ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

K理論

索引 K理論

K-理論(Kりろん、K-theory)は、大まかには、大きな行列を用いて定まる空間の不変量についての理論である。位相空間やスキーム上で定義されたベクトル束で生成される環の研究に端を発する。代数トポロジーにおける K-理論は、位相的 K-理論と呼ばれる一種のである。代数学や代数幾何学における K-理論は代数的 K-理論と呼ばれる。また、K-理論は作用素環論においても基本的な道具である。 K-理論は、位相空間やスキームに対して環を対応させる K-函手の族を構成する。これらの環は、元の空間やスキームの構造のいくつかの側面を反映している。代数トポロジーにおいてホモロジーやコホモロジーといった群への函手を考えるのと同様に、元の空間やスキームを直接調べるよりもこのような環の方が容易に種々の性質をしらべることができる。K-理論のアプローチから得られる結果の例としては、(Bott periodicity)やアティヤ=シンガーの指数定理や(Adams operation)がある。 高エネルギー物理学では、K-理論、特に(twisted K-theory)は、II-型弦理論に現れる。そこでは、K-理論が、Dブレーンや(Ramond–Ramond field)の強さ、一般化された複素多様体上のスピノルを分類すると予想されている。物性物理学では、K-理論は、トポロジカル絶縁体、超伝導や安定フェルミ面を分類することに使われる。詳細は(K-theory (physics))の項を参照。.

48 関係: 同変K理論多項式環射影加群不変量一般化された複素構造二次形式代数多様体代数多様体の特異点代数学代数幾何学代数的位相幾何学代数的K理論代数群弦理論位相空間作用素環論チャーン類トポロジカル絶縁体ヒルツェブルフ・リーマン・ロッホの定理フリートヘルム・ヴァルトハウゼンフェルミ面ホモトピーダニエル・キレンベクトル束アレクサンドル・グロタンディークアティヤ=シンガーの指数定理アフィン多様体グロタンディーク群コホモロジーシュプリンガー・サイエンス・アンド・ビジネス・メディアジャン=ピエール・セールスピノールセール・スワンの定理タイプII超弦理論C*-環群 (数学)環 (数学)物性物理学直線束相同性Dブレーン行列高エネルギー物理学超伝導関手自由加群連接層概型

同変K理論

数学において、同変代数的K理論(equivariant algebraic K-theory)は、ダニエル・キレンのQ-構成を通して、を持つ代数的スキーム X 上のの圏 \operatorname^G(X) に付随する代数的K-理論である。同変代数的 K-理論は、定義により、 である。特に、K_0^G(C) は、\operatorname^G(X) のグロタンディーク群である。この理論は、1980年代に により開発された。特に、彼は局所化定理のような基本的の同変類似を証明した。 同じことであるが、K_i^G(X) は 上の連接層の圏の K_i として定義される(よって、同変 K-理論は、の特別な場合である)。 レフシェッツ不動点定理は、同変(代数的)K-理論の設定でも成立する。 \operatorname^G(X) of equivariant coherent sheaves on an algebraic scheme X with action of a linear algebraic group G, via Quillen's Q-construction; thus, by definition, In particular, K_0^G(C) is the Grothendieck group of \operatorname^G(X).

新しい!!: K理論と同変K理論 · 続きを見る »

多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

新しい!!: K理論と多項式環 · 続きを見る »

射影加群

数学において、射影加群(しゃえいかぐん、projective module)とは、 表現可能関手 が完全となるような加群 のことである。 自由加群の一般化に相当する。 ホモロジー代数学における基本的な概念のひとつであり、で導入された。.

新しい!!: K理論と射影加群 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: K理論と不変量 · 続きを見る »

一般化された複素構造

微分幾何学の分野では、ある特別な場合に複素構造とシンプレクティック構造の双方の性質を持つことがある。この双方の性質を持つ可微分多様体を一般化された複素構造(いっぱんかされたふくそこうぞう、generalized complex structure)と言う。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年の,, との位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。.

新しい!!: K理論と一般化された複素構造 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: K理論と二次形式 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: K理論と代数多様体 · 続きを見る »

代数多様体の特異点

代数幾何学という数学の分野において、代数多様体 V の特異点 (singular point of an algebraic variety) は、この点において多様体の接空間をきちんと決められないという幾何学的な意味で'特別な'(つまり特異な)点 P である。実数体上定義された多様体の場合には、この概念は非の概念を一般化する。代数多様体の特異でない点を正則 (regular) という。特異点を全く持たない代数多様体を非特異 (non singular) あるいは滑らか (smooth) という。 例えば、方程式 の定める平面代数曲線()は、原点 (0,0) で自己交叉し、したがって原点は曲線の二重点である。それは特異である、なぜならばただ1つの接線がそこで正しく定義されないからである。 より一般に F を滑らかな関数として陰関数 で定義される平面曲線がある点で特異であるとは、F のテイラー級数のその点でのが少なくとも 2 であるということである。 その理由は、微分学において、そのような曲線の点 (x0, y0) における接線は、左辺がテイラー展開の一次の項であるような方程式 によって定義されることである。したがって、この項が0であれば、接線は通常の方法では定義できない。接線はそもそも存在しない、あるいは、特別な定義をしなければならない。 一般に超曲面 に対して特異点 (singular point) はすべての偏微分が同時に消えるような点である。いくつかの多項式の共通零点として定義される一般の代数多様体 V に対しては、V の点 P が特異点であるとは多項式の一次の偏微分のヤコビ行列が P において多様体の他の点の行列のランクよりも低いランクをもつということである。 特異でない V の点を非特異 (non-singular) あるいは正則 (regular) という。たいていの点は非特異であるということは次のような意味で常に正しい。非特異点全体は空でない開集合をなす。 (実係数の多項式で定義された多様体の実座標の点の集合である)実多様体の場合には、多様体 (variety) はすべての正則点の近くで多様体 (manifold) である。しかし実多様体 (variety) は多様体 (manifold) であり特異点をもつかもしれないことを注意することは重要である。例えば方程式 y^3 + 2 x^2 y - x^4.

新しい!!: K理論と代数多様体の特異点 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: K理論と代数学 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: K理論と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: K理論と代数的位相幾何学 · 続きを見る »

代数的K理論

数学では、代数的K-理論(algebraic K-theory)は、ある非負な整数 n に対して環からアーベル群への函手の系列 を定義して適用することに関係したホモロジー代数の重要な一部である。歴史的理由により、低次 K-群 K0 と K1 は、n ≥ 2 に対する高次 K-群 Kn とはいくらか異なった項と考えられている。実際、高次の群よりも低次の群は受け入れやすく、より多くの応用を持っている。高次の群の理論は、( R が整数の環であるときでさえ)非常に深く、計算することが確かに困難である。 群 K0(R) は、射影加群を使い、環のイデアル類群の構成を一般化したことになる。1960年代、1970年代の発展は、現在は(Quillen–Suslin theorem)となっている射影加群についてのジャン=ピエール・セール(Jean-Pierre Serre)の予想を解こうとした努力に関係していた。キレン・サスリンの定理は、この分野で発見された古典的代数の他の問題に多く関連している。同じように、K1(R) は、行列の基本変形を使った環の可逆元の群の変形である。群 K1(R) はトポロジー、特に、R が群環のときに重要である。なぜなら、その商である(Whitehead group)が、(simple homotopy theory)や(surgery theory)の理論における問題を研究するためのホワイトヘッドの捩れを含んでいるからである。群 K0(R) もたとえば有限性不変量のような他の不変量を含んでいる。1980年代以降、代数的K-理論は、ますます代数幾何学へ多くの応用が増加している。たとえば、(motivic cohomology)は密接に代数的K-理論に関係している。 n(R) of functors from rings to abelian groups, for all nonnegative integers n. For historical reasons, the lower K-groups K0 and K1 are thought of in somewhat different terms from the higher algebraic K-groups Kn for n ≥ 2.

新しい!!: K理論と代数的K理論 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: K理論と代数群 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: K理論と弦理論 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: K理論と位相空間 · 続きを見る »

作用素環論

作用素環論(さようそかんろん、)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義からは複素数体上無限次元の線型代数学と言え、普通関数解析学に分類されている。しかし、その手法や応用はいわゆる代数学・幾何学・解析学の諸分野に幅広くわたり、アラン・コンヌが提唱する非可換幾何の枠組みを与えていることでも特筆される。 作用素環とは普通ヒルベルト空間上の有界線型作用素(連続な線型写像)のなす複素数体上の線型環に適当なノルムによる位相を定めたもので、随伴作用とよばれる対合変換で閉じたもののことを指す。この随伴作用は複素行列の共役転置作用をヒルベルト空間上の作用素について考えたものであり、有限次元の線型代数学と同様に自己共役作用素やユニタリ作用素が理論の展開に重要な役割をはたす。主要な作用素環のクラスとしては、局所コンパクト空間上の複素数値連続関数環の「量子化」を与えていると考えられるC*-環や、可測関数環に対応するフォン・ノイマン環があげられる。それ以外にも、考える作用素環の無限性をとらえる非有界(自己共役)作用素も決定的な役割を果たしているし、多様体上の微分構造に対応するより繊細な構造の位相環と、それらに対するド・ラームコホモロジーの類似物なども研究されている。 このような作用素環が可換になったり I 型とよばれる簡単な構造を持つ場合にさまざまな(作用素環以前の)古典的な対象が現れ、作用素環の構造が複雑になるほど古典的な数学では捉えにくい複雑な状況が表されていると考えられる。作用素環論の主な目標として、このように作用素環によって「非可換」化・量子化された幾何的対象を表現し、通常の図形と(可分)位相群などとを統一的に理解することや、それらに対するホモロジー・コホモロジー的な理論(K理論)の構成と理解などが挙げられる。 1930年代のとフォン・ノイマンのフォン・ノイマン環に関する一連の論文や、1940年代のイズライル・ゲルファントとによるC*-環に関する研究が作用素環論の始まりだといわれている。可換環と局所コンパクト空間の圏の同値性を与えるゲルファント・ナイマルクの定理はアレクサンドル・グロタンディークによるスキームの概念にも影響を与えている。1970年代に冨田・竹崎理論を駆使してコンヌが III 型フォン・ノイマン環の分類をほぼ完成させた。1980年代にはヴォーン・ジョーンズによって部分因子環の理論と、その派生物としてトポロジーにおける結び目の不変量を与えるようなジョーンズ多項式が得られた。一方で作用素環はそのはじめから数理物理(特に量子力学)の定式化に使われることが意識されており、現在でも物理学とのあいだに活発な交流がある。 日本の作用素環論の研究者で1994年以降、ICMで全体講演をしたものはいないが、招待講演者の中には小沢登高、泉正己がいる。.

新しい!!: K理論と作用素環論 · 続きを見る »

チャーン類

数学では、特に代数トポロジーや微分位相幾何学や代数幾何学では、チャーン類(Chern classes)は複素ベクトルバンドルに付随する特性類である。 チャーン類は、 で導入された。.

新しい!!: K理論とチャーン類 · 続きを見る »

トポロジカル絶縁体

Category:物性物理学.

新しい!!: K理論とトポロジカル絶縁体 · 続きを見る »

ヒルツェブルフ・リーマン・ロッホの定理

ヒルツェブルフ・リーマン・ロッホの定理(Hirzebruch–Riemann–Roch theorem)とは、1954年にフリードリッヒ・ヒルツェブルフ(Friedrich Hirzebruch)により証明された高次元の複素代数多様体に対するリーマン・ロッホの定理の一般化である。この定理のさらなる一般化としておよびアティヤ=シンガーの指数定理がある。.

新しい!!: K理論とヒルツェブルフ・リーマン・ロッホの定理 · 続きを見る »

フリートヘルム・ヴァルトハウゼン

フリートヘルム・ヴァルトハウゼン(Friedhelm Waldhausen, 1938年 - )はドイツの数学者である。専門分野は代数的位相幾何学(代数トポロジー)。.

新しい!!: K理論とフリートヘルム・ヴァルトハウゼン · 続きを見る »

フェルミ面

フェルミ面(フェルミめん)とは、 で定義される波数空間上の曲面のことである。ここで、 はフェルミエネルギー、 は粒子の分散関係である。自由粒子など、分散関係が線形となる場合には球面となるので、特にフェルミ球(フェルミきゅう )と呼び、その半径をフェルミ波数と呼ぶ。 定義から分かるように、固体中の電子のバンド構造においてフェルミ面を持つのは金属(半金属も含む)のみで、バンドギャップ中にフェルミエネルギーが存在する半導体や絶縁体にはフェルミ面は存在しない。 三次元空間における自由電子のフェルミ面は球形である。比較的自由電子に近いs軌道が価電子となっているアルカリ金属などのフェルミ面には、球形に近いものがある。 フェルミ面の形はフェルミエネルギー近傍のバンド構造に依存し、遷移金属や複雑な金属間化合物などでは非常に複雑なフェルミ面となることがある。 実験的にはサイクロトロン共鳴実験、ドハース・ファンアルフェン効果を使った実験、電子-陽電子消滅実験やコンプトン散乱実験によって求まる運動量密度(運動量分布→電荷密度参照)などからフェルミ面に関する情報が得られる。また、角度分解光電子分光により直接フェルミ面を観測することも可能となっている。.

新しい!!: K理論とフェルミ面 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: K理論とホモトピー · 続きを見る »

ダニエル・キレン

ダニエル・グレイ・キレン(Daniel Gray Quillen、1940年6月22日 - 2011年4月30日)はアメリカ合衆国の数学者。1978年にフィールズ賞を授与された。.

新しい!!: K理論とダニエル・キレン · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: K理論とベクトル束 · 続きを見る »

アレクサンドル・グロタンディーク

アレクサンドル・グロタンディーク(Alexander Grothendieck, 1928年3月28日 - 2014年11月13日)は主にフランスで活躍した、ドイツ出身のユダヤ系フランス人の数学者である。 日本の数学界では彼は「グロタンディク」、「グロタンディック」、「グロタンディエク」、「グロタンディエック」、「グロテンディーク」、「グローテーンディーク」などと表記されているGrothendieck という名は、オランダ起源です。オランダにはこの名と類似の名(en dyck など)はよくあるものです。それは『大きな堤防』の意味です。私は(オランダ語よみやフランス語よみでなく)ドイツ語の発音―グロテンディーク―にしたがっています。。.

新しい!!: K理論とアレクサンドル・グロタンディーク · 続きを見る »

アティヤ=シンガーの指数定理

アティヤ=シンガーの指数定理(Atiyah–Singer index theorem)とは、スピンc多様体 の上の複素ベクトル束の間の楕円型微分作用素について、解析的指数と呼ばれる量と位相的指数と呼ばれる量とが等しいという定理である。解析的指数は与えられた楕円型微分作用素が定める偏微分方程式の解の次元を表す解析的な量であり、一方で位相的指数は微分作用素の主表象をもとにして多様体のコホモロジーを通じて定義される幾何的な量である。従って指数定理は解析学と幾何学という見かけ上異なった体系の間のつながりを与えているという意味で20世紀の微分幾何学における最も重要な定理ともいわれる。 本稿で述べる形の指数定理はマイケル・アティヤとイサドール・シンガーによって1963年に発表され、1968年に証明 が刊行された。指数定理の特別な場合として、以前から知られていたガウス・ボンネの定理やヒルツェブルフ・リーマン・ロッホの定理(ヒルツェブルフのリーマン・ロッホの定理)などが含まれていると理解できる。さらに、1950年代の終わりに得られていた(グロタンディークのリーマン・ロッホの定理)はこの定理の定式化に大きな影響を与えたとされ、グロタンディークが代数多様体に対して用いたK理論の構成を微分多様体に対して実行することが指数定理の定式化・証明における重要なステップをなしている。またアティヤ-シンガーによる枠組みの一般化として群が作用している場合や、楕円型微分作用素を持つ多様体が、ある多様体によってパラメーター付けされた族として与えられている場合、葉層構造によってパラメーター付けが与えられている場合などに指数定理が一般化されている。 この定理の研究から、アティヤとシンガーは2004年にアーベル賞を受賞した。.

新しい!!: K理論とアティヤ=シンガーの指数定理 · 続きを見る »

アフィン多様体

代数幾何学において,代数閉体 上のアフィン多様体とは, 次元アフィン空間 において, 係数の 変数の多項式の素イデアルを生成する有限族の零点集合である.素イデアルを生成するという条件を外したときの集合は(アフィン)代数的集合と呼ばれる.アフィン多様体のザリスキ開部分多様体はと呼ばれる. が素イデアル によって定義されるアフィン多様体のとき,商環 は の座標環と呼ばれる.この環はちょうど 上のすべての体の射|正則関数がなす集合である.言い換えると, の構造層の大域切断の空間である.はアフィン多様体のコホモロジー的特徴づけを与える.定理により代数多様体がアフィンであることと がすべての と 上のすべての準連接層 に対して成り立つことは同値である(cf.

新しい!!: K理論とアフィン多様体 · 続きを見る »

グロタンディーク群

数学、特に抽象代数学においてグロタンディーク群(Grothendieck group)とは、可換なモノイドから最も普遍的な方法で構成されるアーベル群である。これは自然数から整数を構成する標準的な方法の一般化に相当する。この群は、圏論でのより一般的な構成から命名されている。それは、アレクサンドル・グロタンディークが1950年代中期にK-理論の発展をもたらした基本的な仕事の中で導入し、の証明を導いた。この記事においてどちらの構成も扱う。.

新しい!!: K理論とグロタンディーク群 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: K理論とコホモロジー · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: K理論とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

ジャン=ピエール・セール

ャン=ピエール・セール(Jean-Pierre Serre, 1926年9月15日 - )はフランスの数学者。もとブルバキのメンバーの一人。 アンリ・カルタンに学び、はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞(最年少)を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、4&5で作成された道具がヴェイユ予想に大きく貢献した。 業績として代数トポロジーにおけるを発展させた(–)。SerreのC理論による球面のホモトピー群の研究。 GAGA (Géométrie Algébrique et Géométrie Analytique) で代数幾何において複素解析幾何学的手法を導入し、大きな成功を収めた。FAC (Faisceaux algébriques cohérents)を発表し、代数的連接層を構築。層の言葉とホモロジーを用いて代数幾何学、可換環論の書き直し、層係数コホモロジーを構成した。整数論における 進表現論において、楕円曲線、L関数、モジュラー形式、アーベル多様体などに応用し多くの成果をあげた。 進モジュラー形式の理論の構成、類体論への貢献、代数的K-理論への貢献。アーベル多様体にかんするSerre–Tate理論。その他にリー群などにも業績がある。.

新しい!!: K理論とジャン=ピエール・セール · 続きを見る »

スピノール

数学および物理学におけるスピノル(spinor; スピノール、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。 もっと形式的に、スピノルは与えられた二次形式付きベクトル空間から、代数的なあるいは量子化の手続きを用いることで構成される幾何学的な対象として定義することもできる。与えられた二次形式は、スピノルのいくつかことなる型を記述するかも知れない。与えられた型のスピノル全体の成す集合は、それ自身回転群の作用を持つ線型空間であるが、作用の符号について曖昧さがある。それゆえに、スピノル全体の空間は回転群のを導く。符号の曖昧さは、スピノル全体の空間を、スピン群 Spin(n) のある線型表現と見なすことによって除くこともできる。この形式的な観点では、スピノルについての多くの本質的で代数的な性質が(空間幾何での話に比べて)よりはっきり見て取れるが、もとの空間幾何との繋がりはわかりにくい。他にも、複素係数の使用が最小限に押さえられる。 一般のスピノルは、1913年にエリ・カルタンによって発見された。後に、スピノルは、電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。今日、スピノルは物理学の様々な分野で用いられている。古典的に、が非相対論的な電子のスピンを記述するのに用いられた。ディラック方程式では、相対論的な電子の量子状態を数学的に記述する際に、ディラック・スピノルが必須となる。場の量子論では、相対論的な多粒子系の状態は、スピノルで記述される。 数学、殊に微分幾何学およびにおいて、スピノルが発見されて以来、代数的位相幾何学・微分位相幾何学、斜交幾何学、ゲージ理論、複素代数幾何、指数定理、および特殊ホロノミー などに対して幅広い応用がなされている。.

新しい!!: K理論とスピノール · 続きを見る »

セール・スワンの定理

数学の分野であるトポロジーとK-理論において、セール・スワンの定理 (Serre–Swan theorem)、あるいはスワンの定理 (Swan's theorem) は、ベクトル束の幾何的な概念を射影加群の代数的概念に関係づけ、数学のいたるところで共通の直感を生じる: "可換環上の射影加群はコンパクト空間上のベクトル束のようである"。 定理の 2 つの正確な定式化は多少異なる。1955年にジャン・ピエール・セール (Jean-Pierre Serre) によって述べられたもとの定理は本質的により代数的であり、(任意標数の)代数的閉体上の代数多様体上のベクトル束に関係する。1962年に (Richard Swan) によって述べられた補足的変種はより解析的であり、滑らかな多様体あるいはハウスドルフ空間上の(実、複素、あるいは四元)ベクトル束に関係する。.

新しい!!: K理論とセール・スワンの定理 · 続きを見る »

タイプII超弦理論

タイプII超弦理論(英語:type II superstring theory)とは、10次元時空において定義される5種類の超弦理論のうちの2つ(タイプIIA、タイプIIB)のことである。この2つの理論は、ともに最大の超対称性(32の超対称性チャージ)を持っている。これらはともに向き付けのある閉じた弦の理論であるが、世界面上でのGSO射影の課し方による違いがある。.

新しい!!: K理論とタイプII超弦理論 · 続きを見る »

C*-環

数学における -環(しーすたーかん、C*-algebra)とは複素数体上の完備なノルム環で複素共役に類似の作用をもつものであり、フォン・ノイマン環と並ぶ作用素環論の主要な研究対象である。-代数(シースターだいすう)とも呼ばれる。1943年のGel'fand-Naimarkと1946年のRickartの研究によって公理系が与えられた。'-algebra' という用語は1947年にSegalによって導入された。 -環はその内在的な構造のみにもとづいて公理的に定義されるが、実はどんな -環もヒルベルト空間上の線形作用素のなす環で、随伴操作とノルムに関する位相で閉じたものとして実現されることが知られている。また、可換な -環を考えることは局所コンパクト空間上の複素数値連続関数環を考えることになり、その連続関数環からはもとの位相空間を復元できるので、可換 -環の理論は局所コンパクト空間の理論と等価だといえる。一般の -環は、群(あるいは亜群)など、幾何学的な文脈に現れながら普通の空間とは見なされないようなものを包摂しうる変形(「量子化」)された空間を表していると考えることもできる。.

新しい!!: K理論とC*-環 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: K理論と群 (数学) · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: K理論と環 (数学) · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: K理論と物性物理学 · 続きを見る »

直線束

数学における直線束(ちょくせんそく、line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。.

新しい!!: K理論と直線束 · 続きを見る »

相同性

同性(そうどうせい)、ホモロジー (homology).

新しい!!: K理論と相同性 · 続きを見る »

Dブレーン

Dブレーンとは弦理論において、特殊な条件下で存在するとされる物体である。 弦理論におけるブレーン(membrane=膜)は、弦なども含む、広がりを持った物理的対象全般を表す語である。Dブレーンもまた弦と同様に、伸縮や振動などの運動を行う。通常、Dブレーンは弦に比べて非常に大きいものとして記述されるが、素粒子サイズのものを考えることも可能である。例えばハドロン物理学をブレーン上の物理現象として記述するホログラフィックQCDでは、陽子もまた微小なDブレーンとして記述される。 DブレーンのDは、後述するディリクレ境界条件(Dirichlet)に由来する。DブレーンはDai、Leighおよびジョセフ・ポルチンスキー、そしてそれとは独立にHoravaによって1989年に発見された。.

新しい!!: K理論とDブレーン · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: K理論と行列 · 続きを見る »

高エネルギー物理学

ネルギー物理学は、加速器で作られる高エネルギーを持った基本粒子の衝突反応を詳しく調べ、素粒子と呼ばれる究極の物質の構造や、その基本的相互作用について研究する分野である。.

新しい!!: K理論と高エネルギー物理学 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: K理論と超伝導 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: K理論と関手 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: K理論と自由加群 · 続きを見る »

連接層

数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。.

新しい!!: K理論と連接層 · 続きを見る »

概型

数学における概型あるいはスキーム (scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。 スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。.

新しい!!: K理論と概型 · 続きを見る »

ここにリダイレクトされます:

K-理論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »