ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

計量ベクトル空間

索引 計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

74 関係: 基底 (線型代数学)単射収束級数可分空間可換体双対ベクトル空間定符号二次形式実数実数空間完備距離空間対称双線型形式中線定理三角多項式三角不等式代数的数余弦定理ノルムノルム線型空間ユークリッド空間ユニタリ行列パーセヴァルの等式ヒルベルト空間ピタゴラスの定理フーリエ級数フビニ・スタディ計量ドット積ベクトル空間ベクトル空間の双対系エルミート形式エルミート行列グラム・シュミットの正規直交化法ケンブリッジ大学出版局コーシー列コーシー=シュワルツの不等式シュプリンガー・サイエンス・アンド・ビジネス・メディアジョン・ワイリー・アンド・サンズスペクトル定理スカラー (数学)内積全単射全射公理確率確率変数稠密集合空間 (数学)等長写像線型代数学線型包線型独立...直交群直交行列直交性随伴行列違いを除いて順序体複素共役複素数角度距離空間転置行列関数解析学長さ連続体濃度連続写像連続線形作用素Well-defined標数正規作用素準同型期待値斉次函数数学的帰納法数学的構造 インデックスを展開 (24 もっと) »

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: 計量ベクトル空間と基底 (線型代数学) · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 計量ベクトル空間と単射 · 続きを見る »

収束級数

数学において、級数が収束(しゅうそく、converge)あるいは収斂(しゅうれん)するとは、部分和の成す数列が収束することをいう。このとき、与えられた級数は「(有限な)和を持つ」とか「和が有限確定である」などともいい、収束する級数のことを短く、収束級数 (convergent series) などともよぶ。 ここで、級数とは数列の項の総和のことであり、与えられた数列 (a1, a2,..., an,...) の第 n-部分和とは最初の n-項の有限和 のことであった。.

新しい!!: 計量ベクトル空間と収束級数 · 続きを見る »

可分空間

数学の位相空間論における可分空間(かぶんくうかん、separable space)とは、可算な稠密部分集合を持つような位相空間をいう。つまり、空間の点列 で、その空間の空でない任意の開集合が少なくとも一つその点列の項を含むものが存在する。 他の可算公理と同様に、可分性は(濃度の言葉を必ずしも用いない)位相空間により適した集合の「大きさの制限」を与えるものである(とはいえハウスドルフの公理の存在においてはこの限りでないが)。特に、可分空間上の連続写像でその像がハウスドルフ空間の部分集合であるようなものは全て、その可算稠密部分集合上の値によって決定される。 一般に、可分性は極めて有用で(幾何学や古典的な解析学で研究されるような空間のクラスに対しては)きわめて緩やかなものと一般に考えられる、空間への技術的仮定である。可分性とそれに関連のある第二可算性の概念の比較は重要である(第二可算のほうが一般には強い条件だが、距離化可能な空間のクラスでは同値になる。.

新しい!!: 計量ベクトル空間と可分空間 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 計量ベクトル空間と可換体 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 計量ベクトル空間と双対ベクトル空間 · 続きを見る »

定符号二次形式

数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号(positive definite; 正値、正定値)または負の定符号(negative definite; 負値、負定値)に分けられる。 半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて同様に定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite) であると言う。 より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる。.

新しい!!: 計量ベクトル空間と定符号二次形式 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 計量ベクトル空間と実数 · 続きを見る »

実数空間

数学において実 -次元数空間(すうくうかん、n-space)は実変数の -組を一つの変数であるかのように扱うことを許す座標空間である。太字の R の右肩に n を置いた で表す(または黒板太字を用いて とも、プレーンテキストでは とも書く)。さまざまな次元の が純粋数学や応用数学、あるいは物理学などの多くの分野で利用される。実 -次元数空間は実線型空間の原型例であり、n-次元ユークリッド空間を表現するものとしてよく用いられる。この事実から、幾何学的な暗喩が に対して広く用いられる(具体的には を平面、および を空間として扱うなど)。.

新しい!!: 計量ベクトル空間と実数空間 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: 計量ベクトル空間と完備距離空間 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: 計量ベクトル空間と対称双線型形式 · 続きを見る »

中線定理

中線定理(ちゅうせんていり、parallelogram law)とは、幾何学において、三角形の中線の長さと辺の長さの関係を表す定理である。パップスの定理と知られているが、実はアポロニウスが発見した定理である。.

新しい!!: 計量ベクトル空間と中線定理 · 続きを見る »

三角多項式

数学の一分野である数値解析および解析学における三角多項式(さんかくたこうしき、trigonometric polynomial)は、一つ以上の自然数 に対する函数 の有限線型結合である。実数値函数に対しては、結合の係数は実数に取ることができる。複素係数の場合には、三角多項式とはフーリエ多項式(有限フーリエ級数)の事に他ならない。 三角多項式は、例えば周期函数の補間に適用できるに利用されるなど、広く用いられる。離散フーリエ変換にも用いられる。 「三角多項式」という名称は、実数値の場合には「多項式の空間に対するの代わりに を用いたもの」というアナロジーによって理解することができる。複素係数の場合には、三角多項式全体の成す空間は の正負の整数冪によって張られる。.

新しい!!: 計量ベクトル空間と三角多項式 · 続きを見る »

三角不等式

数学における三角不等式(さんかくふとうしき、triangle inequality)は、任意の三角形に対してその任意の二辺の和が残りの一辺よりも大きくなければならないことを述べるものである。三角形の三辺が で最大辺が とすれば、三角不等式は が成り立つことを主張している.

新しい!!: 計量ベクトル空間と三角不等式 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: 計量ベクトル空間と代数的数 · 続きを見る »

余弦定理

余弦定理(よげんていり、law of cosines, cosine formula)とは、平面上の三角法において三角形の辺の長さと内角の余弦の間に成り立つ関係を与える定理である。余弦定理を証明するために用いられる補題はときに第一余弦定理と呼ばれ、このとき証明される定理は第二余弦定理と呼ばれ区別されることがある。単に余弦定理と言った場合、第二定理を指す。 三角形の角と辺の関係.

新しい!!: 計量ベクトル空間と余弦定理 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 計量ベクトル空間とノルム · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: 計量ベクトル空間とノルム線型空間 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 計量ベクトル空間とユークリッド空間 · 続きを見る »

ユニタリ行列

ユニタリ行列(~ぎょうれつ、英:Unitary matrix)は、次を満たす複素正方行列 として定義される。 ここで、 は単位行列、 は行列 の随伴行列。 なお、実数で構成される行列の随伴は単に転置であるため実ユニタリ行列は直交行列に等しく、直交行列を複素数体へ拡張したものがユニタリ行列とも言える。.

新しい!!: 計量ベクトル空間とユニタリ行列 · 続きを見る »

パーセヴァルの等式

数学の解析学の分野において、の名にちなむパーセヴァルの等式(パーセヴァルのとうしき、)は、函数のフーリエ級数の総和可能性に関する基本的な結果である。幾何学的には、内積空間に対するピタゴラスの定理と見なされる。 大雑把に言うと、この等式では、函数のフーリエ係数の二乗の和が、その函数の二乗の積分と等しいことが示される。すなわち が成立する。ここで cn は ƒ のフーリエ係数で、次式で与えられる: 正確には、この結果は ƒ が自乗可積分あるいはより一般に ''L''2−π,π に属する場合に成立する。類似の結果として、函数のフーリエ変換の二乗の積分が、その函数の二乗の積分と等しいというプランシュレルの定理がある。すなわち、1 次元の場合は、 に対して次の等式が成立する:.

新しい!!: 計量ベクトル空間とパーセヴァルの等式 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 計量ベクトル空間とヒルベルト空間 · 続きを見る »

ピタゴラスの定理

90 度回転し、緑色の部分は裏返して橙色に重ねる。 視覚的証明 初等幾何学におけるピタゴラスの定理(ピタゴラスのていり、Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す。斜辺の長さを, 他の2辺の長さを とすると、定理は が成り立つという等式の形で述べられる。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和の平方根として表すことができる2次元の座標系を例に取ると、ある点 の 軸成分を, 軸成分を とすると、原点から までの距離は と表すことができる。ここで は平方根を表す。。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。 「ピタゴラスが直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学のプリンプトン322や古代エジプトなどでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。 中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理、商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ。三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである。.

新しい!!: 計量ベクトル空間とピタゴラスの定理 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 計量ベクトル空間とフーリエ級数 · 続きを見る »

フビニ・スタディ計量

フビニ・スタディ計量(Fubini–Study metric)は、射影ヒルベルト空間上のケーラー計量である。つまり、複素射影空間 CPn がエルミート形式を持つことを言う。この計量は、もともとは1904年と1905年に(Guido Fubini)と(Eduard Study)が記述したものであった。 ベクトル空間 Cn+1 のエルミート形式は、GL(n+1,C) の中のユニタリ部分群 U(n+1) を定義する。フビニ・スタディ計量は、U(n+1) 作用の下での不変性(スケーリングに対して)により差異を同一視すると決定し、等質性を持つ。フビニ・スタディ計量を持つ CPn は、(スケーリングを渡る)(symmetric space)である。特に、計量の正規化は、スケーリングの適用に依存する。リーマン幾何学においては、正規化された計量を使うことができるので、(2''n'' + 1) 次元球面上のフビニ・スタディ計量は、単純に標準の計量と関連付けられる。代数幾何学では、正規化を使い、CPn をホッジ多様体とすることができる。 n endowed with a Hermitian form.

新しい!!: 計量ベクトル空間とフビニ・スタディ計量 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 計量ベクトル空間とドット積 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 計量ベクトル空間とベクトル空間 · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: 計量ベクトル空間とベクトル空間の双対系 · 続きを見る »

エルミート形式

数学の線型代数学におけるエルミート積 (Hermitian product), エルミート半双線型形式 (Hermitian Sesqui­linear form) あるいは単にエルミート形式(エルミートけいしき、Hermitian form)は、シャルル・エルミートに名を因む特別な種類の半双線型形式で、対称双線型形式の複素版にあたる。 複素線型空間 とその上のエルミート形式 との組, あるいは同じことだが対応する「二次形式」 との組 をエルミート空間(あるいはエルミート二次空間)と呼ぶ。.

新しい!!: 計量ベクトル空間とエルミート形式 · 続きを見る »

エルミート行列

線型代数学におけるエルミート行列(エルミートぎょうれつ、Hermitian matrix)または自己随伴行列(じこずいはんぎょうれつ、self-adjoint matrix)は、複素数に成分をとる正方行列で自身の随伴行列(共軛転置)と一致するようなものを言う。エルミート行列は、実対称行列の複素数に対する拡張版の概念として理解することができる。 行列 の随伴を と書くとき、複素行列がエルミートであるということは、 が成り立つということであり、これはまた が成り立つことと同値ゆえ、その成分は任意の添字 について -成分は -成分の複素共軛と等しい。 随伴行列 は と書かれるほうが普通だが、 を複素共軛(本項では と書いた)の意味で使う文献も多く紛らわしい。 エルミート行列の名はシャルル・エルミートに因む。エルミートは1855年、この種の行列が固有値が常に実数となるという実対称行列と同じ性質を持つことを示した。 よく知られたパウリ行列、ゲルマン行列および一般化されたそれらはエルミートである。理論物理学においてそれらのエルミート行列には、しばしば虚数の係数が掛かって歪エルミート行列となる。.

新しい!!: 計量ベクトル空間とエルミート行列 · 続きを見る »

グラム・シュミットの正規直交化法

ラム・シュミットの正規直交化法(グラム・シュミットのせいきちょっこうかほう、Gram–Schmidt orthonormalization)とは、計量ベクトル空間に属する線型独立な有限個のベクトルが与えられたとき、それらと同じ部分空間を張る正規直交系を作り出すアルゴリズムの一種。シュミットの直交化(ちょっこうか、orthogonalization)ともいう。Jørgen Pedersen Gramおよびエルハルト・シュミットにより名付けられた。変換行列は上三角行列に取ることができる。正規化する工程を省略すると、必ずしも正規でない直交系を得ることができる。.

新しい!!: 計量ベクトル空間とグラム・シュミットの正規直交化法 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

新しい!!: 計量ベクトル空間とケンブリッジ大学出版局 · 続きを見る »

コーシー列

解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。基本列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)、自己漸近列(じこぜんきんれつ)などとも呼ばれる。実数論において最も基本となる重要な概念の一つである。 各 ''n'' に対して順番に縦軸上にプロットしたコーシー列の例。 ''x''''n''.

新しい!!: 計量ベクトル空間とコーシー列 · 続きを見る »

コーシー=シュワルツの不等式

数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。.

新しい!!: 計量ベクトル空間とコーシー=シュワルツの不等式 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 計量ベクトル空間とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジョン・ワイリー・アンド・サンズ

ョン・ワイリー・アンド・サンズ(John Wiley & Sons、略称: Wiley、)は、1807年創業の科学、医学、教育などの分野の世界的な学術出版社である。 大学院のための教材、トレーニング教材、百科事典などの印刷、オンライン製品やオンラインサービスのような電子的情報も扱っている。『フォー・ダミーズ』シリーズの出版でも知られている。.

新しい!!: 計量ベクトル空間とジョン・ワイリー・アンド・サンズ · 続きを見る »

スペクトル定理

数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。この対角化の概念は、有限次元空間上の作用素については比較的直ちに従うものであるが、無限次元空間上の作用素についてはいくつかの修正が必要となる。一般にスペクトル定理は、乗算作用素によって出来る限り簡単にモデル化される線型作用素のクラスを明らかにするものである。より抽象的に、スペクトル定理は可換なC*-環に関して述べたものである。その歴史的観点については、スペクトル理論を参照されたい。 スペクトル定理が適用できる作用素の例として、自己共役作用素や、より一般のヒルベルト空間上の正規作用素などがある。 スペクトル定理はまた、スペクトル分解(spectral decomposition)や固有値分解(eigenvalue decomposition)、(eigendecomposition)と呼ばれるような、作用素の定義されるベクトル空間のを与えるものである。 オーギュスタン=ルイ・コーシーは、自己随伴行列に関するスペクトル定理を証明した。すなわち、すべての実対称行列は対角化可能であることを証明した。その定理のジョン・フォン・ノイマンによる一般化は、今日の作用素論におけるもっとも重要な結果となっている。またコーシーは、行列式に関する系統的な理論を構築した第一人者である。 この記事では主に、ヒルベルト空間上の自己共役作用素に関する、最も簡単な種類のスペクトル定理について述べる。しかし、上記のように、スペクトル定理はヒルベルト空間上の正規作用素についても成立するものである。.

新しい!!: 計量ベクトル空間とスペクトル定理 · 続きを見る »

スカラー (数学)

線型代数学では、ベクトル空間のベクトルに対比するものとしての実数をスカラー(scalar)と呼び、ベクトルを定数倍して別のベクトルを作り出す演算としてスカラー乗法(スカラー倍)が定義される。より一般に、実数全体に替えて任意の体、例えば複素数全体を用いてベクトル空間を定義することができるが、そのときのベクトル空間のスカラーとはその体の元のことを示すものということになる。 ベクトル空間の上にスカラー積演算(スカラー倍と混同してはいけない)が定義されれば、二つのベクトルを掛けてスカラーを得ることができる。スカラー積を備えたベクトル空間は内積空間と呼ばれる。 四元数の実部(実成分)のことをスカラー部(スカラー成分)とも呼ぶ。 厳密な言い方ではないが、例えばベクトルや行列、テンソルなどの一般には「複合的」な値で決まる量が、実際には一つの成分に還元されてしまうとき、例えば 1 × n 行列と n × 1 行列の積は厳密には 1 × 1 行列となるが、これをスカラーと見做すことがよく行われる。 行列のスカラー倍を行列の積として実現する「スカラー行列」は、単位行列の適当なスカラー k-倍 kI の形に書ける行列の総称として用いられる。.

新しい!!: 計量ベクトル空間とスカラー (数学) · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 計量ベクトル空間と内積 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 計量ベクトル空間と全単射 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 計量ベクトル空間と全射 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 計量ベクトル空間と公理 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 計量ベクトル空間と確率 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 計量ベクトル空間と確率変数 · 続きを見る »

稠密集合

数学の位相空間論周辺分野において、位相空間 X の部分集合 A が X において稠密(ちゅうみつ、dense)であるとは、X の各点 x が、A の元であるか、さもなくば A の集積点であるときにいう。イメージで言えば、X の各点が A の中かさもなくば A の元の「どれほどでも近く」にあるということを表している。例えば、任意の実数は、有理数であるか、さもなくばどれほどでも近い有理数をとることができる(ディオファントス近似も参照)。.

新しい!!: 計量ベクトル空間と稠密集合 · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: 計量ベクトル空間と空間 (数学) · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: 計量ベクトル空間と等長写像 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 計量ベクトル空間と線型代数学 · 続きを見る »

線型包

数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、linear hull; 線型苞)もしくは生成する (generated, spanned) 部分空間は、その集合を含む線型部分空間すべての交わりである。したがって、その集合を含む最小の部分空間である。また、それはその集合に属するベクトルのすべての線型結合からなる集合として実現される。.

新しい!!: 計量ベクトル空間と線型包 · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

新しい!!: 計量ベクトル空間と線型独立 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 計量ベクトル空間と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 計量ベクトル空間と直交行列 · 続きを見る »

直交性

交性とは、.

新しい!!: 計量ベクトル空間と直交性 · 続きを見る »

随伴行列

数学の特に線型代数学における行列の, エルミート転置 (Hermitian transpose), エルミート共軛 (Hermitian conjugate), エルミート随伴 (Hermitian adjoint) あるいは随伴行列(ずいはんぎょうれつ、adjoint matrix)とは、複素数に成分をとる 行列 に対して、 の転置およびその成分の複素共軛(実部はそのままで虚部の符号を反転する)をとって得られる 行列 を言う。 \end.

新しい!!: 計量ベクトル空間と随伴行列 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: 計量ベクトル空間と違いを除いて · 続きを見る »

順序体

数学における順序体(じゅんじょたい、ordered field)は、その元が全順序付けられた体であって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルト、ヘルダー、ハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体および(形式的)実体に関するによって結実する。 順序体は標数 でなければならず、任意の自然数 は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。 順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意の順序体は実数体に同型である。順序体において平方元は非負でなければならない。従って複素数体は(虚数単位 の平方が だから)順序付けることはできない。任意の順序体は実体である。.

新しい!!: 計量ベクトル空間と順序体 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: 計量ベクトル空間と複素共役 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 計量ベクトル空間と複素数 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: 計量ベクトル空間と角度 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 計量ベクトル空間と距離空間 · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: 計量ベクトル空間と転置行列 · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: 計量ベクトル空間と関数解析学 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 計量ベクトル空間と長さ · 続きを見る »

連続体濃度

集合論における連続体濃度(れんぞくたいのうど、cardinality of the continuum)とは、実数全体の成す集合 R の濃度(あるいは基数、集合の「大きさ」の尺度)のことである。連続体濃度を持った集合を連続体 (continuum) と呼ぶこともある。これは無限濃度のひとつであり、|R|, 2ℵ0(ℵはヘブライ文字のアレフ), または \mathfrak c(ドイツ文字小文字の c)などの記号で表される。.

新しい!!: 計量ベクトル空間と連続体濃度 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 計量ベクトル空間と連続写像 · 続きを見る »

連続線形作用素

関数解析およびそれに関連する数学の分野における連続線形作用素(れんぞくせんけいさようそ、Continuous linear operator)とは、線形位相空間の間の連続な線形変換のことを言う。 2つのノルム空間の間の作用素が有界線形作用素であるならばそれは連続線形作用素であり、逆もまた成立する。.

新しい!!: 計量ベクトル空間と連続線形作用素 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: 計量ベクトル空間とWell-defined · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 計量ベクトル空間と標数 · 続きを見る »

正規作用素

数学の特に函数解析学における正規作用素(せいきさようそ、normal operator)は、複素ヒルベルト空間 H 上の連続線型作用素 でエルミート随伴 を持ち、 を満たすものを言う。 正規作用素が重要であるのは、それに対するスペクトル定理が成り立つからである。今日では正規作用素のクラスはよく分かっている。正規作用の例としては.

新しい!!: 計量ベクトル空間と正規作用素 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 計量ベクトル空間と準同型 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: 計量ベクトル空間と期待値 · 続きを見る »

斉次函数

数学における斉次函数(せいじかんすう、homogeneous function)は、拡大縮小に関して「引数に因数が掛かれば値にその因子の適当な冪が掛かる」という乗法的な振る舞いをする函数をいう。よりはっきり書けば、体 F 上の二つのベクトル空間 V, W の間の写像 と整数 k に対して、写像 ƒ が斉 k-次(斉次次数 k)であるまたは k-次の斉次性を持つとは、 を任意の零でないスカラー とベクトル に対して満たすことをいう。扱うベクトル空間が実係数の場合には、斉次性をもう少し一般にして、任意の α > 0 に対して上式を満たすことのみを仮定する場合も多い。 斉次函数はベクトル空間から原点を取り去ったものの上で定義することもでき、この事実は代数幾何学において射影空間上の層の定義において用いられている。より一般に、S ⊂ V が体の元によるスカラー乗法で不変な部分空間(「錐」)であるとき、S から W への斉次函数がやはり同じ式で定義できる。.

新しい!!: 計量ベクトル空間と斉次函数 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: 計量ベクトル空間と数学的帰納法 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 計量ベクトル空間と数学的構造 · 続きを見る »

ここにリダイレクトされます:

ユニタリー空間ユニタリ空間プレヒルベルト空間内積空間前ヒルベルト空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »