ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

凸包

索引 凸包

数学における凸包(とつほう、convex hull)または凸包絡(とつほうらく、convex envelope)は、与えられた集合を含む最小の凸集合である。例えば がユークリッド平面内の有界な点集合のとき、その凸包は直観的には をゴム膜で包んだときにゴム膜が作る図形として視認することができる。 精確に言えば、 の凸包は を含む全ての凸集合の交わり、あるいは同じことだが に属する点の凸結合全体の成す集合として定義される。後者の定式化であれば、凸包をユークリッド空間だけでなく任意の実線型空間や、より一般にに対して考えることができる。 平面上あるいは低次元ユークリッド空間内の有限点集合に対してその凸包を計算するアルゴリズム問題は、計算幾何学の基本的問題の一つである。.

51 関係: 単位元単体 (数学)単調写像吸収元完備束上半平面三角形平均交換法則地理情報システムユークリッド空間ボロノイ図ヘリーの定理パターン認識データ構造ドロネー図分離超平面定理和集合アルゴリズムアフィン包カラテオドリの定理 (凸包)ギフト包装法クレイン=ミルマンの定理コンパクト空間冪等凸多面体凸多角形凸結合凸集合共通部分 (数学)空集合線型包線分統計学画像処理直線静的コード解析頂点計算幾何学部分集合閉集合開集合Well-definedWolframデモンストレーションプロジェクト抽象解釈束 (束論)正則凸包有限集合...数学 インデックスを展開 (1 もっと) »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 凸包と単位元 · 続きを見る »

単体 (数学)

数学、とくに位相幾何学において、n 次元の単体(たんたい、simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体といった基本的な図形の n 次元への一般化である。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。.

新しい!!: 凸包と単体 (数学) · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 凸包と単調写像 · 続きを見る »

吸収元

数学、とくに抽象代数学において吸収元(きゅうしゅうげん、absorbing element)は二項演算を持つ集合に属する特別な元で、吸収元とほかのどのような元との積も、吸収元自身になってしまうという性質を持つものである。半群論においては、吸収元のことをしばしば零元と呼ぶM.

新しい!!: 凸包と吸収元 · 続きを見る »

完備束

数学の一分野における完備束(complete lattice)とは部分集合が常に上限と下限を持つ半順序集合のことである。 完備束は束の重要な例で順序集合論及び普遍代数の研究対象であり、数学及び計算機科学に多くの応用を持つ。 には様々な異なる定義があるので注意を要する(例えば完備半順序 (CPO) は完備束とは異なる概念である)。特に重要な完備束のクラスとしてや (locale) がある。.

新しい!!: 凸包と完備束 · 続きを見る »

上半平面

数学、とくにリーマン幾何学あるいは(局所)コンパクト群の調和解析において上半平面(じょうはんへいめん、upper half plane)は、虚部が正である複素数全体の成す集合をいう。上半平面は連結な開集合であり、それがリーマン球面に埋め込まれているとみなしたとき、その閉包を閉上半平面と呼ぶ。閉上半平面は上半平面に実軸と無限遠点を含めたものである。(開いた)上半平面を慣例的に H や H あるいは \mathfrak と記す(このとき、下半平面は H− や H− などと書かれ、対比的に上半平面を H+ などと記すこともある)。上半平面は、リー群の表現論やロバチェフスキーの双曲幾何学などの舞台として数論・表現論的、幾何学的に重要な役割を果たす。 または.

新しい!!: 凸包と上半平面 · 続きを見る »

三角形

200px 三角形(さんかくけい、さんかっけい、拉: triangulum, 独: Dreieck, 英, 仏: triangle, (古風) trigon) は、同一直線上にない3点と、それらを結ぶ3つの線分からなる多角形。その3点を三角形の頂点、3つの線分を三角形の辺という。.

新しい!!: 凸包と三角形 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: 凸包と平均 · 続きを見る »

幅(はば)とは、和服に用いる布地の横の長さを図る数量表現。そこから転じ、1幅分の布そのものやその個数を数える単位としても用いられることがある。1幅は鯨尺1尺(一般的に使われる曲尺の1.25尺・メートル法では37.8cm)に相当する。 ただし、本来は呉服尺(明治時代初期に廃止されて鯨尺に統合)1尺を1幅として数えられ続けられていたものであり、100年以上経過した現代社会においても上記原則通りに行われるケースはまれであり、呉服屋をはじめとする一般的な利用者は小幅あるいは並幅と呼ばれている呉服尺1尺に相当する鯨尺9寸5分(約35.9cm)幅のものを1幅の布として用いている。 この他にも、中幅と呼ばれる鯨尺1尺2寸(約45.4cm)ほどの物や小幅2倍分に相当する大幅あるいは二幅(ふたの)と呼ばれている鯨尺1尺9寸(約72.0cm)の物がある。 さらに洋服の布地においても和服に倣って、シングル幅(約91cmあるいは約71cm、ヤール幅とも)やその2倍にあたるダブル幅(約142cmあるいは約137cm、こちらを「大幅」と呼ぶ場合もある)と呼ばれる物がある。 category:布 category:和服 category:長さの単位.

新しい!!: 凸包と幅 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 凸包と交換法則 · 続きを見る »

初等幾何学における図形の径(けい、diameter)は、その図形の差し渡しをいう。διάμετρος(「亙りの」+ 「大きさ」) に由来する。 円の直径は、その円の中心を通り、両端点がその円周上にある任意の線分であり、またその円の最長のでもある。球体の直径についても同様。 より現代的な用法では、任意の直径の(一意な)長さ自身も同じく「直径」と呼ばれる(一つの円に対して線分の意味での直径は無数にあるが、その何れも同じ長さを持つことに注意する。それゆえ(量化を伴わず)単に円の直径といった場合、ふつうは長さとしての意味である)。長さとして、直径は半径 (radius) の二倍に等しい。 平面上の凸図形に対して、その径は図形の両側から接する二本の平行線の間の最長距離として定義される(同様の最小距離は幅 (width) と呼ばれる)。径(および幅)はを用いて効果的に計算することができる。ルーローの三角形のような定幅図形では、任意の平行接線が同じ長さを持つから、径と幅は一致する。.

新しい!!: 凸包と径 · 続きを見る »

地理情報システム

地理情報システム(ちりじょうほうシステム、英語:geographic information system(s)、略称:GIS)とは、地理情報および付加情報をコンピュータ上で作成・保存・利用・管理・表示・検索するシステムを言う。 人工衛星、現地踏査などから得られたデータを、空間、時間の面から分析・編集することができ、科学的調査、土地、施設や道路などの地理情報の管理、都市計画などに利用される。 コンピュータの発展にともなって膨大なデータの扱いが容易になり、リアルタイムでデータを編集(リアルタイム・マッピング)したり、シミュレーションを行ったり、時系列のデータを表現するなど、従来の紙面上の地図では実現不可能であった高度な利用が可能になってきている。.

新しい!!: 凸包と地理情報システム · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 凸包とユークリッド空間 · 続きを見る »

ボロノイ図

ボロノイ図(ボロノイず、Voronoi diagram)は、ある距離空間上の任意の位置に配置された複数個の点(母点)に対して、同一距離空間上の他の点がどの母点に近いかによって領域分けされた図のことである。特に二次元ユークリッド平面の場合、領域の境界線は、各々の母点の二等分線の一部になる。母点の位置のみによって分割パターンが決定されるため、母点に規則性を持たせれば美しい図形を生み出すことが可能。.

新しい!!: 凸包とボロノイ図 · 続きを見る »

ヘリーの定理

数学のの分野におけるヘリーの定理(ヘリーのていり、)とは、凸集合がお互いに共通部分を持つ状況に関する基本的な結果である。エードゥアルト・ヘリーによって1913年に発見されたが、1923年まで出版されることはなく、その間に や によって代替的な証明が与えられていた。ヘリーの定理を元に、の概念が生まれた。.

新しい!!: 凸包とヘリーの定理 · 続きを見る »

パターン認識

パターン認識(パターンにんしき、Pattern recognition)は自然情報処理のひとつ。画像・音声などの雑多な情報を含むデータの中から、一定の規則や意味を持つ対象を選別して取り出す処理である。.

新しい!!: 凸包とパターン認識 · 続きを見る »

データ構造

データ構造(データこうぞう、data structure)は、計算機科学において、データの集まりをコンピュータの中で効果的に扱うため、一定の形式に系統立てて格納するときの形式のことである。 ソフトウェア開発において、データ構造についてどのような設計を行うかは、プログラム(アルゴリズム)の効率に大きく影響する。そのため、さまざまなデータ構造が考え出されている。 多くのプログラムの設計において、データ構造の選択は主要な問題である。これは大規模システムの構築において、実装の困難さや質、最終的なパフォーマンスはベストのデータ構造を選択したかどうかに大きく依存してきたという経験の結果である。多くの場合、データ構造が決まれば、利用するアルゴリズムは比較的自明に決まる。しかし場合によっては、順番が逆になる。つまり、与えられた仕事をこなす最適なアルゴリズムを使うために、そのアルゴリズムが前提としている特定のデータ構造が選択される。いずれにしても適切なデータ構造の選択は極めて重要である。 この洞察は、多くの定式化された設計手法やプログラミング言語において、データ構造がアルゴリズムよりもキーとなる構成要素となっていることに現れている。大半の言語は異なるアプリケーションにおいてデータ構造を安全に再利用できるよう、実装の詳細をインターフェイスの背後に隠蔽するような、モジュール化のしくみを備えている。C++やJavaといったオブジェクト指向プログラミング言語はクラスをこの目的に用いている。 データ構造は専門的なプログラミングにとって非常に重要なので、C++におけるSTLや、Java API、および.NET Frameworkのようなプログラミング言語の標準ライブラリや環境において多くのデータ構造がサポートされている。 データ構造が実装を表すのかインターフェースを表すのかについてはいくらか議論がある。どのように見えるかは相対的な問題なのかもしれない。データ構造は2つの関数の間にあるインターフェイスとして見ることもできるし、データ型に基づいて構成されたストレージにアクセスする方法を実装したものとして見ることもできる。.

新しい!!: 凸包とデータ構造 · 続きを見る »

ドロネー図

ドロネー図(ドロネーず、英語:Delaunay diagram)あるいはドロネー三角形分割(ドロネーさんかっけいぶんかつ、, )は、距離空間内に離散的に分布した点の集合に対し得られる、それらをある方法に従い辺で結んだ図形である。 計算幾何学あるいは離散幾何学における代表的な考察対象の1つである。名称は考案者であるロシアの数学者、()に由来する。ドロネー図の双対はボロノイ図であり、ドロネー図はボロノイ領域の隣接関係を表している。.

新しい!!: 凸包とドロネー図 · 続きを見る »

分離超平面定理

分離超平面定理(ぶんりちょうへいめんていり、separating hyperplane theorem, hyperplane separation theorem)は 次元ユークリッド空間上の互いに素な凸集合に関する幾何学における 2 つの定理を指す。 一つ目の定理は、互いに素な凸集合の両方が閉集合であってかつ少なくともいずれか 1 つの凸集合がコンパクト集合である場合、2 つの閉凸集合の間に 1 つの超平面が存在でき、また閉凸集合の間に 2 つの平行な超平面を隙間を作って置くことができることを示す。 二つ目の定理は、互いに素な凸集合があり両者が開集合である場合、2 つの開凸集合の間に 1 つの超平面をはさむことができるが、2 つの開凸集合の間には必ずしも隙間が存在するわけではないことを示す(従って第一の定理と異なり、複数の超平面を重ねずに挟むことができない状況が存在する)。 分離超平面に対して直交する軸を分離軸 と呼ぶ。これは、2 つのの分離軸への直交写像が互いに素であることによる。 分離超平面定理はヘルマン・ミンコフスキーの寄与によって発見された。ハーン=バナッハの分離定理はミンコフスキーの結果を線型位相空間へ一般化したものである。 関連する結果としてがある。マージン最大化超平面 は空間上にある点の集まりを 2 つのクラスタに分離する超平面の中で、両者のクラスタからの距離が等しいようなものである。このとき、それぞれのクラスタと分離超平面の間のマージンは最大化される。この事実はサポートベクターマシンなどに応用される。.

新しい!!: 凸包と分離超平面定理 · 続きを見る »

和集合

数学において、集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、)、あるいは演算的に集合の和(わ、sum)、もしくは'''結び'''(むすび、)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである。.

新しい!!: 凸包と和集合 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: 凸包とアルゴリズム · 続きを見る »

アフィン包

数学におけるアフィン包(アフィンほう、affine hull)はアフィン空間論における普遍概念のひとつで、線型包 (linear hull) の概念と近い関係にある。 ユークリッド空間 Rn の部分集合 S のアフィン包は、S を含む最小のアフィン集合(アフィン部分空間)であり、あるいは同じことだが、S を含む全てのアフィン部分空間の交わりである。ここに「アフィン集合」とは線型部分空間を平行移動して得られる部分集合である。S のアフィン包を aff(S) で表せば、これは S の元のアフィン結合全体の成す集合 に等しい。 部分集合 M が、特に二つの(あるいはそれ以上の数の)アフィン部分空間の合併 M.

新しい!!: 凸包とアフィン包 · 続きを見る »

カラテオドリの定理 (凸包)

数学のの分野におけるカラテオドリの定理(カラテオドリのていり、)とは、Rd 内の点 x がある集合 P の凸包に属するなら、d + 1 個あるいはそれ以下の個数の点からなる P の部分集合 P′ で、x がその凸包に属するようなものが存在する。また同値であるが、r \leq d に対し、x は P 内の頂点の r-単体に属する。1911年に、P がコンパクトである場合の証明を与えたコンスタンティン・カラテオドリの名にちなむ。1914年には、がその定理を Rd 内の任意の集合 P に対して拡張した。 例えば、R2 の部分集合である P.

新しい!!: 凸包とカラテオドリの定理 (凸包) · 続きを見る »

ギフト包装法

フト包装法(Gift wrapping algorithm)やJarvisの行進法(Jarvis's march)とは、計算幾何学における点の集合の凸包を求めるアルゴリズム。.

新しい!!: 凸包とギフト包装法 · 続きを見る »

クレイン=ミルマンの定理

数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、X を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、K を X のコンパクトな凸部分集合とするとき、K はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、K を含むすべての X の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 とによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 その定理より以前に、ヘルマン・ミンコフスキーは、X が有限次元であるなら K はその極点の集合の凸包と等しいことを示していた。クレイン=ミルマンの定理は、その結果を任意の局所凸空間 X に対して一般化するものであったが、閉包が必要となり得るという注意も付されていた。.

新しい!!: 凸包とクレイン=ミルマンの定理 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 凸包とコンパクト空間 · 続きを見る »

冪等

数学において、冪等性(べきとうせい、idempotence 「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ.

新しい!!: 凸包と冪等 · 続きを見る »

凸多面体

凸多面体(とつためんたい)は、多面体の内、全ての辺(稜)における二面角(2つの面で作られる角度)が180°未満のもの。この条件を満たすためには、全ての面が凸多角形(全ての頂点における内角が180°未満の多角形)である必要がある。 正多面体や半正多面体などはこれに含まれるが、星型正多面体は含まれない。.

新しい!!: 凸包と凸多面体 · 続きを見る »

凸多角形

初等幾何学における凸多角形(とつたかっけい、convex polygon)は、な(つまり自己交叉を持たない)多角形であって、その内部または境界にある任意の二点間を結ぶ線分が、その多角形の外に出ることがないものを言う。凸多角形において、任意の内角は 以下であり、狭義凸ならば 未満である。.

新しい!!: 凸包と凸多角形 · 続きを見る »

凸結合

数学のの分野において、凸結合(凸けつごう、)とは、和が 1 となるような非負係数を持つ点(ベクトルやスカラー、あるいはより一般にアフィン空間の点)の線型結合である。 より正式に、実ベクトル空間に有限個の点 x_1, x_2, \dots, x_n\, が与えられたとき、それらの凸結合は次の式で表される点である。 但し実数 \alpha_i\, は \alpha_i\ge 0 および \alpha_1+\alpha_2+\cdots+\alpha_n.

新しい!!: 凸包と凸結合 · 続きを見る »

凸集合

ユークリッド空間における物体が凸(とつ、convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。は凸集合の境界を成す。 凸集合の概念は後で述べるとおり他の空間へも一般化することができる。.

新しい!!: 凸包と凸集合 · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: 凸包と共通部分 (数学) · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: 凸包と空集合 · 続きを見る »

線型包

数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、linear hull; 線型苞)もしくは生成する (generated, spanned) 部分空間は、その集合を含む線型部分空間すべての交わりである。したがって、その集合を含む最小の部分空間である。また、それはその集合に属するベクトルのすべての線型結合からなる集合として実現される。.

新しい!!: 凸包と線型包 · 続きを見る »

線分

線分の幾何学的な定義 幾何学における線分(せんぶん、Line segment)とは2つの点に挟まれた直線の部分であり、それら端点の間にあるどの点も含む。 通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 線分の例として、三角形や四角形の辺が挙げられる。もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。.

新しい!!: 凸包と線分 · 続きを見る »

統計学

統計学(とうけいがく、statistics、Statistik)とは、統計に関する研究を行う学問である。 統計学は、経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解釈を行う上での根拠を提供する学問であり、幅広い分野で応用されている。 現在では、医学(疫学、EBM)、薬学、経済学、社会学、心理学、言語学など、自然科学・社会科学・人文科学の実証分析を伴う分野について、必須の学問となっている。また、統計学は哲学の一分科である科学哲学においても重要な一つのトピックになっている。.

新しい!!: 凸包と統計学 · 続きを見る »

画像処理

画像処理(がぞうしょり、Image processing)とは、電子工学的(主に情報工学的)に画像を処理して、別の画像に変形したり、画像から何らかの情報を取り出すために行われる処理全般を指す。まれにコンピュータグラフィックスによる描画全般を指して使われることがあるが、あまり適切ではない。歴史上CGアプリケーションはCADが先行し、そのころのCGは「図形処理」と呼ばれていて、実際図形処理情報センターという出版メディアも存在した。画像処理は本来CGとは無関係にテレビジョン技術の発達とともに、産業界では早くから注目を浴びていたテクノロジーであり、当初からビデオカメラの映像信号を直接アナログ-デジタル変換回路へ通すという方法が試みられた。その成果の一部(輪郭強調によるシャープネスなど)が現在のCGアプリケーションに生かされている。.

新しい!!: 凸包と画像処理 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 凸包と直線 · 続きを見る »

静的コード解析

静的コード解析 (static code analysis) または静的プログラム解析 (static program analysis)とは、コンピュータのソフトウェアの解析手法の一種であり、実行ファイルを実行することなく解析を行うこと。逆にソフトウェアを実行して行う解析を動的プログラム解析と呼ぶ。静的コード解析はソースコードに対して行われることが多く、少数ながらオブジェクトコードに対して行う場合もある。また、この用語は以下に列挙するツールを使用した解析を意味することが多い。人間が行う作業はインスペクション、コードレビューなどと呼ぶ。.

新しい!!: 凸包と静的コード解析 · 続きを見る »

頂点

頂点(ちょうてん、vertex)とは角の端にある点のことである。多角形では2本の辺が接しているか交わっている点、多面体では3本以上の辺が共有している点のことをいう。直観的には図形の周上にある点のうち周辺のどの点よりも突出していて"尖った点"のことを頂点という。転じて日常語としては最高点を指し、「頂点に上り詰める」等と言う。 図ではA,B,Cの3点が頂点 一般にn角形には頂点はn個あり、辺の本数に等しい。座標平面上にある図形ではその頂点を含む範囲で連続であっても微分不可能である。 また曲線が極大値や極小値をとる点のことを頂点ということもある。例えば放物線 y.

新しい!!: 凸包と頂点 · 続きを見る »

計算幾何学

計算幾何学(けいさんきかがく、英語:computational geometry)は、幾何学の言葉で述べることのできるアルゴリズムの研究をテーマとする計算機科学の一分野である。計算幾何学的アルゴリズムの研究から純幾何学的な問題が生じることもあり、またそのような問題は計算幾何学の一部であると考えられる。.

新しい!!: 凸包と計算幾何学 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 凸包と部分集合 · 続きを見る »

閉集合

閉集合(へいしゅうごう、closed set)は、その補集合が開集合となる集合のこと。距離空間の場合はその部分集合の元からなる任意の収束点列の極限がその部分集合の元であることと一致するので、それを定義としてもよい。 例えば、数直線上で不等式 0 ≤ x ≤ 1 によって定まる集合は閉区間と呼ばれるが、これは閉集合である。なぜならば、その補集合である x < 0 または x > 1 を満たす区間が開集合となるからである。 不等式を 0 < x < 1 としたものや 0 ≤ x < 1 としたものは、閉集合ではない。 また、連続関数 f(x,y) を使って、\ と表される集合は平面の閉集合である。円周も平面の閉集合である。 次の性質を満たす集合 X の部分集合の族 F があると、 F の元が閉集合であるような位相が X に定まる。.

新しい!!: 凸包と閉集合 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 凸包と開集合 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: 凸包とWell-defined · 続きを見る »

Wolframデモンストレーションプロジェクト

Wolframデモンストレーションプロジェクト(Wolfram Demonstrations Project)は、計算を使った探求をできるだけ多くの人々に体験してもえるようにすることを目標とした、ウルフラム・リサーチが主催するプロジェクトのウェブサイトである。このサイトでは、デモンストレーションと呼ばれるオープンソースの小さなインタラクティブプログラムが集められ、系統的に掲載されている。このデモンストレーションは、さまざまな分野のアイディアを視覚的かつインタラクティブに表現することを意図して作られている。このサイトの公開当初、デモンストレーションの数は1300件であったが、その後1万件以上にまで増加した。このサイトは2008年にParents' Choice Awardを受賞している。.

新しい!!: 凸包とWolframデモンストレーションプロジェクト · 続きを見る »

抽象解釈

抽象解釈(ちゅうしょうかいしゃく、Abstract interpretation)は、コンピュータプログラムの意味論の健全な近似の理論であり、順序集合(特に束)における単調関数に基づいている。全ての計算を実施することなく、プログラムの部分的な実行(ある種の部分評価)をするものと見ることができ、それによりプログラムの意味に関する情報(例えば、制御構造、情報の流れなど)を獲得する。 主な応用として、形式的な静的コード解析があり、プログラム実行に関する情報を自動抽出するものである。このような解析には次の2つの利用法がある。.

新しい!!: 凸包と抽象解釈 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: 凸包と束 (束論) · 続きを見る »

正則凸包

数学の複素解析の分野において、n-次元複素空間 Cn 内のある与えられたコンパクト集合に対する正則凸包(せいそくとつほう、)は、次のように定義される。 G \subset ^n をある領域(すなわち、連結開集合)あるいはより一般に、n-次元複素多様体とする。(G) を、G 上の正則函数の集合とする。あるコンパクト集合 K \subset G の正則凸包は、次で定義される。 この定義において f を多項式とすることで、より特殊な概念である多項式凸包(polynomial convex hull)が得られる。 G 内でコンパクトなすべての K \subset G に対して \hat_G も G 内でコンパクトであるなら、そのような領域 G は正則凸(holomorphically convex)であると言われる。これはしばしば holomorph-convex と略記される。 n.

新しい!!: 凸包と正則凸包 · 続きを見る »

有限集合

数学において、集合が有限(ゆうげん、finite)であるとは、自然数 n を用いて という形にあらわされる集合との間に全単射が存在することをいう(ただしここでは、n.

新しい!!: 凸包と有限集合 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 凸包と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »