ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

写像の合成

索引 写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

42 関係: 力学系反復合成写像対称群三角関数交換法則二項関係代数的構造作用素作用素論微分圏論ペアノの公理バナッハ空間ポーランド記法モノイドラムダ計算フラクタルコンビネータ論理セミコロン冪乗函数的平方根全単射線型代数学結合法則絶対値終域環 (数学)行列行列の乗法高階関数部分集合関係 (数学)関係の合成連鎖律逆ポーランド記法逆写像WolframデモンストレーションプロジェクトZ言語恒等写像正の数と負の数数学括弧

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: 写像の合成と力学系 · 続きを見る »

反復合成写像

数学における写像の反復適用および反復合成(はんぷくごうせい、iteration)は、同じ写像を繰り返し適用すること(繰り返してもよい)、および同じ写像同士で合成を繰り返すことをいう。またそうして得られた写像は、もとの写像の反復合成写像 (iterated function) あるいは合成冪 (power) と呼ぶ。適当な対象を初期値として、それに反復合成写像を適用して得られる値の列は、初期値の軌道 (orbit) と言う。 反復合成は計算機科学、フラクタル、力学系など、あるいは数学および繰り込み群の物理学において研究の対象となる。.

新しい!!: 写像の合成と反復合成写像 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 写像の合成と対称群 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 写像の合成と三角関数 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 写像の合成と交換法則 · 続きを見る »

二項関係

数学において、二項関係(にこうかんけい、binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 の部分集合を、集合 上の二項関係と呼ぶ。あるいはもっと一般に、二つの集合 に対して、 と との間の二項関係とは、直積 の部分集合のことをいう。 二項関係の一つの例は素数全体の成す集合 と整数全体の成す集合 の間の整除関係である。この整除関係では任意の素数 は、 の倍数である任意の整数 に関係を持ち、倍数でない整数には関係しないものとして扱われる。例えば、素数 が関係を持つ整数には などが含まれるが や は含まれない。同様に素数 が関係する整数として などが挙げられるが、 や はそうではない。 二項関係は数学のさまざまな分野で用いられ、不等関係、恒等関係、算術の整除関係、初等幾何学の合同関係、グラフ理論の隣接関係、線型代数学の直交関係などのさまざまな概念が二項関係として定式化することができる。また、写像の概念を特別な種類の二項関係として定義することもできる。二項関係は計算機科学においても重用される。 二項関係はn-項関係 (各 -番目の成分が関係の -番目の始集合 からとられているようなn-組からなる集合)で とした特別の場合である。 ある種の公理的集合論では(集合の一般化としての)類の上の関係を考えることができる。このような拡張は、集合論における元の帰属関係や包含関係の概念(に限った話ではないが)のモデル化を、ラッセルの逆理のような論理矛盾に陥らずに行うために必要である。.

新しい!!: 写像の合成と二項関係 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 写像の合成と代数的構造 · 続きを見る »

作用素

数学における作用素(さようそ、operator)は、しばしば写像、函数、変換などの同義語として用いられる。函数解析学においては主にヒルベルト空間やバナッハ空間上の(必ずしも写像でない部分写像の意味での)線型変換を単に作用素と呼ぶ。そのような空間として特に函数空間と呼ばれる函数の成す無限次元線型空間は典型的であり(同じものを物理学の分野、特に量子力学などでは演算子(えんざんし)と呼ぶ)、このとき、作用素を関数を別の関数にうつす写像として理解することができる。数(定数関数)の集合に値をとる作用素は汎函数(はんかんすう、functional)と呼ばれる。 また、群や環が空間に作用しているとき、群や環の各元が定める空間上の変換、あるいはその変換が引き起こす関数空間上の変換のことを作用素ということがある。.

新しい!!: 写像の合成と作用素 · 続きを見る »

作用素論

数学における作用素論(さようそろん、Operator theory)は、微分作用素や積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性や閉性などといった特徴によって抽象的に表すことができ、また非線型作用素なども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。 作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。.

新しい!!: 写像の合成と作用素論 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 写像の合成と微分 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 写像の合成と圏論 · 続きを見る »

ペアノの公理

ペアノの公理(ペアノのこうり、Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。.

新しい!!: 写像の合成とペアノの公理 · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 写像の合成とバナッハ空間 · 続きを見る »

ポーランド記法

ポーランド記法(ポーランドきほう、Polish Notation)とは、数式やプログラムを記述する方法(記法)の一種。演算子(オペレータ)を被演算子(オペランド)の前(左)に記述することから、前置記法(ぜんちきほう、prefix notation)とも言う。 その他の記法として、演算子を被演算子の中間に記述する中置記法、後(右)に記述する後置記法(逆ポーランド記法)がある。 名称の由来は、ポーランド人の論理学者ヤン・ウカシェヴィチ (Jan Łukasiewicz) が考案したことによる。.

新しい!!: 写像の合成とポーランド記法 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 写像の合成とモノイド · 続きを見る »

ラムダ計算

ラムダ計算(ラムダけいさん、lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(evaluation)と適用(application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論など、計算機科学のいろいろなところで使われており、特にLISP、ML、Haskellといった関数型プログラミング言語の理論的基盤として、その誕生に大きな役割を果たした。 ラムダ計算は1つの変換規則(変数置換)と1つの関数定義規則のみを持つ、最小の(ユニバーサルな)プログラミング言語であるということもできる。ここでいう「ユニバーサルな」とは、全ての計算可能な関数が表現でき正しく評価されるという意味である。これは、ラムダ計算がチューリングマシンと等価な数理モデルであることを意味している。チューリングマシンがハードウェア的なモデル化であるのに対し、ラムダ計算はよりソフトウェア的なアプローチをとっている。 この記事ではチャーチが提唱した元来のいわゆる「型無しラムダ計算」について述べている。その後これを元にして「型付きラムダ計算」という体系も提唱されている。.

新しい!!: 写像の合成とラムダ計算 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 写像の合成とフラクタル · 続きを見る »

コンビネータ論理

ンビネータ論理(Combinatory Logic、組み合わせ論理)は、(Моисей Эльевич Шейнфинкель、Moses Ilyich Schönfinkel)とハスケル・カリー(Haskell Brooks Curry)によって、記号論理での変数を消去するために導入された記法である。最近では、計算機科学において計算の理論的モデルで利用されてきている。また、関数型プログラミング言語の理論(意味論など)や実装にも応用がある。 コンビネータ論理は、コンビネータまたは引数のみからなる関数適用によって結果が定義されている高階関数、コンビネータに基づいている。.

新しい!!: 写像の合成とコンビネータ論理 · 続きを見る »

セミコロン

ミコロン(semicolon)は、欧文の約物のひとつで、「;」と書き表される。その形式はピリオドとコンマとの合体であり、これらの中間的役割を担う。 なお、日本語の文章中では滅多に使われないが、顔文字などでは比較的よく用いられる。C言語やJava等、多くのプログラミング言語で必ずと言って良いほど使われる記号でもある。数学でも用いられる記号である。.

新しい!!: 写像の合成とセミコロン · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: 写像の合成と冪乗 · 続きを見る »

函数的平方根

数学において函数的平方根(かんすうてきへいほうこん、)あるいは半反復(half iterate)とは、合成の演算に関する函数の平方根のことである。言い換えると、ある函数 の函数的平方根 とは、すべての に対して を満たすもののことを言う。.

新しい!!: 写像の合成と函数的平方根 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 写像の合成と全単射 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 写像の合成と線型代数学 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 写像の合成と結合法則 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 写像の合成と絶対値 · 続きを見る »

終域

数学において写像の終域(しゅういき、codomain; 余域)あるいは終集合(しゅうしゅうごう、target set)は、写像を と表すときの集合 、すなわち写像 の出力する値がその中に属するべきという制約を定める集合をいう。終域の代わりに「値域」という語を用いる場合もあるが、値域は写像の像(出力される値すべてからなる集合、 で言えば )の意味で用いることが多いので注意すべきである。.

新しい!!: 写像の合成と終域 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 写像の合成と環 (数学) · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 写像の合成と行列 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: 写像の合成と行列の乗法 · 続きを見る »

高階関数

階関数(こうかいかんすう、higher-order function)とは、第一級関数をサポートしているプログラミング言語において、関数(手続き)を引数にしたり、あるいは関数(手続き)を戻り値とするような関数のことである。.

新しい!!: 写像の合成と高階関数 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 写像の合成と部分集合 · 続きを見る »

関係 (数学)

集合 X1, …, Xk 上の関係 L とは、それらの直積の部分集合 L ⊆ X1 × … × Xk である。 関係は集合の個数 k により分類される。 集合 X1, …, Xk は定義域と呼ばれる。すべての Xj が同じ集合 X のとき、L を X 上の k 項関係と呼ぶ。.

新しい!!: 写像の合成と関係 (数学) · 続きを見る »

関係の合成

数学における二項関係の合成(ごうせい、composition)は、与えられた二つの関係 R, S から新たな関係 S ∘ R を作り出す操作である。この最もよく知られた特別の場合が写像の合成である。.

新しい!!: 写像の合成と関係の合成 · 続きを見る »

連鎖律

微分法において連鎖律(れんさりつ、chain rule)とは、複数の関数が合成された合成関数を微分するとき、その導関数がそれぞれの導関数の積で与えられるという関係式のこと。.

新しい!!: 写像の合成と連鎖律 · 続きを見る »

逆ポーランド記法

逆ポーランド記法(ぎゃくポーランドきほう、)は、数式やプログラムの記法の一種。演算子を被演算子の後にすることから、後置記法 (Postfix Notation) とも言う。 その他の記法として、演算子を被演算子の中間に記述する中置記法、前に記述する前置記法(ポーランド記法)がある。 逆ポーランド記法でも、演算子早出し逆ポーランド記法 ERP(early-operator reverse Polish notation)と、演算子遅出し(late-operator)逆ポーランド記法 LRP の分類があり、特に演算子早出し逆ポーランド記法は「その記号の配列順を些かも崩さずに和文に移せる」という特徴がある。 名称の由来は、演算子と被演算子の順序がポーランド記法の逆になっていることによる(「ポーランド記法」自体の由来についてはポーランド記法の記事を参照のこと)。.

新しい!!: 写像の合成と逆ポーランド記法 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 写像の合成と逆写像 · 続きを見る »

Wolframデモンストレーションプロジェクト

Wolframデモンストレーションプロジェクト(Wolfram Demonstrations Project)は、計算を使った探求をできるだけ多くの人々に体験してもえるようにすることを目標とした、ウルフラム・リサーチが主催するプロジェクトのウェブサイトである。このサイトでは、デモンストレーションと呼ばれるオープンソースの小さなインタラクティブプログラムが集められ、系統的に掲載されている。このデモンストレーションは、さまざまな分野のアイディアを視覚的かつインタラクティブに表現することを意図して作られている。このサイトの公開当初、デモンストレーションの数は1300件であったが、その後1万件以上にまで増加した。このサイトは2008年にParents' Choice Awardを受賞している。.

新しい!!: 写像の合成とWolframデモンストレーションプロジェクト · 続きを見る »

Z言語

Z言語 (ぜっどげんご) は、Z記法 (ぜっどきほう) ともいい、形式仕様記述言語であり、コンピュータシステムの記述とモデリングを行うために使われる。 ZはZF集合論から名前をとって命名された。 Zは次のことに焦点を当てている。.

新しい!!: 写像の合成とZ言語 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 写像の合成と恒等写像 · 続きを見る »

正の数と負の数

正の数(せいのすう、positive number)とは、0より大きい実数である。負の数(ふのすう、negative number)とは、0より小さい実数である。.

新しい!!: 写像の合成と正の数と負の数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 写像の合成と数学 · 続きを見る »

括弧

括弧(かっこ)は、約物の一つ。言語の記述の中で、その一部を一対の括弧で囲むことにより、その中と外とを区切る役割を果たす。または目立たせる。 括弧は対で使用され、先に記述される括弧を括弧開き(かっこひらき)または始め括弧(はじめかっこ)、後に記述される括弧を括弧閉じ(かっことじ)または終わり括弧(おわりかっこ)と呼ぶ。横書き表記の記述においては、相対的に左括弧(ひだりかっこ)・右括弧(みぎかっこ)とも呼ぶ。また、対となる括弧がそれぞれ縦並びの括弧を縦括弧(たてかっこ)、横並びの括弧を横括弧(よこかっこ)と呼ぶ。仮名とは異なり、縦書きか横書きかで形が変わる。この項目では横書き表記ですべて取り扱われているが、縦書きの場合は右90度回転されたものになる。 なお、数学においても括弧は頻繁に用いられ、特殊な意味を持つ。.

新しい!!: 写像の合成と括弧 · 続きを見る »

ここにリダイレクトされます:

合成写像合成函数合成関数函数の合成関数の合成

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »