタがよく使われるようになり、現在では携帯電話などの通信機器やデジタルカメラや医療機器などで普通に使われている。.

新しい!!: デジタル信号処理と適応フィルタ · 続きを見る »

非線形性

非線形性(ひせんけいせい、Non-linearity)あるいは非線形(ひせんけい、Non-linear)は、線形ではないものを指すための用語。.

新しい!!: デジタル信号処理と非線形性 · 続きを見る »

高速フーリエ変換

速フーリエ変換(こうそくフーリエへんかん、fast Fourier transform, FFT)は、離散フーリエ変換(discrete Fourier transform, DFT)を計算機上で高速に計算するアルゴリズムである。高速フーリエ変換の逆変換を逆高速フーリエ変換(inverse fast Fourier transform, IFFT)と呼ぶ。.

新しい!!: デジタル信号処理と高速フーリエ変換 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: デジタル信号処理と量子化 · 続きを見る »

自己相関

自己相関(じこそうかん、Autocorrelation)とは、信号処理において時間領域信号等の関数または数列を解析するためにしばしば用いられる数学的道具である。大雑把に言うと、自己相関とは、信号がそれ自身を時間シフトした信号とどれだけ良く整合するかを測る尺度であり、時間シフトの大きさの関数として表される。より正確に述べると、自己相関とは、ある信号のそれ自身との相互相関である。自己相関は、信号に含まれる繰り返しパターンを探すのに有用であり、例えば、ノイズに埋もれた周期的信号の存在を判定したり、 信号中の失われた基本周波数を倍音周波数による示唆に基づき同定するために用いられる。.

新しい!!: デジタル信号処理と自己相関 · 続きを見る »

離散信号

離散信号(Discrete signal)もしくは離散時間信号(Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。 離散信号が均一に間隔を置かれた回に対応する系列である場合、それは関連する標本化周波数を持っている、標本化周波数はデータ系列ではわからないので、別のデータ項目として関連付けられるかもしれない。.

新しい!!: デジタル信号処理と離散信号 · 続きを見る »

離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

新しい!!: デジタル信号処理と離散フーリエ変換 · 続きを見る »

離散ウェーブレット変換

離散ウェーブレット変換(りさんウェーブレットへんかん、Discrete wavelet transform, DWT)は、数値解析や関数解析において、離散的にサンプリングされたウェーブレットを用いたウェーブレット変換のアルゴリズムである。本来は異なる物だが、多くのソフトウェアでは多重解像度解析の事を離散ウェーブレット変換と呼んでいる。本項では本来の定義の方をふれ、多重解像度解析に関してはそちらの項目を参照。.

新しい!!: デジタル信号処理と離散ウェーブレット変換 · 続きを見る »

離散コサイン変換

DFTとの比較。左はスペクトル、右はヒストグラム。低周波域での相違を示すため、スペクトルは 1/4 だけ示してある。DCTでは、パワーのほとんどが低周波領域に集中していることがわかる。 離散コサイン変換(りさんコサインへんかん)は、離散信号を周波数領域へ変換する方法の一つであり、信号圧縮に広く用いられている。英語の discrete cosine transform の頭文字から DCT と呼ばれる。以下DCTと略す。.

新しい!!: デジタル信号処理と離散コサイン変換 · 続きを見る »

離散時間フーリエ変換

離散時間フーリエ変換(英: Discrete-time Fourier transform、DTFT)はフーリエ変換の一種。したがって、通常時間領域の関数を周波数領域に変換する。ただし、DTFTでは元の関数は離散的でなければならない。そのような入力は連続関数の標本化によって生成される。 DTFTの周波数領域の表現は常に周期的関数である。したがって1つの周期に必要な情報が全て含まれるため、DTFTを「有限な」周波数領域への変換であるということもある。.

新しい!!: デジタル信号処理と離散時間フーリエ変換 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: デジタル信号処理と電子工学 · 続きを見る »

通信工学

通信工学(つうしんこうがく)は、情報の通信方式・符号化方式、通信に関する機器・運用方式などを扱う工学である。.

新しい!!: デジタル信号処理と通信工学 · 続きを見る »

連続信号

連続信号(Continuous signal)または連続時間信号(Continuous-time signal)は、実数値の定義域(通常、時間)の関数として表される変化する値(信号)である。その時間の関数は連続とは限らない。 連続信号が定義されている定義域は、有限の場合もそうでない場合もあり、定義域から信号の値への関数写像が存在する。実数の密度の法則に関連して、時間変数の連続性は、信号の値がどんな任意の時点についても見つかることを意味している。 無限持続信号の典型例は以下のようになる。 f(t).

新しい!!: デジタル信号処理と連続信号 · 続きを見る »

LTIシステム理論

LTIシステム理論(LTI system theory)は、電気工学、特に電気回路、信号処理、制御理論といった分野で、線型時不変系(linear time-invariant system)に任意の入力信号を与えたときの応答を求める理論である。通常、独立変数は時間だが、空間(画像処理や場の古典論など)やその他の座標にも容易に適用可能である。そのため、線型並進不変(linear translation-invariant)という用語も使われる。離散時間(標本化)系では対応する概念として線型シフト不変(linear shift-invariant)がある。.

新しい!!: デジタル信号処理とLTIシステム理論 · 続きを見る »

Z変換

関数解析学において、Z変換(ゼッドへんかん、Z-transform)とは、離散群上で定義される、ローラン展開をベースにした関数空間の間の線形作用素。関数変換。 Z変換は離散群上でのラプラス変換とも説明される。なお、Z変換という呼び方は、ラプラス変換のことを「S変換」と呼んでいるようなものであり、定義式中の遅延要素であるzに由来する名前である。.

新しい!!: デジタル信号処理とZ変換 · 続きを見る »

携帯電話

折りたたみ式の携帯電話 スライド式の携帯電話 携帯電話(けいたいでんわ、mobile phone)は、有線電話系通信事業者による電話機を携帯する形の移動体通信システム、電気通信役務。端末を携帯あるいはケータイと略称することがある。 有線通信の通信線路(電話線等)に接続する基地局・端末の間で電波による無線通信を利用する。無線電話(無線機、トランシーバー)とは異なる。マルチチャネルアクセス無線技術の一種でもある。.

新しい!!: デジタル信号処理と携帯電話 · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

新しい!!: デジタル信号処理と核磁気共鳴画像法 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: デジタル信号処理と標本化 · 続きを見る »

標本化定理

標本化定理(ひょうほんかていり、sampling theorem: サンプリング定理とも)はアナログ信号をデジタル信号へと変換する際に、どの程度の間隔で標本化(サンプリング)すればよいかを定量的に示す定理。情報理論の分野において非常に重要な定理の一つである。 標本化定理は1928年にハリー・ナイキストによって予想され、1949年にクロード・E・シャノンと日本の染谷勲によってそれぞれ独立に証明された。そのためナイキスト定理、ナイキスト・シャノンの定理、シャノン・染谷の定理とも呼ばれる。.

新しい!!: デジタル信号処理と標本化定理 · 続きを見る »

漸化式

数学における漸化式(ぜんかしき、recurrence relation; 再帰関係式)は、各項がそれ以前の項の函数として定まるという意味で数列を再帰的に定める等式である。 ある種の漸化式はしばしば差分方程式 (difference equation) と呼ばれる。また、「差分方程式」という言葉を単に「漸化式」と同義なものとして扱うことも多い。 漸化式の例として、ロジスティック写像 が挙げられる。このような単純な形の漸化式が、しばしば非常に複雑な(カオス的な)挙動を示すことがあり、このような現象についての研究は非線型解析学などと呼ばれる分野を形成している。 漸化式を解くとは、 添字 n に関する非再帰的な函数として、一般項を表すの式を得ることをいう。.

新しい!!: デジタル信号処理と漸化式 · 続きを見る »

有限インパルス応答

有限インパルス応答(ゆうげんインパルスおうとう、finite impulse response, FIR)は、デジタルフィルタの一種である。クロネッカーのデルタ入力に対するフィルタの応答特性であるインパルス応答が「有限」であるとは、有限個の標本でゼロに安定することを意味する。対照的に無限インパルス応答フィルタでは、内部フィードバックがあり、無制限に応答し続ける可能性がある。N次FIRフィルタは、インパルスに対して N+1 個の標本まで応答が持続する。.

新しい!!: デジタル信号処理と有限インパルス応答 · 続きを見る »

情報工学

情報工学(じょうほうこうがく)は情報分野についての工学である。語感としては、情報科学という語がもっぱらおおまかに「科学」という語が指す範囲を中心としているのに対し、「工学」的な分野に重心があるが、内実としてはどれもたいして変わらないことが多い(たとえば、大学の学部学科名などに関しては、個々の大学の個性による違いのほうが、名前による違いより大きい)。日本で、大学の工学部などにコンピュータ科学ないし情報関係の学科を設置する際に、「工学」部という語との整合のためだけに便利に使われた、という面が大きい(情報工学科の記事を参照)。 なお英語の information engineering はソフトウェア工学における一手法であり、日本語の「情報工学」とは対応しない。また似た言葉に情報学がある。.

新しい!!: デジタル信号処理と情報工学 · 続きを見る »

情報理論

情報理論(じょうほうりろん、Information theory)は、情報・通信を数学的に論じる学問である。応用数学の中でもデータの定量化に関する分野であり、可能な限り多くのデータを媒体に格納したり通信路で送ったりすることを目的としている。情報エントロピーとして知られるデータの尺度は、データの格納や通信に必要とされる平均ビット数で表現される。例えば、日々の天気が3ビットのエントロピーで表されるなら、十分な日数の観測を経て、日々の天気を表現するには「平均で」約3ビット/日(各ビットの値は 0 か 1)と言うことができる。 情報理論の基本的な応用としては、ZIP形式(可逆圧縮)、MP3(非可逆圧縮)、DSL(伝送路符号化)などがある。この分野は、数学、統計学、計算機科学、物理学、神経科学、電子工学などの交差する学際領域でもある。その影響は、ボイジャー計画の深宇宙探査の成功、CDの発明、携帯電話の実現、インターネットの開発、言語学や人間の知覚の研究、ブラックホールの理解など様々な事象に及んでいる。.

新しい!!: デジタル信号処理と情報理論 · 続きを見る »

時不変系

時不変系(じふへんけい、time-invariant system)は、その出力が時間に明示的に依存していない系である。入力信号 x によって出力 y が生成されるとき、時間をシフトさせた入力 t \mapsto x(t + \delta) では出力も t \mapsto y(t + \delta) となり、同じだけ時間をシフトしたものとなる。 形式的には、S をシフト作用素としたとき(S_\delta x(t).

新しい!!: デジタル信号処理と時不変系 · 続きを見る »

時系列

時系列(じけいれつ、Time Series)とは、ある現象の時間的な変化を、連続的に(または一定間隔をおいて不連続に)観測して得られた値の系列(一連の値)のこと。.

新しい!!: デジタル信号処理と時系列 · 続きを見る »

時間領域

時間領域(じかんりょういき、Time domain)とは、数学的関数、物理的信号、経済学やのデータ等の時間についての解析を意味する用語である。 時間領域には、信号あるいは関数値が連続的な実数で表される連続時間と、ある間隔で値が示される離散時間がある。オシロスコープは、実世界の信号を時間領域で視覚化するツールである。 時間領域のグラフは、時間によって信号がどう変化するかを示し、周波数領域のグラフは、それぞれの周波数帯域にどれだけの信号が存在するかを示す。.

新しい!!: デジタル信号処理と時間領域 · 続きを見る »

ここにリダイレクトされます:

ディジタル信号処理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »