ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

離散コサイン変換

索引 離散コサイン変換

DFTとの比較。左はスペクトル、右はヒストグラム。低周波域での相違を示すため、スペクトルは 1/4 だけ示してある。DCTでは、パワーのほとんどが低周波領域に集中していることがわかる。 離散コサイン変換(りさんコサインへんかん)は、離散信号を周波数領域へ変換する方法の一つであり、信号圧縮に広く用いられている。英語の discrete cosine transform の頭文字から DCT と呼ばれる。以下DCTと略す。.

42 関係: AACATRAC基底偏微分方程式偶関数と奇関数境界条件実数安田浩不連続性の分類三角関数修正離散コサイン変換マルコフ過程チェビシェフ多項式フーリエ級数周波数周波数領域アルゴリズムエイリアシング線型写像組み込みシステム直交DV (ビデオ規格)音声圧縮非可逆圧縮行列複素数高速フーリエ変換量子化離散信号離散フーリエ変換FFTPACKFFTWGNU General Public LicenseJPEGMotion JPEGMoving Picture Experts GroupMP3Vorbis振幅指数関数数列時間領域

AAC

Advanced Audio Coding (AAC) は、不可逆のディジタル音声圧縮を行う音声符号化規格のひとつである。MP3の後継フォーマットとして策定され、一般的にAACは同程度のビットレートであればMP3より高い音声品質を実現している。 AACはISOとIECにより、MPEG-2およびMPEG-4仕様の一部として標準化された。MPEG-4 Audio内のHE-AAC(High Efficiency Advanced Audio Coding)として知られるAACの一部は、DAB+やDigital Radio Mondiale、モバイルテレビジョン規格のDVB-やATSC-M/Hのようなディジタル無線規格においても採用されている。 AACは一つのストリームに、48の全帯域幅(最大96kHz)音声チャンネルを持たせることができ、さらに、16の低周波効果音(LFE、120Hzまで)チャンネルと16の対話チャンネル、および16のデータストリームも含めることができる。ステレオの音質は96kbpsのジョイントステレオモードで適度な要件を満たすことができるが、Hi-Fi透明性(低雑音性)のためには、少なくとも128kbpsのデータレート(VBR)が必要である。MPEG-4 Audioによる検証では、AACが128kbpsのステレオおよび320kbpsの5.1チャンネルオーディオにおいてITUが「透明的」として規定している要件を満たしていることが示されている。 AACはYouTube、iPhone、iPod、iPad、Nintendo DSi、Nintendo 3DS、iTunes、DivX Plus Web Player、PlayStation 3、ノキアのSeries 40携帯電話における既定もしくは標準の音声フォーマットである。PlayStation Vita、Wii、 ソニーのウォークマンMP3シリーズとその後継機種でもサポートされている。AACはインダッシュの車載オーディオシステムのメーカによってもサポートされている。 AAC(Advanced Audio Coding, 先進的音響符号化)とは1997年にISO/IEC JTC 1のMoving Picture Experts Group (MPEG) において規格化された音声圧縮方式のことである。.

新しい!!: 離散コサイン変換とAAC · 続きを見る »

ATRAC

ATRAC(アトラック、Adaptive TRansform Acoustic Coding)は、ソニーが開発したオーディオの非可逆圧縮技術・規格名、および後年開発された関連技術群の総称。いずれも、ソニーグループや、その他家電系メーカーの開発した規格・製品で主に利用される。.

新しい!!: 離散コサイン変換とATRAC · 続きを見る »

基底

* 一般.

新しい!!: 離散コサイン変換と基底 · 続きを見る »

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: 離散コサイン変換と偏微分方程式 · 続きを見る »

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: 離散コサイン変換と偶関数と奇関数 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 離散コサイン変換と境界条件 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 離散コサイン変換と実数 · 続きを見る »

安田浩

安田 浩(やすだ ひろし)は、日本の計算機科学者。東京電機大学未来科学部教授。工学博士。東京大学名誉教授。元東京大学国際・産学共同研究センター教授。一般社団法人日本スマートフォンセキュリティ協会会長。.

新しい!!: 離散コサイン変換と安田浩 · 続きを見る »

不連続性の分類

連続関数は数学およびその応用において非常に重要である。しかし、関数が全て連続というわけではない。ある関数がその定義域内のある点で連続でないとき、その関数は不連続性 (discontinuity) を有する。関数の不連続点全体の成す集合は離散集合の場合もあるし、稠密集合の場合もある。場合によっては定義域全体と同じとなるかもしれない。 本項目では、最も単純な実一変数で実数を値にとる函数の場合における不連続性の分類を述べる。.

新しい!!: 離散コサイン変換と不連続性の分類 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: 離散コサイン変換と三角関数 · 続きを見る »

修正離散コサイン変換

修正離散コサイン変換(しゅうせいりさんコサインへんかん)または変形離散コサイン変換 (modified discrete cosine transform; MDCT) とは、離散時間信号のサンプル値の系列を時間領域から周波数領域へ変換する離散時間信号処理技法の一種である。 主にMP3やAAC、Vorbisといった音声圧縮などで用いられている。 逆変換は逆修正離散コサイン変換 (IMDCT) である。 MDCTは、窓を半分ずつ重複させながら変換を行う重複直交変換において、変換後のデータ量が増加しないように設計されている。 具体的には、Nの信号からN/2の係数列を出力する(信号は2回ずつ使われる)。 このような重複直交変換はELT(Extended Lapped Transform)で一般化されている。 完全再構成条件として、窓関数はPrincen-Bradley条件を満たす必要がある。 このような窓関数としてはMP3に用いられているsine窓や、Vorbis窓がある。 また、任意の分析用窓関数から条件を満たすMDCT用窓関数を導出する方法もあり、AACではカイザー窓を積和して得られるカイザー・ベッセル派生窓(KBD窓)が用いられている。 高速演算法としては、係数列をDCT-IVに変換する方法と、FFTに変換する方法がある。順変換、逆変換ともにN/2のバッファで実装可能である。.

新しい!!: 離散コサイン変換と修正離散コサイン変換 · 続きを見る »

マルコフ過程

マルコフ過程(マルコフかてい)とは、マルコフ性をもつ確率過程のことをいう。すなわち、未来の挙動が現在の値だけで決定され、過去の挙動と無関係であるという性質を持つ確率過程である。 このような過程は例えば、確率的にしか記述できない物理現象の時間発展の様子に見られる。なぜなら、粒子の将来の挙動は現在の挙動によってのみ決定されるが、この性質は系の粒子数が多くなり確率論的な解析を必要とする状態にも引き継がれるからである。 ロシア人数学者、アンドレイ・マルコフにちなんで命名されている。.

新しい!!: 離散コサイン変換とマルコフ過程 · 続きを見る »

チェビシェフ多項式

一種チェビシェフ多項式(Chebyshev polynomials of the first kind)は以下の方程式で定義される: これは三角多項式()の一例である。 これはcos(kt)をコサインの加法定理を用いてcos(t)の多項式で表したものと見ることができる。 \begin \cos(1t)&.

新しい!!: 離散コサイン変換とチェビシェフ多項式 · 続きを見る »

フーリエ級数

フーリエ級数(フーリエきゅうすう、Fourier series)とは、複雑な周期関数や周期信号を、単純な形の周期性をもつ関数の(無限の)和によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。 熱伝導方程式は、偏微分方程式として表される。フーリエの研究の前までには、一般的な形での熱伝導方程式の解法は知られておらず、熱源が単純な形である場合、例えば正弦波などの場合の特別な解しかえられていなかった。この特別な解は現在では固有解と呼ばれる。フーリエの発想は、複雑な形をした熱源をサイン波、コサイン波の和として考え、解を固有解の和として表すものであった。 この重ね合わせがフーリエ級数と呼ばれる。 最初の動機は熱伝導方程式を解くことであったが、数学や物理の他の問題にも同様のテクニックが使えることが分かり様々な分野に応用されている。 フーリエ級数は、電気工学、振動の解析、音響学、光学、信号処理、量子力学および経済学などの分野で用いられている。.

新しい!!: 離散コサイン変換とフーリエ級数 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 離散コサイン変換と周波数 · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: 離散コサイン変換と周波数領域 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 離散コサイン変換とアルゴリズム · 続きを見る »

エイリアシング

イリアシング()とは.

新しい!!: 離散コサイン変換とエイリアシング · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 離散コサイン変換と線型写像 · 続きを見る »

組み込みシステム

組み込みシステム(くみこみシステム、英: Embedded system)とは、特定の機能を実現するために家電製品や機械等に組み込まれるコンピュータシステムのこと。.

新しい!!: 離散コサイン変換と組み込みシステム · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: 離散コサイン変換と直交 · 続きを見る »

DV (ビデオ規格)

DV(ディーブイ)とは、1994年HDデジタルVCR協議会より家庭用として発表されたデジタルビデオの規格のひとつ。開発当初はハイビジョン映像をベースバンドで記録するHD規格のVTRであったが、製品としては1995年にSDテレビ映像を記録するビデオカメラ(カムコーダ)からスタートした。その後HD規格の製品化が進まない中、SD規格の製品が普及してDV.

新しい!!: 離散コサイン変換とDV (ビデオ規格) · 続きを見る »

音声圧縮

音声圧縮あるいはオーディオ圧縮(英語: audio compression)とは、音声ファイルのサイズを削減する目的で設計されたデータ圧縮の一種である。音声圧縮アルゴリズムは、「オーディオコーデック」として実装される。汎用データ圧縮アルゴリズムは音声データには適さず、オリジナルの87%以下に圧縮できることがほとんどなく、リアルタイムの再生にも適さない。そのため、音声向けの可逆圧縮アルゴリズムや非可逆圧縮アルゴリズムが生み出された。非可逆圧縮アルゴリズムは圧縮率が非常に高く、一般の音響機器によく使われている。 可逆でも非可逆でも、情報の冗長性を削減するために、符号化手法、パターン認識、線形予測などの手法を駆使して、圧縮を行う。音声品質は若干落ちるが、多くのユーザーはその違いに気づかず、必要なデータ量は大幅に削減される。例えば、1枚のコンパクトディスクで、高品質な音楽データなら1時間しか記録できないが、可逆圧縮すれば2時間ぶんを記録でき、MP3のような非可逆圧縮なら7時間ぶんの音楽を記録できる。.

新しい!!: 離散コサイン変換と音声圧縮 · 続きを見る »

非可逆圧縮

非可逆圧縮(ひかぎゃくあっしゅく)とは、圧縮前のデータと、圧縮・展開を経たデータとが完全には一致しないデータ圧縮方法のこと。不可逆圧縮(ふかぎゃくあっしゅく)とも呼ばれる。画像や音声、映像データに対して用いられる。静止画像ではJPEG、動画像ではMPEG-1、MPEG-2、MPEG-4(DivX、Xvid、3ivX)、MPEG-4 AVC/H.264、HEVC/H.265、WMV9、VP8、音声ではVorbis、WMA、AAC、MP3、ATRAC、Dolby Digital、DTS Digital Surround、Dolby Digital Plus、DTS-HD High Resolutionなどが代表的な非可逆圧縮方法にあたる。 圧縮に伴い、データは欠落・改変するものの、人間の視聴覚特性を利用して劣化を目立たなくしている。つまり、人間の感覚に伝わりにくい部分は情報を大幅に減らし、伝わりやすい部分の情報を多く残すように行う。その結果、すべてのデータを均一に扱う可逆圧縮と比較して圧倒的な圧縮率が得られ、利点である。また、圧縮率と品質の劣化を両天秤にかけることができ、目的や環境の制約に応じて適切なバランスを選ぶことができる。たとえば、低速な通信回線で音楽などを送信する場合や美術的な再現性を必要としない画像の表示・印刷の場合には圧縮率を高めてデータを小さくする。逆に高速な通信回線が使える場合や、より鮮明な画像の表現を求める場合は圧縮率を低くして大きなデータをやり取りする。.

新しい!!: 離散コサイン変換と非可逆圧縮 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 離散コサイン変換と行列 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 離散コサイン変換と複素数 · 続きを見る »

高速フーリエ変換

速フーリエ変換(こうそくフーリエへんかん、fast Fourier transform, FFT)は、離散フーリエ変換(discrete Fourier transform, DFT)を計算機上で高速に計算するアルゴリズムである。高速フーリエ変換の逆変換を逆高速フーリエ変換(inverse fast Fourier transform, IFFT)と呼ぶ。.

新しい!!: 離散コサイン変換と高速フーリエ変換 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: 離散コサイン変換と量子化 · 続きを見る »

離散信号

離散信号(Discrete signal)もしくは離散時間信号(Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。 離散信号が均一に間隔を置かれた回に対応する系列である場合、それは関連する標本化周波数を持っている、標本化周波数はデータ系列ではわからないので、別のデータ項目として関連付けられるかもしれない。.

新しい!!: 離散コサイン変換と離散信号 · 続きを見る »

離散フーリエ変換

離散フーリエ変換(りさんフーリエへんかん、discrete Fourier transform、DFT)とは離散化されたフーリエ変換であり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分を効率的に計算するためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 f(x)を複素関数F(t)に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 e はネイピア数、i は虚数単位 (i^2.

新しい!!: 離散コサイン変換と離散フーリエ変換 · 続きを見る »

FFTPACK

FFTPACK(FFTパック)は、 高速フーリエ変換のためのFORTRAN サブルーチンパッケージである。 FFTPACKは複素数と実数、サイン、コサイン、1/4波の高速フーリエ変換サブルーチンを含んでいる。 FFTPACKは、アメリカ大気研究センター(National Center for Atmospheric Research)のPaul Swarztrauberによって開発された。 FORTRANから、C言語とJavaへほとんどのパッケージが飜訳されている。.

新しい!!: 離散コサイン変換とFFTPACK · 続きを見る »

FFTW

FFTW ("Fastest Fourier Transform in the West") は離散フーリエ変換 (DFT) を計算するためのライブラリで、マサチューセッツ工科大学 (MIT) のマテオ・フリゴ (Matteo Frigo) とスティーブン・ジョンソン (Steven G. Johnson) によって開発された。オープンソース化されたFFTライブラリの中では、デファクトスタンダード的に用いられている。UNIX系OSのパッケージ管理システムでも提供されている。 FFTW は、高速フーリエ変換 (FFT) を実装したフリーソフトウェアの中ではもっとも高速である、とされている (ベンチマークテストによる)。任意のサイズの実数および複素数のデータ配列を、O(n log n) のオーダーの時間で計算することができる。 FFTW の特徴は、ヒューリスティックな方法または状況に合わせた最適な尺度で、適切なアルゴリズムを選ぶことで、高速な演算を実現していることである。他の多くの任意長データに対する FFT アルゴリズムと同様に、データ配列の長さが小さな素数の積となっているときに高速で、2のべき乗の時が最高速であり、大きな素数となっているときにもっとも遅くなるという性質がある。 同じサイズのデータの FFT を何度も繰り返しするとき、そのデータサイズと実行中のプラットフォームの種類からFFTW はもっとも適したアルゴリズムを選ぶことで、もっとも高速な演算が行える。どのアルゴリズムを選択したかをファイルに保存して、それ以降に利用することもできる。 FFTW は guru と呼ばれるインターフェイスを持ち、これにより、そのインターフェイスの後ろにある FFTW の柔軟性をいかんなく発揮できるようにしている。これを使うとデータをメモリ上に置く順序を調整することで、多次元データや複数のデータセットの FFT を1回の関数呼び出しで行うことができる。 FFTW は MPI (Message Passing Interface) を使った「非順序変換」を部分的にサポートしている。クーリーとテューキーの FFT アルゴリズムでのデータ配置では、任意サイズのデータに対する in-place 変換のときに、オーバーヘッドを避けるのは簡単なことではない。 FFTW は GNU General Public License にしたがった利用と配布ができる。また、MIT が販売しており、さらに商用ソフトウェアである MATLAB にも組み込まれている (つまり MATLAB で FFT を計算するときには FFTW が使われる)。FFTW はANSI Cで書かれているが、FORTRAN や C++、その他の言語のインターフェイスもある。FFTW のライブラリ自体の C 言語のコードは 'genfft' というプログラムで生成されており (FFTW の配布パッケージに含まれている)、このツールは Objective Caml で書かれている。 また FFTW は1999年に J. H. Wilkinson Prize for Numerical Software を受賞した。.

新しい!!: 離散コサイン変換とFFTW · 続きを見る »

GNU General Public License

GNU General Public License(GNU GPLもしくは単にGPLとも)とは、GNUプロジェクトのためにリチャード・ストールマンにより作成されたフリーソフトウェアライセンスである。八田真行の日本語訳ではGNU 一般公衆利用許諾書と呼んでいる。.

新しい!!: 離散コサイン変換とGNU General Public License · 続きを見る »

JPEG

JPEG(ジェイペグ、Joint Photographic Experts Group)は、コンピュータなどで扱われる静止画像のデジタルデータを圧縮する方式のひとつ。またはそれをつくった組織 (ISO/IEC JTC 1/SC 29/WG 1, Joint Photographic Experts Group) の略称であり、アクロニムである。JPEG方式による画像ファイルにつけられる拡張子はjpgが多く使われるほか、jpeg等が使われる場合もある。 一般的に非可逆圧縮の画像フォーマットとして知られている。可逆圧縮形式もサポートしているが、可逆圧縮は特許などの関係でほとんど利用されていない。1992年9月18日に最初のリリースが行われた比較的古いフォーマットであり、欠点を克服すべく数々の後継規格が提案されてきたが、企業間の思惑なども絡み、いずれも主流になるには至らず、JPEGが現在も静止画像規格の主流である。 標準では、特定の種類の画像の正式なフォーマットがなく、JFIF形式(マジックナンバー上は、6バイト目から始まる形式部分にJFIFと記されているもの)が事実上の標準ファイルフォーマットとなっている。動画を記録可能にしたものにMotion JPEGがある。立体視 (3D) 用には、ステレオJPEG (JPS) フォーマットがある。 デジタルカメラの記録方式としてもよく利用されているが、デジタルカメラでは様々なオプション機能を使い、JFIFを拡張したExchangeable image file format (EXIF) などのフォーマットとしてまとめられている。.

新しい!!: 離散コサイン変換とJPEG · 続きを見る »

Motion JPEG

Motion JPEG(モーション ジェイペグ)とは、動画圧縮形式の一つである。.

新しい!!: 離散コサイン変換とMotion JPEG · 続きを見る »

Moving Picture Experts Group

Moving Picture Experts Group(ムービング・ピクチャー・エクスパーツ・グループ、動画専門家集団)あるいはMPEG(エムペグ)は、ビデオとオーディオに対して符号を付与する基準の開発責任を負ったISO/IECのワーキンググループである。その最初の会議はオタワ(カナダ)で1988年5月に開催された。2005年の終わりの時点で、MPEGは、様々な産業、大学および研究機関から約350人のメンバーが参加している。MPEGの公式名称はISO/IEC JTC 1/SC 29/WG 11である。「Motion 〜」などとも呼ばれる。 グループの略称をMPEGといい、またはそこがつくった動画等の標準規格の名称としてMPEGが使われるようになった。標準規格の名称がMPEGであり、略称ではない。音声圧縮方式のMP3やファイルフォーマットのMP4はMPEGが規格化した方式である。MPEG-2システムはH.222.0、MPEG-2ビデオはH.262、MPEG-4 Part 10 AVCはH.264と同じ内容であるように、MPEGとITU-Tは共同で規格化作業を行うことがある。.

新しい!!: 離散コサイン変換とMoving Picture Experts Group · 続きを見る »

MP3

MP3(エムピースリー、MPEG-1 Audio Layer-3)は、音響データを圧縮する技術の1つであり、それから作られる音声ファイルフォーマットでもある。ファイルの拡張子は.mp3」である。.

新しい!!: 離散コサイン変換とMP3 · 続きを見る »

Vorbis

Vorbis(ヴォルビス、ヴォービス)は、Xiph.orgが開発したフリーの音声ファイルフォーマット。.

新しい!!: 離散コサイン変換とVorbis · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: 離散コサイン変換と振幅 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 離散コサイン変換と指数関数 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 離散コサイン変換と数列 · 続きを見る »

時間領域

時間領域(じかんりょういき、Time domain)とは、数学的関数、物理的信号、経済学やのデータ等の時間についての解析を意味する用語である。 時間領域には、信号あるいは関数値が連続的な実数で表される連続時間と、ある間隔で値が示される離散時間がある。オシロスコープは、実世界の信号を時間領域で視覚化するツールである。 時間領域のグラフは、時間によって信号がどう変化するかを示し、周波数領域のグラフは、それぞれの周波数帯域にどれだけの信号が存在するかを示す。.

新しい!!: 離散コサイン変換と時間領域 · 続きを見る »

ここにリダイレクトされます:

Discrete cosine transform

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »