ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

行列式

索引 行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

63 関係: 基底変換単位行列可換環多重線型写像外積代数実数対称群三角行列二次形式体積ヤコビ行列ヴァンデルモンドの行列式ピエール=シモン・ラプラスベクトルベクトル空間和算アルス・マグナ (カルダーノの著書)アーサー・ケイリーオーギュスタン=ルイ・コーシーカール・フリードリヒ・ガウスカール・グスタフ・ヤコブ・ヤコビガブリエル・クラメールガウスの消去法クラメルの公式クレレ誌ケイリー・ハミルトンの定理コリン・マクローリンゴットフリート・ライプニッツシルベスター行列ジョゼフ=ルイ・ラグランジュジェロラモ・カルダーノジェームス・ジョセフ・シルベスター固有多項式固有値線型代数学線型写像線型方程式線型方程式系絶対値環上の加群特異値特異値分解Disquisitiones Arithmeticae階乗行列行列の階数跡 (線型代数学)転置行列関孝和自己準同型...自由加群抽象化楊輝正則行列正方行列指数関数有限生成加群方程式斉次多項式数学1683年1690年1710年 インデックスを展開 (13 もっと) »

基底変換

線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1,..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。.

新しい!!: 行列式と基底変換 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: 行列式と単位行列 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 行列式と可換環 · 続きを見る »

多重線型写像

線型代数学において、多重線型写像(たじゅうせんけいしゃぞう、multilinear map)は各変数ごとに線型な多変数の関数である。正確には、多重線型写像は、V_1,\ldots,V_n とW\! をベクトル空間(あるいは可換環上の加群)として、次の性質を満たす写像 である: 各 i\! に対して、v_i\! を除くすべての変数を定数のまま止めると、f(v_1,\ldots,v_n) は v_i\! の線型写像である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体であれば、多重線型形式と呼ばれる。多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。 すべての変数が同じ空間に属していれば、、反対称、 k 重線型写像を考えることができる。基礎環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する。 f\colon V_1 \times \cdots \times V_n \to W\text を有限次元ベクトル空間の間の多重線型写像としよう。V_i\! の次元を d_i\!, W\! の次元を d\! とする。各 V_i\! に対して \ を、W\! に対して基底 \ を選べば(ベクトルにはボールドを用いた)、スカラー A_^k の集合を次によって定義できる: するとスカラー \ は多重線型写像 f\! を完全に決定する。とくに、1 \leq i \leq n\! に対して であれば、 -->f\colon R^2 \times R^2 \times R^2 \to R を考えよう。V_i.

新しい!!: 行列式と多重線型写像 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: 行列式と外積代数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 行列式と実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 行列式と対称群 · 続きを見る »

三角行列

数学の一分野線型代数学における三角行列(さんかくぎょうれつ、triangular matrix)は特別な種類の正方行列である。正方行列が またはであるとは主対角線より「上」の成分がすべて零となるときに言い、同様にまたはとは主対角線より「下」の成分がすべて零となるときに言う。三角行列は上半または下半三角となる行列のことを言い、また上半かつ下半三角となる行列は対角行列と呼ぶ。 三角行列に関する行列方程式は解くことが容易であるから、それは数値解析において非常に重要である。LU分解アルゴリズムにより、正則行列が下半三角行列 と上半三角行列 との積 に書くことができるための必要十分条件は、その行列の首座小行列式 (leading principal minor) がすべて非零となることである。.

新しい!!: 行列式と三角行列 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: 行列式と二次形式 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: 行列式と体積 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: 行列式とヤコビ行列 · 続きを見る »

ヴァンデルモンドの行列式

線型代数学において、ヴァンデルモンドの行列式(ヴァンデルモンドのぎょうれつしき、Vandermonde's determinant)とは、ある特殊な形をした正方行列の行列式である。名称は18世紀のフランスの数学者であるに因む。ヴァンデルモンドは「ファンデルモンド」と表記されることもある。ファン (前置詞) も参照。.

新しい!!: 行列式とヴァンデルモンドの行列式 · 続きを見る »

ピエール=シモン・ラプラス

ピエール=シモン・ラプラス(Pierre-Simon Laplace, 1749年3月23日 - 1827年3月5日)は、フランスの数学者、物理学者、天文学者。「天体力学概論」(traité intitulé Mécanique Céleste)と「確率論の解析理論」という名著を残した。 1789年にロンドン王立協会フェローに選出された。.

新しい!!: 行列式とピエール=シモン・ラプラス · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 行列式とベクトル · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 行列式とベクトル空間 · 続きを見る »

和算

和算(わさん)は、日本独自に発達した数学である。狭義には大いに発展した江戸時代の関孝和以降のそれを指すが、西洋数学導入以前の数学全体を指すこともある。.

新しい!!: 行列式と和算 · 続きを見る »

アルス・マグナ (カルダーノの著書)

アルス・マグナ」(Ars Magna、「偉大なる技術」の意)は、イタリア人のジェロラモ・カルダーノが著した代数学の歴史的な書物。1545年に『Artis Magnæ, Sive de Regulis Algebraicis Liber Unus』(Book number one about The Great Art または The Rules of Algebra)として初版が出され、カルダーノの存命中の1570年に第2版が出されている。コペルニクスの『De revolutionibus orbium coelestium、「天球の回転について」』、ヴェサリウスの『De humani corporis fabrica、「人体の構造」』と並び、初期ルネッサンスにおける 3 大科学書として挙げられることがある。これらの書はいずれも1543年から1545年のわずか2年の間に相次いで出版されている。.

新しい!!: 行列式とアルス・マグナ (カルダーノの著書) · 続きを見る »

アーサー・ケイリー

アーサー・ケイリー(、、1821年8月16日 - 1895年1月26日)は、イギリスの数学者、弁護士。行列に関するケイリー・ハミルトンの定理で有名。.

新しい!!: 行列式とアーサー・ケイリー · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: 行列式とオーギュスタン=ルイ・コーシー · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 行列式とカール・フリードリヒ・ガウス · 続きを見る »

カール・グスタフ・ヤコブ・ヤコビ

ール・グスタフ・ヤコプ・ヤコビ(Carl Gustav Jacob Jacobi, 1804年12月10日 - 1851年2月18日)はドイツの数学者。.

新しい!!: 行列式とカール・グスタフ・ヤコブ・ヤコビ · 続きを見る »

ガブリエル・クラメール

ブリエル・クラメール (仏語: Gabriel Cramer、1704年7月31日 - 1752年1月4日) は、スイスの数学者である。クラメールはジュネーヴで生まれ、早くから数学の才能を見せ、18歳で博士の学位を授与され20歳で数学の副主任となった。1728年、10年後にダニエル・ベルヌーイによって示された期待効用の考え方に非常に近いサンクトペテルブルクのパラドックスの解を求めた。 クラメールはその主要な業績を40歳代で公表している。1750年に出版された平面代数曲線に関する論文、"Introduction à l'analyse des lignes courbes algébraique" である。そこでは任意の一・向きを持つ n 次の平面代数曲線が 個の点で定義される、ということを最も早期に示しており、その問題は今日、クラメールのパラドックスと呼ばれている。一方、クラメールの名に因むクラメールの公式はその論文の中で紹介されているが、コリン・マクローリンは同様の公式を1748年に公表している。 クラメールはベルヌーイ家の二人の長兄 (ヤコブ・ベルヌーイ、ヨハン・ベルヌーイ) の業績を編集し、惑星の回転楕円体形状とその楕円軌道の物理的理由 (1730年)、そしてアイザック・ニュートンの3次曲線の扱い (1746年) について執筆した。クラメールはジュネーヴ大学の教授を務め、:en:Bagnols-sur-Cèzeで死亡した。 クラメールは物理学者ジャン・クラメールとアンヌ・マレ・クラメールの息子である。.

新しい!!: 行列式とガブリエル・クラメール · 続きを見る »

ガウスの消去法

ウスの消去法(ガウスのしょうきょほう、Gaussian elimination)あるいは掃き出し法(はきだしほう、row reduction)とは、連立一次方程式を解くための多項式時間アルゴリズムであり、通常は問題となる連立一次方程式の係数からなる拡大係数行列に対して行われる一連の変形操作を意味する。 同様のアルゴリズムは歴史的には前漢に九章算術で初めて記述された。連立一次方程式の解法以外にも.

新しい!!: 行列式とガウスの消去法 · 続きを見る »

クラメルの公式

線型代数学におけるクラメルの法則あるいはクラメルの公式(クラメルのこうしき、Cramer's rule; クラメルの規則)は、未知数の数と方程式の本数が一致し、かつ一意的に解ける線型方程式系の解を明示的に書き表す行列式公式である。これは、方程式の解を正方係数行列とその各列ベクトルを一つずつ方程式の右辺のベクトルで置き換えて得られる行列の行列式で表すものになっている。名称はガブリエル・クラーメル (1704–1752) に因むもので、クラーメルは任意個の未知数に関する法則を1750年に記している。なお特別の場合に限れば、コリン・マクローリンが1748年に公表している(また、恐らくはそれを1729年ごろにはすでに知っていたと思われる)。.

新しい!!: 行列式とクラメルの公式 · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

新しい!!: 行列式とクレレ誌 · 続きを見る »

ケイリー・ハミルトンの定理

イリー・ハミルトンの定理(ケイリー・ハミルトンのていり、Cayley–Hamilton theorem)、またはハミルトン・ケイリーの定理とは、線型代数学において、(実数体や複素数体を含む)可換環上の正方行列は固有方程式を満たすという定理である。アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。.

新しい!!: 行列式とケイリー・ハミルトンの定理 · 続きを見る »

コリン・マクローリン

リン・マクローリン(Colin Maclaurin, 1698年2月 - 1746年6月14日)は、スコットランドの数学者である。マクローリン展開で知られる。.

新しい!!: 行列式とコリン・マクローリン · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 行列式とゴットフリート・ライプニッツ · 続きを見る »

シルベスター行列

ルベスター行列(シルベスターぎょうれつ、Sylvester matrix)とは、2つの多項式が共通根を持つか否かを判定する行列である。.

新しい!!: 行列式とシルベスター行列 · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 行列式とジョゼフ=ルイ・ラグランジュ · 続きを見る »

ジェロラモ・カルダーノ

ェロラモ・カルダーノ(Gerolamo Cardano、1501年9月24日 - 1576年9月21日)は、16世紀のイタリアの人物。ジローラモ・カルダーノ(Girolamo Cardano)との表記もある。 ミラノで生まれ、ローマで没した。一般に数学者として知られている。本業は医者、占星術師、賭博師、哲学者でもあった。.

新しい!!: 行列式とジェロラモ・カルダーノ · 続きを見る »

ジェームス・ジョセフ・シルベスター

ェームス・ジョセフ・シルベスター(James Joseph Sylvester, 1814年9月3日 - 1897年3月15日)は、イギリスの数学者。 1838年からユニヴァーシティ・カレッジ・ロンドン教授、1877年に渡米してジョンズ・ホプキンス大学教授、1883年からオックスフォード大学の幾何学の Savillian 教授を歴任した。1839年王立協会フェロー選出。 w:American Journal of Mathematicsを創刊。シルベスター行列などに名を残している。.

新しい!!: 行列式とジェームス・ジョセフ・シルベスター · 続きを見る »

固有多項式

線型代数学において、固有多項式(こゆうたこうしき、characteristic polynomial)あるいは特性多項式(とくせいたこうしき)とは、正方行列に付随して得られるある多項式を指し、その行列の固有値、行列式、トレース、最小多項式といった重要な量と関連している。相似な行列に対しては同じ固有多項式が定まる。 またグラフ理論において、グラフの固有多項式とは、グラフの隣接行列の固有多項式のことを指す。この多項式はグラフの不変量となっている。すなわち同型なグラフは同じ固有多項式を持つ。.

新しい!!: 行列式と固有多項式 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: 行列式と固有値 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 行列式と線型代数学 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 行列式と線型写像 · 続きを見る »

線型方程式

線型方程式(せんけいほうていしき、linear equation)とは、線型性を持つ写像(関数・作用素)の等式で表される方程式のことである。線形等の用字・表記の揺れについては線型性を参照。 線型方程式においては、その線型性から解の重ね合わせが成り立つなどいくつものよい性質が成り立つ。線型方程式(特に多変数の一次代数方程式)の研究から行列などの手法が整備され、線型代数学という一分野が形成された。 線型代数学の整備により、多くの場合に線型方程式の係数を実数や複素数に限らず、四則演算が自由にできる(つまり体と呼ばれる代数的構造をもつ)集合からとったとして広く適用できる結果が知られている。 以下、特に断らない場合は係数をとる集合 K を(可換な)体とする。多くの場合 K は、実数全体の成す集合 R または複素数全体の成す集合 C のことと思って差し支えない。.

新しい!!: 行列式と線型方程式 · 続きを見る »

線型方程式系

数学において、線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式等とも呼ぶこともある。.

新しい!!: 行列式と線型方程式系 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 行列式と絶対値 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 行列式と環上の加群 · 続きを見る »

特異値

行列 の特異値(とくいち、Singular values)とは、 の随伴行列 との積 の固有値の非負の平方根のことである。.

新しい!!: 行列式と特異値 · 続きを見る »

特異値分解

特異値分解(とくいちぶんかい、singular value decomposition; SVD)とは、線形代数学における、複素数あるいは実数を成分とする行列に対する行列分解の一手法である。信号処理や統計学の分野で用いられる。特異値分解は、行列に対するスペクトル定理の一般化とも考えられ、正方行列に限らず任意の形の行列を分解できる。.

新しい!!: 行列式と特異値分解 · 続きを見る »

Disquisitiones Arithmeticae

Disquisitiones Arithmeticae(ディスクィジティオネス・アリトメティカエ、ラテン語で算術研究の意、以下 D. A. と略す)は、カール・フリードリヒ・ガウス唯一の著書にして、後年の数論の研究に多大な影響を与えた書物である。1801年、ガウス24歳のときに公刊された。その研究の端緒はガウス17歳の1795年にまでさかのぼり、1797年にはほぼ原稿は完成していた。 ラテン語の arithmetica(アリトメティカ)は通常「算術」と訳されるが、ガウスの意図したものは、今日「数論」もしくは「整数論」と呼ばれる学術的領域である高瀬 1995、pp.

新しい!!: 行列式とDisquisitiones Arithmeticae · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: 行列式と階乗 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 行列式と行列 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: 行列式と行列の階数 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: 行列式と跡 (線型代数学) · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: 行列式と転置行列 · 続きを見る »

関孝和

関 孝和 記念切手1992年 関 孝和(せき たかかず/こうわ、寛永19年(1642年)3月? - 宝永5年10月24日(1708年12月5日))は、日本の江戸時代の和算家(数学者)である。本姓は藤原氏。旧姓は内山氏、通称は新助。字は子豹、自由亭と号した。.

新しい!!: 行列式と関孝和 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: 行列式と自己準同型 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 行列式と自由加群 · 続きを見る »

抽象化

抽象化(ちゅうしょうか、Abstraction、Abstraktion)とは、思考における手法のひとつで、対象から注目すべき要素を重点的に抜き出して他は無視する方法である。反対に、ある要素を特に抜き出して、これを無視したり、切り捨てる意味もあり、この用法については捨象(しゃしょう)するという。従って、抽象と捨象は盾の両面といえる。.

新しい!!: 行列式と抽象化 · 続きを見る »

楊輝

パスカルの三角形(1303年の朱世傑「四元玉鑑」より) 楊 輝(よう き、Yang Hui)は、中国・南宋の数学者。銭塘(現・杭州)の人物で、号は謙光「」 5.4 和算と外国数学の関係 p.322 (朝倉書店、2009年)。 南宋末期(13世紀)は中国の歴史上、数学が最も発達を遂げた時代ともいわれ、秦九韶、李冶、朱世傑と共に、彼の名前が挙げられることがある - 国立故宮博物院歡迎頁。.

新しい!!: 行列式と楊輝 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 行列式と正則行列 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: 行列式と正方行列 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 行列式と指数関数 · 続きを見る »

有限生成加群

数学において、有限生成加群(ゆうげんせいせいかぐん、finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。.

新しい!!: 行列式と有限生成加群 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 行列式と方程式 · 続きを見る »

斉次多項式

数学において、斉次多項式(せいじたこうしき、homogeneous polynomial)あるいは同次多項式(どうじたこうしき)、あるいは略して斉次式、同次式とは、非零項がすべて同じ次数であるような多項式のことである。例えば、x^5 + 2 x^3 y^2 + 9 x y^4 は2変数の5次の斉次多項式である。各項の指数の和は常に5だからである。多項式 x^3 + 3 x^2 y + z^7 は斉次ではない。項によって指数の和が異なるからである。多項式が斉次であることと斉次関数を定義することは同値である。(代数的)形式 ((algebraic) form) とは、斉次多項式によって定まる関数のことである。binary form とは二変数の形式である。形式はベクトル空間上定義される、任意の基底上座標の斉次関数として表せる関数でもある。 0次多項式は常に斉次である。これは単に係数の体や環の元であり、通常定数やスカラーと呼ばれる。1次の形式は線型形式である。2次の形式は二次形式である。幾何学において、ユークリッド距離は二次形式の平方根である。 斉次多項式は数学や物理学のいたるところであらわれる。斉次多項式は代数幾何学において基本的な役割を果たす。射影代数多様体は斉次多項式のある集合の共通零点全体の集合として定義されるからである。.

新しい!!: 行列式と斉次多項式 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 行列式と数学 · 続きを見る »

1683年

記載なし。

新しい!!: 行列式と1683年 · 続きを見る »

1690年

記載なし。

新しい!!: 行列式と1690年 · 続きを見る »

1710年

記載なし。

新しい!!: 行列式と1710年 · 続きを見る »

ここにリダイレクトされます:

サラスの公式サラスの方法

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »