ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

クロス積

索引 クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

41 関係: 単項演算反対称テンソル右手系向き外積外積代数定数実数対称性三重積 (ベクトル解析)平面平行四辺形乗法二項演算ヤコビ恒等式ヘルマン・グラスマンドット積ホッジ双対ベクトルベクトル解析アドルフ・フルヴィッツウィラード・ギブズウィリアム・ローワン・ハミルトンエディントンのイプシロンオリヴァー・ヘヴィサイドスカラー内積写像八元数四元数直積 (ベクトル)行列行列式複素数計量ベクトル空間零ベクトル正方行列法線ベクトル擬ベクトル擬スカラー3次元

単項演算

単項演算とは、数学で、被作用子(オペランド)が一つだけであるような演算(つまり、入力が一つの演算)のこと。 たとえば、論理否定は真理値に対する単項演算であり、自乗は実数に対する単項演算である。階乗 n! も単項演算である。与えられた集合 S に対する単項演算は、関数 S→S に他ならない。 単項演算は、プログラミング言語においても使われる(APLではmonadicという)。たとえば、C言語の系統では、以下の単項演算子がある。.

新しい!!: クロス積と単項演算 · 続きを見る »

反対称テンソル

数学および理論物理学において、テンソルが添字の対に関して反対称 (anti­symmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符号が反転することを言う。また、交代的 (alternating) であるとは、それらを等しいと置いたとき零になることを言う。の標数が でないときこれら二つの概念は一致する(多重線型写像の項も参照)。.

新しい!!: クロス積と反対称テンソル · 続きを見る »

右手系

右手系(みぎてけい、right-handed system)または正系(せいけい、positive-oriented system)は、線型代数学における座標系で、右手の法則(right-hand rule)に従うものを指し、左手系と区別される。多くの分野では右手系が標準とされ、左手系は非標準的とされる。 右手系・左手系という性質は、直交座標系とは限らない座標系に対しても考えられる。より抽象的には、順序付けられた基底に対して定義される。また、3次元に限らず、2次元以上の任意の次元のユークリッド空間に対しても定義される。.

新しい!!: クロス積と右手系 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: クロス積と向き · 続きを見る »

外積

外積(がいせき)とは、.

新しい!!: クロス積と外積 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: クロス積と外積代数 · 続きを見る »

定数

数学における定数(ていすう、じょうすう、constant; 常数)あるいは定項 (constant term) は、二つの異なる意味を示し得る。そのひとつは固定 (fix) され、矛盾なく定義された数(またはもっとほかの数学的対象)であり、この意味で言う定数であることをはっきりさせるために「数学定数」(あるいは「物理定数」もそうだが)という語を用いることもある。もう一つの意味は、定数函数またはその(これらはふつうたがいに同一視される)を指し示すもので、この意味での「定数」は扱う問題における主変数に依存しない変数という形で表されるのが普通である。後者の意味での例として、は、与えられた函数の原始函数をすべて得るために特定の原始函数に加えられる、任意の(積分変数に依存しないという意味での)定数函数を言う。 例えば、一般の二次函数はふつう を定数(あるいはパラメタ)として のようにあらわされる。ここに変数 は考えている函数の引数のプレースホルダとなるものである。より明示的に のように書けば がこの函数の引数であることが明瞭で、しかも暗黙の裡に が定数であることを提示できる。この例では、定数 はこの多項式の係数と呼ばれる。 の項は を含まないからと呼ばれ(これを の係数と考えることができる)、多項式において次数が零の任意の項または式は定数である。.

新しい!!: クロス積と定数 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: クロス積と実数 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: クロス積と対称性 · 続きを見る »

三重積 (ベクトル解析)

三重積とは3次元ユークリッド空間における3つのベクトルの積であり、ベクトル解析におけるスカラー三重積とベクトル三重積の総称である。.

新しい!!: クロス積と三重積 (ベクトル解析) · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: クロス積と平面 · 続きを見る »

平行四辺形

平行四辺形(へいこうしへんけい、英: parallelogram)とは、2組の対辺がそれぞれ平行である四角形のことである。 平行四辺形は、台形の一種である。また、特殊な平行四辺形に長方形,菱形がある。.

新しい!!: クロス積と平行四辺形 · 続きを見る »

乗法

算術における乗法 (じょうほう、multiplication) は、算術の四則と呼ばれるものの一つで、整数では、一方の数 (被乗数、ひじょうすう、multiplicand) に対して他方の数 (乗数、じょうすう、multiplier) の回数だけ繰り返し和をとる(これを掛けるまたは乗じるという。)ことにより定義できる演算である。掛け算(かけざん)、乗算(じょうざん)とも呼ばれる。代数学においては、変数の前の乗数(例えば 3y の 3)は係数(けいすう、coefficient)と呼ばれる。 逆の演算として除法をもつ。乗法の結果を積 (せき、product) と呼ぶ。 乗法は、有理数、実数、複素数に対しても拡張定義される。また、抽象代数学においては、一般に可換とは限らない二項演算に対して、それを乗法、積などと呼称する(演算が可換である場合はしばしば加法、和などと呼ぶ)。.

新しい!!: クロス積と乗法 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: クロス積と二項演算 · 続きを見る »

ヤコビ恒等式

数学におけるヤコビ恒等式(Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。.

新しい!!: クロス積とヤコビ恒等式 · 続きを見る »

ヘルマン・グラスマン

ヘルマン・ギュンター・グラスマン(Hermann Günther Graßmann, 1809年4月15日 - 1877年9月26日)はドイツの数学者・物理学者・言語学者。 まず数学を研究し、現在グラスマン代数と呼ばれる成果をあげたが、時代に先んじていたため認められなかった。しかし他の分野でも才能を開花させ、色彩論および言語学においてそれぞれグラスマンの法則と呼ばれる業績を残した。.

新しい!!: クロス積とヘルマン・グラスマン · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: クロス積とドット積 · 続きを見る »

ホッジ双対

数学において、ホッジスター作用素(ホッジスターさようそ、Hodge star operator)、もしくは、ホッジ双対(ホッジそうつい、Hodge dual)は、(Hodge)により導入された線型写像である。ホッジ双対は、有限次元の向き付けられた内積空間の外積代数の上で定義される -ベクトルのなす空間から-ベクトルのなす空間への線形同型である。 他のベクトル空間に対する多くの構成と同様に、ホッジスター作用素は多様体の上のベクトルバンドルへの作用に拡張することができる。 たとえば余接束の外積代数(すなわち、多様体上の微分形式の空間)に対して、ホッジスター作用素を用いてラプラス=ド・ラーム作用素を定義し、コンパクトなリーマン多様体上の微分形式のホッジ分解を導くことができる。.

新しい!!: クロス積とホッジ双対 · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: クロス積とベクトル · 続きを見る »

ベクトル解析

ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル解析を特によく用いられるが、ベクトル解析は一般のn次元多様体上で展開できる。.

新しい!!: クロス積とベクトル解析 · 続きを見る »

アドルフ・フルヴィッツ

アドルフ・フルヴィッツ(1880年から1890年頃) アドルフ・フルヴィッツ(Adolf Hurwitz, 1859年3月26日 - 1919年11月18日)はドイツのユダヤ人数学者。 整数論、代数学、代数幾何学で業績がある。はじめミュンヘン大学でクライン、次にベルリン大学でクンマー、ワイエルシュトラス、クロネッカー等の当時を代表する数学者たちの講義に出席しドイツ数学を学んだ。 クラインに師事するために、一度ミュンヘン大学に戻り、クラインがライプツィヒ大学に異動するのに伴いライプツィヒへ、そこでクラインの指導のもと楕円モジュラー関数に関する論文で博士号を取得。 ゲッティンゲン大学を経てリンデマン(円周率\piが超越数となることの証明で著名)に誘われケーニヒスベルク大学へ。 ケーニヒスベルク大学時代にダフィット・ヒルベルトとヘルマン・ミンコフスキーを育てたことも有名。その後スイス連邦工科大学チューリヒ校の教授。 業績として、リーマン面に関する基礎的な貢献、代数曲線の種数に関するリーマン・フルヴィッツの公式。フルヴィッツのゼータ関数の発見。虚数乗法を持つ楕円モジュラー関数において非常に重要な数であるフルヴィッツ数の構成など。 楕円モジュラー関数と虚数乗法論における貢献が大きい。.

新しい!!: クロス積とアドルフ・フルヴィッツ · 続きを見る »

ウィラード・ギブズ

ョサイア・ウィラード・ギブズ ジョサイア・ウィラード・ギブズ(Josiah Willard Gibbs, 1839年2月11日 - 1903年4月28日)はアメリカコネチカット州ニューヘイブン出身の数学者・物理学者・物理化学者で、エール大学(イェール大学)教授。 熱力学分野で熱力学ポテンシャル、化学ポテンシャル概念を導入し、相平衡理論の確立、相律の発見など、今日の化学熱力学の基礎を築いた。統計力学の確立にも大きく貢献した。ギブズ自由エネルギーやギブズ-デュエムの式、ギブズ-ヘルムホルツの式等にその名を残している。 ベクトル解析の創始者の一人として数学にも寄与している。 ギブズの科学者としての経歴は、4つの時期に分けられる。1879年まで、ギブズは、熱力学理論を研究した。1880年から1884年までは、ベクトル解析分野の研究を行った。1882年から1889年までは、光学と光理論の研究をした。1889年以降は、統計力学の教科書作成に関わった。なお、彼の功績を称えて、小惑星(2937)ギブズが彼の名を取り命名されている。.

新しい!!: クロス積とウィラード・ギブズ · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: クロス積とウィリアム・ローワン・ハミルトン · 続きを見る »

エディントンのイプシロン

ディントンのイプシロンは、数学で用いられる記号。交代記号、レヴィ.

新しい!!: クロス積とエディントンのイプシロン · 続きを見る »

オリヴァー・ヘヴィサイド

リヴァー・ヘヴィサイド(Oliver Heaviside, 1850年5月18日 - 1925年2月3日)はイギリスの電気技師、物理学者、数学者である。幼時に猩紅熱に罹患したことにより難聴となった。正規の大学教育を受けず研究機関にも所属せず、独学で研究を行った。電気回路におけるインピーダンスの概念の導入、複素数の導入や「ヘヴィサイドの演算子法」といった物理数学の方法を開発するなど、大きな功績を残した。また、インダクタンスやコンダクタンスなど、回路理論用語のいくつかを提唱した。.

新しい!!: クロス積とオリヴァー・ヘヴィサイド · 続きを見る »

スカラー

ラー、スカラ; scalar.

新しい!!: クロス積とスカラー · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: クロス積と内積 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: クロス積と写像 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: クロス積と八元数 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: クロス積と四元数 · 続きを見る »

直積 (ベクトル)

線型代数学における直積(ちょくせき、direct product)あるいは外積(がいせき、outer product)は典型的には二つのベクトルのテンソル積を言う。の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積は、クロス積の意味で使われることもあるため、どちらの意味で使われているか注意が必要である。 \beginu_1 \\ u_2 \\ u_3 \\ u_4\end \beginv_1 & v_2 & v_3\end.

新しい!!: クロス積と直積 (ベクトル) · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: クロス積と行列 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: クロス積と行列式 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: クロス積と複素数 · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: クロス積と計量ベクトル空間 · 続きを見る »

零ベクトル

零ベクトルあるいはゼロベクトルとは、ベクトルの加法においての単位元。直感的な理解においては大きさが0で向きを持たないベクトル。 太字で0(あるいは黒板太字)と表される。主に高校数学においては\vecのように上に矢印を置いて表されることがある。もちろん通常のベクトルのように要素を直接表記する場合もあり、例えば(1 -1)T+(-1 1)Tの解である(0 0)Tは零ベクトルの一つ。 Category:線型代数学 Category:数学に関する記事 Category:ベクトル.

新しい!!: クロス積と零ベクトル · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: クロス積と正方行列 · 続きを見る »

法線ベクトル

法線ベクトル(ほうせんベクトル、normal vector)は、2次元ではある線に垂直なベクトル、3次元ではある面に垂直なベクトル。法線(ほうせん、normal)はある接線に垂直な線のことである。.

新しい!!: クロス積と法線ベクトル · 続きを見る »

擬ベクトル

擬ベクトル(ぎベクトル、pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(polar vector)と呼ぶ。.

新しい!!: クロス積と擬ベクトル · 続きを見る »

擬スカラー

擬スカラー(Pseudo-scalar)は座標の反転にたいして符号が変わるスカラー。 二つのベクトル、A,Bのドット積(内積、スカラー積)を考える(ここでは直交座標系を考える)、 この内積において、(x,y,z)各軸を(-x,-y,-z)と反転させた時、内積の符号が変わるような場合を擬スカラーと言う。 これは、ベクトルA,B、それぞれが極性であるか軸性であるかによる。極性ベクトルは、通常の速度や力のようなベクトルであり、軸性ベクトルは角速度や力のモーメントのようなベクトルである。極性ベクトルは座標の反転により符号が変わるが、軸性ベクトルは座標の反転により符号は不変である。このため、ベクトルA,Bが共に極性或いは軸性ならば座標の反転に対してその内積の符号は反転しないが、A,Bいずれかが極性で片一方が軸性の時は内積の符号が反転する。この場合が擬スカラーとなる。 軸性ベクトル(Axial vector)のことを、擬ベクトル(Pseudo vector)とも言う。 ベクトルA,Bがいずれも極性ベクトルで、更に第三のベクトルCを考え、これも極性ベクトルの時、次の結果、 も擬スカラーとなる(×はクロス積(外積、ベクトル積)である)。これは極性ベクトル同士の外積は軸性ベクトルになるためである。 またスカラーポテンシャルφにおける関係、 において、ベクトルFが軸性ベクトルなら、φは擬スカラーとなる。これはベクトルFが座標の反転に対し符号が不変なので、∇部分(微分の部分)が反転に対し符号を変えるので、スカラーポテンシャルであるφも符号を変える(つまり擬スカラー)ためである。 Category:物理数学 Category:クリフォード代数 Category:数学に関する記事.

新しい!!: クロス積と擬スカラー · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: クロス積と3次元 · 続きを見る »

ここにリダイレクトされます:

ベクトル積交叉積

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »