ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

速度

索引 速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

51 関係: 加速度力学単位単位時間反応速度右手の法則変位変化定義安定性理論平面仕事率位置微分メートル毎秒フィート毎秒初期値問題ケプラーの法則スピードスカラー (物理学)光速回転現象空間ベクトル絶対値終端速度物体物理学物理量相転移運動 (物理学)運動の第1法則運動量表定速度馬力角速度質点距離躍度関数 (数学)膨張長さ速さ速さの比較根二乗平均速度極限概念慣性時間時間微分...時速 インデックスを展開 (1 もっと) »

加速度

加速度(かそくど、acceleration)は、単位時間当たりの速度の変化率。速度がベクトルなので、加速度も同様にベクトルとなる。加速度はベクトルとして平行四辺形の法則で合成や分解ができるのは力や速度の場合と同様であるが、法線加速度、接線加速度に分解されることが多い。法線加速度は向きを変え、接線加速度は速さを変える。 速度を v とすれば、加速度 a は速度の時間 t についての微分であり, と定義される。 平面運動を極座標(r,θ)で表した場合、動径方向・角方向成分はそれぞれ となる。 一般に「減速度(げんそくど)」と言われるのは、負(進行方向と反対)の加速度の事である。また、進行方向を変える(曲がる)のは、進行方向とは異なる方向への加速度を受けるという事である。 遠心力による加速度を遠心加速度という。 物体に加速度がかかることと、力が加わることとは等価である。(運動の第2法則) ちなみに、加速度の単位時間当たりの変化率は、加加速度あるいは躍度とよばれる。.

新しい!!: 速度と加速度 · 続きを見る »

力学

力学(りきがく、英語:mechanics)とは、物体や機械(machine)の運動、またそれらに働く力や相互作用を考察の対象とする学問分野の総称である。物理学で単に「力学」と言えば、古典力学またはニュートン力学のことを指すことがある。 自然科学・工学・技術の分野で用いられることがある言葉であるが、社会集団や個人の間の力関係のことを比喩的に「力学」と言う場合もある。.

新しい!!: 速度と力学 · 続きを見る »

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: 速度と単位 · 続きを見る »

単位時間

単位時間(たんいじかん、unit time)には以下の2つの意味がある。.

新しい!!: 速度と単位時間 · 続きを見る »

反応速度

反応速度(はんのうそくど、reaction rate)とは化学反応の反応物あるいは生成物に関する各成分量の時間変化率を表す物理量。通常、反応速度を表現する式は濃度のべき関数として表現される。.

新しい!!: 速度と反応速度 · 続きを見る »

右手の法則

右手の法則(みぎてのほうそく、right-hand rule)とは、三次元空間において、座標系の「右手系」の取り方、クロス積、電磁誘導による起電力の向き、方向ベクトル(回転軸)に基づく「右手回り」回転方向、螺旋の巻く向きなどの定義を言い表したものを指す。日本では「右ねじ」(の法則)とも言う。なお本稿では右手系直交座標系の採用を仮定する。.

新しい!!: 速度と右手の法則 · 続きを見る »

変位

変位(へんい、displacement)とは、物体の位置の変化のこと。変位の対象は、古典力学での質点の位置であったり、結晶(固体、あるいは結晶表面やそれに吸着した原子、分子など)での原子の位置(原子変位)であったりする。表記は、変位の大きさに着目する x, d のような場合や、変化した前後の位置の差であるという点に注目する Δr という場合がある。物理量としての変位はベクトルで使うことが多く、変位ベクトルと呼ばれる。 物体の位置を表現するには原点からの位置ベクトルを使う方法もある。どこかに基準点を定めるということでは変位もあまり違わないが、局所的な現象をあらわすときには基準位置とそこからの変位で記述したほうが簡単になることもある。変位x と位置ベクトルr は次の式で変換できる。 ここでr0 は基準点の位置ベクトルである。.

新しい!!: 速度と変位 · 続きを見る »

変化

変化(へんか、へんげ).

新しい!!: 速度と変化 · 続きを見る »

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 速度と定義 · 続きを見る »

安定性理論

数学の分野における安定性理論(あんていせいりろん、)とは、初期条件にわずかな摂動が与えられた際の微分方程式の解の安定性や力学系の軌道の安定性に関する理論である。例えば、熱方程式は、最大値原理によって、初期データのわずかな摂動によるのちの温度変化がわずかであるという意味で、安定な偏微分方程式(stable partial differential equation)である。より一般的に、仮定にわずかな変化が加えられたときに、結論に現れる変化がわずかであるような定理は安定(stable)であると言われる。ここで、定理が安定であると主張する際には、その摂動の大きさを測るために用いる計量(metric)を特定しなければならない。偏微分方程式論においては、関数の間の距離を測るためにLpノルムや上限ノルムを用いることもあるであろうし、微分幾何学においては、空間の間の距離を測るためにを用いることもあるであろう。 力学系において、任意の点からの前方軌道(forward orbit)が、十分小さい近傍に含まれているか、(より大きい場合もあるが)小さな近傍にとどまり続ける場合、その軌道はリャプノフ安定であると言われる。軌道の安定性あるいは不安定性が示されるために、様々な基準が考案されている。好ましい状況においては、問題はよく研究されている行列の固有値問題へと帰着されることもある。より一般的な研究においてはリャプノフ関数が利用される。.

新しい!!: 速度と安定性理論 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 速度と平面 · 続きを見る »

仕事率

仕事率(しごとりつ)とは工率(こうりつ)やパワー()とも呼び、単位時間内にどれだけのエネルギーが使われている(仕事が行われている)かを表す物理量である。「動力性能」という語があるが、その場合これを指すことが多い。.

新しい!!: 速度と仕事率 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 速度と位置 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 速度と微分 · 続きを見る »

メートル毎秒

メートル毎秒(メートルまいびょう、記号m/s)は、国際単位系(SI)における速さ又は速度の単位である国際単位系では、「速さ」、「速度」の単位としているが、日本の計量法では、「速さ」の単位としており、「速度」の単位とはしていない。。1メートル毎秒は、「1秒間に1メートルの速さ」と定義される。なお、速さと速度の違いについては、速度#速度と速さを参照のこと。 単位記号は、m/s である。m/sec としてはならない。 日常会話では「秒速何メートル」とも表現する。また、風速は日本では通常メートル毎秒で測るが、「毎秒」を省略して「風速何メートル」と表現することが多い。 1メートル毎秒は、以下に等しい。.

新しい!!: 速度とメートル毎秒 · 続きを見る »

フィート毎秒

フィート毎秒(フィートまいびょう)、フート毎秒(フートまいびょう)、は、ヤード・ポンド法(FPS単位系)における速度の単位である。1フィート毎秒は、1秒に1フィートの速度と定義される。.

新しい!!: 速度とフィート毎秒 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 速度と初期値問題 · 続きを見る »

ケプラーの法則

プラーの法則(ケプラーのほうそく)は、1619年にヨハネス・ケプラーによって発見された惑星の運動に関する法則である。.

新しい!!: 速度とケプラーの法則 · 続きを見る »

スピード

ピード()は、動作や行動の速度、速さのこと。.

新しい!!: 速度とスピード · 続きを見る »

スカラー (物理学)

物理学ではスカラー(scalar)とは、大きさのみを持つ量のことをいう。大きさと向きを持つベクトルに対比する概念である。ハミルトンは、「1つのスケール上に含まれるマイナス無限大からプラス無限大までの、すべての数値」と表現した。 例えば物体が空間内を運動するときの速度が大きさと方向を含むベクトルであるのに対し、その絶対値(大きさ)である速さは方向を持たないスカラーである。他にも質量、長さ、エネルギー、電荷、温度などはスカラー量である。一方でベクトル量の代表的なものは力、電界、運動量などである。 より狭義にはスカラーは座標系に依存しないことが要求される。.

新しい!!: 速度とスカラー (物理学) · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 速度と光速 · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: 速度と回転 · 続きを見る »

現象

象(げんしょう φαινόμενoν- phainomenon, pl.

新しい!!: 速度と現象 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: 速度と空間ベクトル · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 速度と絶対値 · 続きを見る »

終端速度

終端速度(しゅうたんそくど、terminal velocity)とは、物体が重力または遠心力などの体積力と、速度に依存する抗力を受けるときに、それらの力がつりあって変化しなくなったときの速度である。終末速度、終末沈降速度とも呼ばれる。.

新しい!!: 速度と終端速度 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 速度と物体 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 速度と物理学 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: 速度と物理量 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 速度と相転移 · 続きを見る »

運動 (物理学)

物理学における運動(うんどう、motion)とは、物体の参照系との位置関係が変化することである。 地球の表面では、常に重力が働いていること、ベアリングなど、それなりに使い物になる摩擦をわずかにする技術や工学の発展は中世より後であったこと、空気抵抗の存在などから、いわゆる「アリストテレス力学」と呼ばれるそれのような、極めて思弁的哲学的なある種の独特な科学的論理に基づく「運動」観すら古代にはあった。 その後時代が過ぎるにつれ、そのような「神学」からの離脱に成功した哲学や、やがては科学により、またケプラーやガリレイやニュートンといった人々により、相対速度(ガリレイ変換)・慣性(運動の第1法則)・質量と加速度と力の関係(運動の第2法則)・作用と反作用(運動の第3法則)といった力学の(運動の)基本原理がうちたてられていった。後述する相対論的力学に対して、ニュートン力学という(なお、古典力学という語は相対論までをも含み、量子力学に対する語である)。 しかし、ニュートンには『光学』という著書もあるように、その当時から既に物理学の対象であった光の速さは、人類には謎であった。ニュートン力学の基本的な考え方とされる「絶対時間と絶対空間」についても、むしろ仮定であったと見る向きもある。やがて光速が測定され、マクスウェルによって示された電磁方程式により電磁波の速度がわかると、それが光速と一致すること、そして、どんな場合でもその速度が同じ、という、それまでの物理学における考え方からはどうしても奇妙な現象をどう説明するか、に悩まされることになった。 (詳細は特殊相対性理論の記事を参照)各種の測定結果という事実をなんとかして説明する理論はあれこれと提案されはしたが、時間も空間も相対的である、という驚くべき転回により全てを説明したのはアインシュタインだった。ニュートン力学における運動は、3次元ユークリッド空間内における位置と、時刻、という独立した2要素で指定できるものと言えるが、相対論的には運動は、時間と空間が互いに関連したミンコフスキー時空における線のようなものとなる。アインシュタインによるこれに続く、加速度による見掛けの重力と万有引力による重力を同じもの(等価原理)とした一般相対性理論により、古典力学は完成を見た。 * Category:力学 Category:物理学の概念.

新しい!!: 速度と運動 (物理学) · 続きを見る »

運動の第1法則

運動の第1法則(うんどうのだい1ほうそく、) は、慣性系における力を受けていない質点の運動を記述する経験則であり、慣性の法則とも呼ばれる。ガリレイやデカルトによってほぼ同じ形で提唱されていたものをニュートンが基本法則として整理した。 「すべての物体は、外部から力を加えられない限り、静止している物体は静止状態を続け、運動している物体は等速直線運動を続ける」 慣性の法則は、どのような座標系でも成立するわけではない。例えば加速中の電車内に固定された座標系では、力を受けていない空き缶がひとりでに動きだすことがある。慣性の法則が成立するような座標系を慣性系という。.

新しい!!: 速度と運動の第1法則 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 速度と運動量 · 続きを見る »

表定速度

表定速度(ひょうていそくど)とは、「運転時刻表制定速度」の略称であり、交通における速度の一種である。「評定速度」と表記するのは誤り。.

新しい!!: 速度と表定速度 · 続きを見る »

馬力

力(ばりき)は工率の単位である。今日では、ヤード・ポンド法に基づく英馬力、メートル法に基づく仏馬力を始めとして、馬力の定義はいくつかある。日本の計量法では、仏馬力を特例的に当分の間のみ認めており、 正確に 735.5 ワットと定義している。 国際単位系 (SI) における仕事率、工率の単位はワット (W) であり、馬力は併用単位にもなっていない。.

新しい!!: 速度と馬力 · 続きを見る »

角速度

運動学において、角速度(かくそくど、angular velocity)は、ある点をまわる回転運動の速度を、単位時間に進む角度によって表わした物理量である。言い換えれば角速度とは、原点と物体を結ぶ線分、すなわち動径が向く角度の時間変化量である。特に等速円運動する物体の角速度は、物体の速度を円の半径で割ったものとして与えられる。従って角速度の量の次元物理学などの文献においては、文脈上紛れがない限り、単に「次元」と呼ばれる。は、通常の並進運動の速度とは異なり速度の次元は長さ L に時間 T の逆数を掛けた L⋅T−1 である。、時間の逆数 T−1 となる。.

新しい!!: 速度と角速度 · 続きを見る »

質点

質点(しつてん、point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。.

新しい!!: 速度と質点 · 続きを見る »

距離

距離(きょり、Entfernung)とは、ある2点間に対して測定した長さの量をいう。本項では日常生活および高校数学の範囲内で使われている距離について触れる。大学以上で扱うより専門的な距離については距離空間を参照。.

新しい!!: 速度と距離 · 続きを見る »

躍度

躍度(やくど)、加加速度(かかそくど)、 ジャーク は、単位時間あたりの加速度の変化率である。 加速度はベクトル量であるので、躍度も同様にベクトル量となるが、その絶対値を指すこともある。 加速度を a とすれば、定義から躍度 j は a の時間に関する微分 で与えられる。これは、変位を x、速度を v として と表すこともできる。 大きな躍度(加速度、力の急激な変化)は、生物に不快感を与えたり、機械装置に対して損傷を与えたりする。そのため、生体等の運動制御における逆モデルを考える場合、躍度を最小にすることを制御系の束縛条件として与え、不良設定問題に一意解をもたらす方法がある。.

新しい!!: 速度と躍度 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 速度と関数 (数学) · 続きを見る »

膨張

記載なし。

新しい!!: 速度と膨張 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: 速度と長さ · 続きを見る »

速さ

物理学の運動学における速さ(はやさ、speed)は、速度ベクトルの大きさを指す用語である。各時刻の位置が特定できるような何らかの'もの'があって、その'もの'が時間とともに移動していく場合に、その(道のりとしての)移動距離が時間的に増していく変化のすばやさ(変化率)を表す量である。速度が一定の場合は、単位時間あたりの移動距離であると考えてよい。.

新しい!!: 速度と速さ · 続きを見る »

速さの比較

本項では、速さの比較(はやさのひかく)ができるよう、昇順に表にする。 速さはスカラー量であり、「ベクトル量である速度の大きさ」と定義される。速さと速度の違いについては、速度#速度と速さをも参照のこと。.

新しい!!: 速度と速さの比較 · 続きを見る »

根二乗平均速度

根二乗平均速度(こんにじょうへいきんそくど、)とは、速度の絶対値の二乗平均平方根、すなわち速度の大きさの二乗 v 2 の統計集団平均 \langle v^2 \rangle の平方根 \sqrt である。 ここで速度 v の大きさ v は v の内積によって定められる。 根二乗平均速度は気体分子運動論などの議論において現れる。 速度の分散 |\sigma(\boldsymbol)|^2 は速度の平均 \langle\boldsymbol\rangle と速度の二乗平均 \langle v^2 \rangle を用いて以下のように書き表すことができる。.

新しい!!: 速度と根二乗平均速度 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 速度と極限 · 続きを見る »

概念

概念(がいねん、哲学では仏: notion、独: Begriffというが、日常的に仏: concept、独: Konzeptという。コンセプトは前記フランス語から由来している)は、命題の要素となる項(Terminus)が表すものであり、言い換えれば、それが言語で表現された場合に名辞(Terminus)となるものが概念である。 事象に対して、抽象化・ 普遍化してとらえた、思考の基礎となる基本的な形態として、脳の機能によってとらえたもの。.

新しい!!: 速度と概念 · 続きを見る »

慣性

慣性(かんせい、英語:inertia)とは、ある物体が外力を受けないとき、その物体の運動状態は慣性系に対して変わらないという性質を表す。惰性ともいう。 静止している物体に力が働かないとき、その物体は慣性系に対し静止を続ける。運動する物体に力が働かないとき、その物体は慣性系に対し運動状態を変えず、等速直線運動を続ける。これは慣性の法則(運動の第1法則)として知られている。 力が働いているときではニュートンの運動方程式より 慣性が大きければ、同じ力 \vec を加えても加速度 \vec は小さくなる。これは質量 \boldsymbol が大きいということである。この質量 \boldsymbol は、各物体の慣性の大小を表す量であり、慣性質量と呼ばれる。 物体の回転を考えるときにも、回転のしやすさの大小(慣性モーメント)として、広い意味での慣性を定義することが出来る。 アイザック・ニュートンは慣性を定式化することにより、鳥が何故、地球の表面から取り残されないのか、地球が何故止まらないで動き続けているのか、という地動説の疑問に答え、地動説の正しさを証明させた。.

新しい!!: 速度と慣性 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 速度と時間 · 続きを見る »

時間微分

時間微分(じかんびぶん、time derivative, derivative with respect to time)とは、引数に時間を持つ関数もしくは汎関数の時間に関する導関数、または時間に関する微分そのものを指す。ある関数の時間微分は、元の関数の時間的な変化の割合を表すので、速度の名を冠することが多い。例えば物体の運動速度や、化学反応における反応速度などは、それぞれ位置の時間微分と物質量の時間微分を指す。 時間微分は、その対象の時間的な変化の度合いを調べる目的のほかに、元の関数の性質を調べる上で、その導関数の扱いが容易である場合に用いられる。あるいは、一般の微分方程式と同様に、未知の関数に対する時間発展を時間に関する微分方程式によって与える際に現れる。 数学や物理学などにおいては、ある種の変換に対する対称性や不変性がしばしば興味の対象となる。特に時間変化に対する不変性は重要な意味を持ち、時間微分が恒等的に 0 であるような量は保存量と呼ばれる。このとき元の量は時間的変化に対して不変である。ネーターの定理に示唆されるように、保存量やそれを与える保存則は、系が備える基本的な性質の反映であると考えられるので、自然科学の分野において基礎となるモデルを考える上で重要である。.

新しい!!: 速度と時間微分 · 続きを見る »

時速

時速(じそく)とは、速度の表現のひとつ。1時間あたりに進む距離は、〜部分に単位つきの数字を置いて、「時速〜(じそく)」と表現される。 これはどちらかというと日常的な表現であり、対して工学などでは40 km/h(キロメートル毎時)と表現されるのが普通である。両者を比較して考えると分かるように、「時速」の部分は速さの単位の一部であるはずのものである。しかし日常会話では厳密さを問題としないため、そのことが忘れられがちになる。英語なら、工学では "40 km per hour" を、日常語では "40 km an hour" を用いるのが普通であり、双方の理解に乖離はない。 同種の表現に「分速〜(ふんそく)」「秒速〜(びょうそく)」などがある。.

新しい!!: 速度と時速 · 続きを見る »

ここにリダイレクトされます:

平均速度瞬間速度速度ベクトル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »