ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

リー代数

索引 リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

99 関係: 半単純リー代数半直積単射単位元単純リー群単連結空間可微分多様体可解リー環可換体可換環双線型写像同型定理完全関手対称双線型形式射 (圏論)中心 (代数学)一般のライプニッツの法則交換子交換関係 (量子力学)二項演算代数的構造位相同型微分位相幾何学係数環の変更圏同値圏論ハイゼンベルグ群モノイド圏ヤコビ恒等式ユークリッド空間ユニタリ群リー代数の随伴表現リー代数の表現リー微分リー群リー群の表現リー環のコホモロジーリー環の指数写像ルート系トーラスヘルマン・ワイルフラクトゥールベクトル場ベクトル空間分配多元環分配法則アーベル群イデアル (環論)エリ・カルタンカッツ・ムーディ代数...キリング形式クロード・シュヴァレークロス積コンパクト空間ソフス・リー冪零リー環写像の微分全射充満関手と忠実関手回転群空間ベクトル線型写像群 (数学)群論群論の用語結合多元環結合法則環 (数学)生成 (数学)特殊ユニタリ群特殊線型群直和随伴関手違いを除いて行列行列群行列指数関数被覆空間角運動量跡 (線型代数学)近傍 (位相空間論)関手量子力学量子群自己準同型連結空間退化形式P-群P進数接ベクトル空間核 (代数学)構造定数 (数学)標数歪エルミート行列準同型準フロベニウスリー代数有限体数学普遍包絡代数 インデックスを展開 (49 もっと) »

半単純リー代数

数学においてリー代数が半単純であるとは単純リー代数(自分自身と0以外にイデアルを持たないような非可換リー代数)の直和となる事をいう。 この記事内では特に注意しない限り \mathfrak g を標数0の体上の有限次元リー代数とする。以下の条件は全て同値である。.

新しい!!: リー代数と半単純リー代数 · 続きを見る »

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

新しい!!: リー代数と半直積 · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: リー代数と単射 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: リー代数と単位元 · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: リー代数と単純リー群 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: リー代数と単連結空間 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: リー代数と可微分多様体 · 続きを見る »

可解リー環

数学において、リー環 が可解 (solvable) であるとは、導来列が零部分環で終わることをいう。derived Lie algebra は、 の元のペアのすべてのリーブラケットからなる の部分環で、 と記される。導来列は部分環の列 である。導来列が最終的に零部分環に到達するとき、リー環は可解である。リー環の導来列は群論における交換子部分群に対する導来列とアナロガスである。 任意の冪零リー環は当然可解であるが、逆は正しくない。可解リー環と半単純リー環は、によって示されるように、2つの大きく一般に相補的なクラスをなす。 極大可解部分環はと呼ばれる。リー環の最大可解イデアルはと呼ばれる。.

新しい!!: リー代数と可解リー環 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: リー代数と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: リー代数と可換環 · 続きを見る »

双線型写像

数学において双線型写像(そうせんけいしゃぞう、)とは、二つのベクトル空間それぞれの元の対に対しての第三のベクトル空間の元を割り当てる写像であって、各引数に関して線型となるようなものを言う。その一つの例が、行列の積である。.

新しい!!: リー代数と双線型写像 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: リー代数と同型定理 · 続きを見る »

完全関手

ホモロジー代数において、完全関手とは完全列を保存する関手のことをいう。完全関手は対象の表現にそのまま適用できるため便利である。ホモロジー代数の多くの研究は、完全関手にはならないがその不完全さを制御できる関手を扱うためのものである。.

新しい!!: リー代数と完全関手 · 続きを見る »

対称双線型形式

線型代数学における対称双線型形式(たいしょうそうせんけいけいしき、symmetric bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな場合は、単に短く対称形式と呼ぶこともある。対称双線型形式は二次形式と近しい関係にあり、この両者の差異に関する詳細はの項目を参照。.

新しい!!: リー代数と対称双線型形式 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: リー代数と射 (圏論) · 続きを見る »

中心 (代数学)

数学の分野である代数学において、多元環や群などの中心 (center, Zentrum) は考えている構造の部分集合であって、乗法に関してすべての元と交換する元全体からなる。.

新しい!!: リー代数と中心 (代数学) · 続きを見る »

一般のライプニッツの法則

数学の微分積分学において一般化されたライプニッツの法則 (generalized Leibniz rule), 一般のライプニッツの法則(いっぱんのライプニッツのほうそく、;一般ライプニッツ則)あるいは単にライプニッツの法則は、積の法則(これもまたライプニッツの法則と呼ばれる)の一般化であり、f と g を n 回微分可能な関数とするとき、それらの積 fg の n 階微分が (f \cdot g)^.

新しい!!: リー代数と一般のライプニッツの法則 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: リー代数と交換子 · 続きを見る »

交換関係 (量子力学)

量子力学における交換関係(こうかんかんけい、commutation relation)とは、演算子としてあらわされた物理量が満たす量子力学特有の関係である。.

新しい!!: リー代数と交換関係 (量子力学) · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: リー代数と二項演算 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: リー代数と代数的構造 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: リー代数と位相同型 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: リー代数と微分位相幾何学 · 続きを見る »

係数環の変更

代数学において,環準同型 が与えられると,加群の係数環を変更する3つの方法がある;すなわち,右 -加群 と右 -加群 に対し,.

新しい!!: リー代数と係数環の変更 · 続きを見る »

圏同値

数学、とりわけ圏論において、圏同値(けんどうち、equivalence of categories)とはふたつの圏が「本質的には同じである」という関係のことをいう。 多くの分野で圏同値の例がある。 圏同値を示すことで、対象になっている数学的な構造の間に強い相関関係があることがわかる。 場合によっては、その構造は表面的には無関係に見えるので、圏同値は有用である; つまりある定理を異なる数学的構造の定理に「翻訳」できることがある。 もしある圏が別の圏の双対圏と圏同値ならば、ふたつの圏は双対同値と言い、圏双対について論じることができる。 圏同値は圏の間の「可逆な」関手から成る。 しかしながら代数的な設定の下における同型とは異なり、関手とその「逆関手」の合成が恒等写像である必要はない。 その代わりに各対象が合成の像と自然同型であればよい。 そのため、このことはふたつの関手が「同型を除いて逆関手」であると言われたりする。 実際にという概念もあり、こちらは本当に関手が逆関手であることを要求するが、圏同値の概念に比べると実用性を欠く。.

新しい!!: リー代数と圏同値 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: リー代数と圏論 · 続きを見る »

ハイゼンベルグ群

ハイゼンベルク群 (Heisenberg group) とは、次のような3次の実正方行列がなす群のことをいい、リー群の一種である。 A.

新しい!!: リー代数とハイゼンベルグ群 · 続きを見る »

モノイド圏

数学におけるモノイド圏(モノイドけん、monoidal category; モノイド的圏、モノイダル圏)あるいはテンソル圏(テンソルけん、tensor category)は、(自然同型の違いを除いて結合的な と、 について(再び自然同型の違いを除いて)左および右単位元となる対象 を備えた圏 である。この圏における自然同型は、関連する全ての図式を可換にすることを保証した(一貫性条件、整合条件)に従わなければならない。したがって、モノイド圏は抽象代数におけるモノイドの圏論的な緩い類似物である。 ベクトル空間、アーベル群、-加群、-多元環などの間に定義される通常のテンソル積は、それぞれの概念に付随する圏にモノイド構造を与える。ゆえにモノイド圏をこれら、あるいは他の例の一般化として見ることもできる。 圏論において、モノイド圏はモノイド対象の概念とそれに付随する作用を定義する。また、豊穣圏を定義する際にも使われる。 モノイド圏は圏論以外の分野において多数の応用を持つ。直観的線型論理の multiplicative fragment のモデルを定義し、物性物理学においてトポロジカル秩序相の数学的な基盤を与え、は場の量子論やひも理論に応用をもつ。.

新しい!!: リー代数とモノイド圏 · 続きを見る »

ヤコビ恒等式

数学におけるヤコビ恒等式(Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。.

新しい!!: リー代数とヤコビ恒等式 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: リー代数とユークリッド空間 · 続きを見る »

ユニタリ群

n 次のユニタリ群(ユニタリぐん、unitary group) U(n) とは、n 次ユニタリ行列のなす群のことである。演算は行列の積で与えられる。 ユニタリ群は一般線型群の部分群である。.

新しい!!: リー代数とユニタリ群 · 続きを見る »

リー代数の随伴表現

リー代数の随伴表現(リーだいすうのずいはんひょうげん、adjoint representation of a Lie algebra)とは、リー代数 \mathfrak の交換子を用いて定義されるリー代数から \mathfrak(\mathfrak) への準同型写像のことをいう。.

新しい!!: リー代数とリー代数の随伴表現 · 続きを見る »

リー代数の表現

数学の一分野である表現論では、リー代数の表現(リーだいすうのひょうげん、representation of a Lie algebra)は、リー代数を行列の集合(ベクトル空間の準同型)として記述する方法である。この方法により、リーブラケットは交換子により与えられる。 考え方はリー群の表現の考え方と密接に関連する。大まかには、リー代数の表現は、リー群の表現の微分した形であり、一方、リー群の普遍被覆の表現は、リー代数の表現の積分した形である。 リー代数の表現の研究で、リー代数に付随する普遍包絡代数と呼ばれる特別な環は、決定的役割を果たす。この環の構成の普遍性は、リー代数の表現の圏が、この普遍包絡代数上の加群の圏と同じであることを言っている。.

新しい!!: リー代数とリー代数の表現 · 続きを見る »

リー微分

数学においてリー微分(りーびぶん、Lie derivative)は、多様体 M 上のテンソル場全体の成す多元環上に定義される微分(導分とも)の一種である。ソフス・リーにちなんで名づけられた。M 上のリー微分全体の成すベクトル空間は次で定義されるリー括弧積 について無限次元のリー環を成す。リー微分は M 上の流れ(flow; フロー、activeen な微分同相写像)の無限小生成作用素としてベクトル場によって表される。もう少し別な言い方をすれば、リー群論の方法の直接の類似物ではあるが、M 上の微分同相写像全体の成す群は付随するリー環構造(もちろんそれはリー微分全体のなすリー環のことだが)を持つということができる。.

新しい!!: リー代数とリー微分 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: リー代数とリー群 · 続きを見る »

リー群の表現

数学や理論物理学では、リー群の表現の考え方は、連続対称性の研究で重要な役割を果たす。 そのような表現は、対応する「無限小」リー代数の表現研究で使用する基本的なツールであることが良く知られている。物理学の文献では、リー群の表現とリー代数の表現との間の違いを強調しないこともある。 Chapter 2.

新しい!!: リー代数とリー群の表現 · 続きを見る »

リー環のコホモロジー

数学において,リー環のコホモロジー(Lie algebra cohomology)とは,リー環に対するコホモロジー論である.それは によって,コンパクトリー群の位相空間としてのコホモロジーの代数的構成を与えるために,定義された.上の論文では,と呼ばれる鎖複体がリー環上の加群に対して定義され,そのコホモロジーが普通の意味で取られる..

新しい!!: リー代数とリー環のコホモロジー · 続きを見る »

リー環の指数写像

リー群論において、指数写像(しすうしゃぞう、exponential map)は、リー群のリー環から局所的な群構造を取り出せるような、リー環からリー群への写像である。指数写像の存在はリー環のレベルでリー群を研究することの主要な正当性の1つである。 解析学の通常の指数関数は G が正の実数の乗法群(そのリー環は実数全体のなす加法群)のときの指数写像という特別な場合である。リー群の指数写像は通常の指数関数の性質と類似の多くの性質を満たすが、しかしながら、多くの重要な面において異なりもする。.

新しい!!: リー代数とリー環の指数写像 · 続きを見る »

ルート系

数学において,ルート系(root system,système de racines)とはある幾何学的な性質を満たすユークリッド空間のベクトルの配置である.これはリー群やリー環の理論において基本的な概念である.リー群(や代数群のような類似物)やリー環は20世紀の間に数学の多くの部分で重要になってきたから,ルート系の一見すると特別な性質に反してそれらは多くの分野に応用される.さらに,ディンキン図形によるルート系の分類体系は(のような)リー理論とあからさまなつながりの全くない数学の分野において現れる.最後に,ルート系はにおけるように,それ自身重要である..

新しい!!: リー代数とルート系 · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: リー代数とトーラス · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: リー代数とヘルマン・ワイル · 続きを見る »

フラクトゥール

フラクトゥール(独:、フラクトゥーア)は、ドイツ文字、亀の子文字、亀甲文字、ひげ文字などとも呼ばれる書体である。ドイツでは、第二次世界大戦頃までこの書体を印刷に常用していた。 フラクトゥールは、中世のヨーロッパで広く使われた、写本やカリグラフィーの書体を基にした活字体・ブラックレターの一種であり、最も有名なものである。時には、ブラックレターを全部指して「フラクトゥール」と呼ぶこともある。フラクトゥールの語源は、古いラテン語の分詞、frangere(壊す)、fractus(壊れた)であり、他のブラックレターや現在よく使われるローマ字体であるアンティカ体に比べて線が崩れているところに特徴がある。 イマニュエル・カントの書簡。「Breitkopf-Fraktur」というフラクトゥールを用いた文章の例 通常、大文字の I と J には外見上の違いがないか、あってもわずかな差異である。これは、両者の起源は同じであり、区別する必要があまりなかったためでもある。語尾以外では小文字 s に長いs( - 小文字の f によく似ているが、横棒が右側へと貫かない)を用いる。(エス・ツェット)には 長いs と z の合字を用い、ch には、文字同士が接触しないものの、字間が通常より狭い合字をそれぞれ用いる。また、ウムラウト付きの文字 では、現在のウムラウト(点を横に2つ並べたもの)ではなく、その由来となった古い形、すなわち小さな e を文字の上に付した字形のものがしばしば見られる。ハイフンは、右上がりの二重線となる。.

新しい!!: リー代数とフラクトゥール · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: リー代数とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: リー代数とベクトル空間 · 続きを見る »

分配多元環

数学における分配多元環(ぶんぱいたげんかん、distributive algebra)または非結合多元環(ひけつごうたげんかん、non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 を引き起こす(La および Ra をそれぞれ a による左移動および右移動作用と呼ぶ)。分配多元環 A の包絡環 (enveloping algebra) とは、A の自己準同型環の部分環で、A の左移動および右移動によって生成されるものを言う。この包絡環は、A が結合的でない場合でも、必ず結合的になる。この意味で、包絡環は「A を含む最小の結合多元環」である。 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix.

新しい!!: リー代数と分配多元環 · 続きを見る »

分配法則

集合 S に対して、積 × と和 + が定義されている時に、.

新しい!!: リー代数と分配法則 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: リー代数とアーベル群 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: リー代数とイデアル (環論) · 続きを見る »

エリ・カルタン

エリ・カルタン(Élie Joseph Cartan, 1869年4月9日 - 1951年5月6日)はフランスの数学者。リー群、微分幾何学に大きな業績を残した。数学界の巨人のひとり。 イゼール県ドロミューで、父親は鍛冶屋、母は絹織物工で、幼時より非凡な才能を示し、記憶力は抜群であった。 高等師範学校にすすみ、碩学エミール・ピカールなどの講義をうける。ソルボンヌ大学も通い、グルサやエルミートの講義などに感激した。 25歳の時に出した学位論文「有限次元連続変換群の構造について」は学者としての地位を約束するものであった。この論文によりみとめられ、1894年、モンペリエ大学の講師に任命される。 その後、40歳でパリ大学の講師に任命される。研究は多岐におよび、対称空間の発見、接続の概念の提唱など基本的な重要な仕事をした。リー群論、スピノル理論、連続群論、微分幾何学、積分不変式など。 子供は4人、3男1女、長男アンリは関数論の専門家、次男ジャンは作曲家だが夭逝、三男ルイは物理学者、長女のエレーヌは数学教師とのことである。 690409 -690409 Category:フランスの数学者 Category:微分幾何学者 Category:王立協会外国人会員 Category:フランス科学アカデミー会員 Category:モンペリエ大学の教員 Category:イゼール県出身の人物 Category:数学に関する記事 Category:1869年生 Category:1951年没.

新しい!!: リー代数とエリ・カルタン · 続きを見る »

カッツ・ムーディ代数

数学において、カッツ・ムーディ(・リー)代数(Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と は が類似の方法で導出できることを証明した。.

新しい!!: リー代数とカッツ・ムーディ代数 · 続きを見る »

キリング形式

数学において、 (Wilhelm Killing) の名に因むキリング形式 (Killing form) とは、リー群とリー環の理論において基本的な役割を果たす対称双線型形式である。.

新しい!!: リー代数とキリング形式 · 続きを見る »

クロード・シュヴァレー

ード・シュヴァレー クロード・シュヴァレー(Claude Chevalley, 1909年2月11日 - 1984年6月28日)は、フランスの数学者、哲学者。ブルバキのメンバーの一人。.

新しい!!: リー代数とクロード・シュヴァレー · 続きを見る »

クロス積

ベクトル積()とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や で表される。演算の記号からクロス積()と呼ばれることもある。2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語では直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。.

新しい!!: リー代数とクロス積 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: リー代数とコンパクト空間 · 続きを見る »

ソフス・リー

マリウス・ソフス・リー(Marius Sophus Lie, 1842年12月17日 - 1899年2月18日)は、ノルウェーの数学者 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「リー」より。ISBN 978-4-00-080309-0 C3541 。.

新しい!!: リー代数とソフス・リー · 続きを見る »

冪零リー環

数学において、冪零リー環(べきれいリーかん、nilpotent Lie algebra)とはリー環のクラスの1つである。この記事では、線型空間やリー環は全て体 上有限次元のものとする。.

新しい!!: リー代数と冪零リー環 · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

新しい!!: リー代数と写像の微分 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: リー代数と全射 · 続きを見る »

充満関手と忠実関手

圏論において,忠実関手(ちゅうじつかんしゅ,faithful functor)(resp.

新しい!!: リー代数と充満関手と忠実関手 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: リー代数と回転群 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: リー代数と空間ベクトル · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: リー代数と線型写像 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: リー代数と群 (数学) · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: リー代数と群論 · 続きを見る »

群論の用語

群 (G, •) は集合 G で三つの公理を満たす G 上の(つまり G において閉じた)二項演算 "•" を組にしたものである。群の三公理とは.

新しい!!: リー代数と群論の用語 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: リー代数と結合多元環 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: リー代数と結合法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: リー代数と環 (数学) · 続きを見る »

生成 (数学)

数学における生成(せいせい、generate)とは、与えられた対象と条件に対して、その条件を満たしかつ与えられた対象を全て含むような最小の構成物を求めることである。このとき与えられた対象の集まりを生成系(生成集合)(generating set) といい、生成集合の各元を生成元 (generator) という。また、「最小の構成物」は生成系から生成されるという。生成系が1つの対象からなるような場合には、生成系と生成元は同一視できる。.

新しい!!: リー代数と生成 (数学) · 続きを見る »

特殊ユニタリ群

次の特殊ユニタリ群(とくしゅユニタリぐん、special unitary group) とは、行列式が1の 次ユニタリ行列の為す群の事である。群の演算は行列の積で与えられる。 特殊ユニタリ群 はユニタリ群 の部分群であり、さらに一般線型群 の部分群である。 特殊ユニタリ群は素粒子物理学において、電弱相互作用のワインバーグ=サラム理論や強い相互作用の量子色力学、あるいはそれらを統合した標準模型や大統一理論などに出てくる。.

新しい!!: リー代数と特殊ユニタリ群 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: リー代数と特殊線型群 · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: リー代数と直和 · 続きを見る »

随伴関手

数学の特に圏論における随伴(ずいはん、adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。 最も簡潔な対称的定義において、圏 と の間の随伴とは、二つの関手 の対であって、全単射の族 が変数 に関して自然(あるいは函手的)となるものを言う。このとき、関手 を左随伴函手と呼び、他方 を右随伴函手と呼ぶ。また、「 は の左随伴である」 (同じことだが、「 は の右随伴である」)という関係を と書く。 以下では、この定義や他の定義を詳細化する。.

新しい!!: リー代数と随伴関手 · 続きを見る »

違いを除いて

数学の文脈における「—(の違い)を除いて…」 (… "up to" &mdash) という語句は、「— に関する差異を無視する」ことを意味する専門用語である。この言い回しの意味するところは、「適当な目的のもとでは、あるひとつの同値類に属する元全体を、何か単一の実体を表すものとみなせる」ということである。"—" の部分には、何らかの性質や、同じ同値類に属する元(つまり一方は他方に同値となるような元)の間の変換の過程を記述する内容が入る。 たとえば不定積分を計算するとき、その結果は「定数項の違いを除いて」 f(x) であるというように言うことができる。その意味は、f(x) 以外に不定積分 g(x) があったとしても g(x).

新しい!!: リー代数と違いを除いて · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: リー代数と行列 · 続きを見る »

行列群

数学において、行列群 (matrix group) はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる。(行列のサイズは有限に制限される、なぜならば任意の群は任意の体上の無限行列の群として表現することができるからだ。)線型群 (linear group) は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする。 任意の有限群は線型である、なぜならばそれはを使って置換行列によって実現できるからだ。の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群。.

新しい!!: リー代数と行列群 · 続きを見る »

行列指数関数

線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、matrix exponential; 行列乗)は、正方行列に対して定義されるで、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列リー代数の間の対応関係(指数写像)を行列の指数函数が記述する。 実または複素行列 の指数関数 または は、冪級数 で定義される -次正方行列である。この級数は任意の に対して収束するから、行列 の指数関数は well-defined である。 が 行列のとき、-乗 は 行列であり、その唯一の成分は の唯一の成分に対する通常の指数関数に一致する。これらはしばしば同一視される。この意味において行列の指数函数は、通常の指数函数の一般化である。.

新しい!!: リー代数と行列指数関数 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: リー代数と被覆空間 · 続きを見る »

角運動量

角運動量(かくうんどうりょう、)とは、運動量のモーメントを表す力学の概念である。.

新しい!!: リー代数と角運動量 · 続きを見る »

跡 (線型代数学)

数学、特に線型代数学における行列の跡(せき、trace; トレース、Spur; シュプール)あるいは対角和(たいかくわ)は行列の主対角成分の総和である。それは基底変換に関して不変であり、また固有値の総和(固有値和)に等しい。即ち、行列の跡は行列の相似を除いて定まり、したがって一般に行列に対応する線型写像の跡として定義することができる。 行列の跡は、正方行列に対してのみ定義されることに注意せよ。この語は(この同じ数学的対象を意味する)ドイツ語のSpurからの翻訳借用である。.

新しい!!: リー代数と跡 (線型代数学) · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: リー代数と近傍 (位相空間論) · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: リー代数と関手 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: リー代数と量子力学 · 続きを見る »

量子群

数学と理論物理学において、用語量子群(りょうしぐん、quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。 用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト (Володи́мир Дрі́нфельд) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。同じ用語は古典リー群あるいはリー環を変形したあるいはそれに近い他のホップ代数に対しても用いられる。例えば、ドリンフェルトと神保の仕事の少し後にによって導入された、量子群の `bicrossproduct' のクラスである。 ドリンフェルトのアプローチでは、量子群は補助的なパラメーター q あるいは h に依存したホップ代数として生じる。この代数は、q.

新しい!!: リー代数と量子群 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: リー代数と自己準同型 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: リー代数と連結空間 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: リー代数と退化形式 · 続きを見る »

P-群

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、p-primary group)あるいは、p-群(ピーぐん、p-group)もしくは準素群(じゅんそぐん、primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。.

新しい!!: リー代数とP-群 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: リー代数とP進数 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: リー代数と接ベクトル空間 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: リー代数と核 (代数学) · 続きを見る »

構造定数 (数学)

分配多元環の構造定数(こうぞうていすう、structure constant, structure coeficient)とは、与えられた自由加群に対して、それを分配多元環とするための積構造を決定する定数のことである。.

新しい!!: リー代数と構造定数 (数学) · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: リー代数と標数 · 続きを見る »

歪エルミート行列

歪エルミート行列(わいえるみーとぎょうれつ、Skew-Hermitian matrix)あるいは反エルミート行列(はんえるみーとぎょうれつ、Anti-Hermitian matrix)とは、自身のエルミート共役が自身に負号をつけたものに等しいような複素正方行列のことである。つまり、 次正方行列 に対し、そのエルミート共役を で表すとき、 が歪エルミートならば、以下の条件を満たす。 行列 の成分をあらわに書けば、これは次のようにも表せる。 歪エルミート行列と似た定義を持つ行列として、エルミート行列がある。エルミート行列は自身と自身のエルミート共役が等しい。 歪エルミート行列はエルミート行列と同じく、正規行列の特別な場合であり、 をユニタリ行列 と見なせば、以下の正規行列の定義を満たしている。.

新しい!!: リー代数と歪エルミート行列 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: リー代数と準同型 · 続きを見る »

準フロベニウスリー代数

数学において、体 k 上の準フロベニウスリー代数 (quasi-Frobenius Lie algebra) とは、リー代数 であって、次のような非退化歪対称双線型形式 \beta \colon \mathfrak\times\mathfrak\to k を持ったものである: \beta がコバウンダリであれば、つまりある線型形式 f \colon \mathfrak\to k が存在して であれば、 はフロベニウスリー代数 (Frobenius Lie algebra) と呼ばれる。.

新しい!!: リー代数と準フロベニウスリー代数 · 続きを見る »

有限体

有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアにちなんでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。 有限体においては、体の定義における乗法の可換性についての条件の有無は問題にはならない。実際、ウェダーバーンの小定理と呼ばれる以下の定理 が成り立つことが知られている。別な言い方をすれば、有限体において乗法の可換性は、体の有限性から導かれるということである。.

新しい!!: リー代数と有限体 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: リー代数と数学 · 続きを見る »

普遍包絡代数

(普遍)包絡代数(ふへんほうらくだいすう、universal enveloping algebra, algèbre enveloppante)あるいは(普遍)展開代数とは、任意のリー代数 \mathfrak から構成される、ある性質を満たす単位的結合代数 U(\mathfrak) と準同型写像 i\colon\mathfrak\to U(\mathfrak) の組 (U(\mathfrak), i) のことをいう。.

新しい!!: リー代数と普遍包絡代数 · 続きを見る »

ここにリダイレクトされます:

リーブラケットリー代数のイデアルリー代数の準同型リー代数準同型リー多元環リー括弧積リー環リー環の準同型リー環準同型リー部分環リィ代数リィ環イデアル (リー代数)イデアル (リー環)可換リー代数可換リー環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »