ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

可微分多様体

索引 可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

176 関係: Annals of Mathematics埋め込み (数学)はめ込み単連結空間反対称テンソル古典力学双対ベクトル空間双正則写像同値同値類同値関係向き付け可能性多変数微分積分学多項式多重線型写像多様体多様体の射多様体の圏外微分外積代数媒介変数定符号二次形式実数直線完備化 (環論)完全微分形式射影多様体層 (数学)局所環局所環付き空間主束一般線型群一般相対性理論幾何化予想交叉理論二重数代数幾何学位相同型位相多様体位相空間作用素論体上の多元環余接空間余接束微分微分可能微分同相写像微分幾何学微分形式微分作用素微分積分学...ナッシュの埋め込み定理ノルムマイケル・フリードマンハミルトン力学ハウスドルフ空間ポアンカレの補題メビウス変換モストウの剛性定理ヤン=ミルズ理論ユークリッド空間ラグランジュ力学リー代数リー微分リーマン多様体リーマン幾何学リーマン面リーマン曲率テンソルリー群トポストゥーリオ・レヴィ=チヴィタヘルマン・ワイルテンソルテンソル場テンソル積テンソル解析テイラー展開ファイバー束ドナルドソンの定理ド・ラームコホモロジーホモトピーベルンハルト・リーマンベクトル場ベクトル空間アルベルト・アインシュタインアトラス (多様体)アプリオリアフィン写像アフィン空間アフィン接続カール・フリードリヒ・ガウスカービー・ジーベンマン不変量クリストッフェル記号グリーンの定理コンパクト空間シンプレクティック同相写像シンプレクティック多様体シンプレクティック幾何学ジョン・ミルナージェームズ・クラーク・マクスウェルストークスの定理ソボレフ空間ソフス・リーサードの定理サイモン・ドナルドソン円周内積写像の合成写像の微分函数の全微分商群全微分共変性と反変性勾配 (ベクトル解析)回転 (ベクトル解析)四元数C*-環種数積の微分法則積分法空間 (数学)空間ベクトル符号数第二可算的空間等価原理線型汎函数群 (数学)群の表示環上の多元環無限小物理学特殊線型群発散 (ベクトル解析)発散定理芽 (数学)非可換幾何行列の階数複素幾何学複素数解析関数計量テンソル計量ベクトル空間部分多様体関数の台関数空間関手閉微分形式集合集合の被覆速度連鎖律逆写像逆函数定理退化形式陰関数Lp空間接ベクトル接ベクトル空間接続 (幾何学)接線接触 (数学)接束極大イデアル概型正則関数決定問題沈め込み準用・類推適用滑らかな関数方向微分斜交群擬リーマン多様体曲線曲面1の分割2-形式4次元多様体 インデックスを展開 (126 もっと) »

Annals of Mathematics

Annals of Mathematics (略記は Ann. Math. または、Ann. of Math.) はプリンストン大学及び プリンストン高等研究所から隔月発行される数学誌。インパクトファクターなどの基準では、世界で最も権威ある数学誌に位置づけられる。.

新しい!!: 可微分多様体とAnnals of Mathematics · 続きを見る »

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: 可微分多様体と埋め込み (数学) · 続きを見る »

はめ込み

数学において,はめ込み (immersion) は可微分多様体の間の可微分写像であって微分がいたるところ単射であるもののことである.明示的には, がはめ込みであるとは, が のすべての点 において単射関数であることをいう(ここで は多様体 の点 における接空間を表す).同じことであるが, がはめ込みであるとは,その微分が の次元に等しい定数を持つことである: 関数 それ自身は単射である必要はない. 関連概念は埋め込みである.滑らかな埋め込みは位相的な埋め込みでもある単射はめ込み であり,したがって は におけるその像に微分同相である.はめ込みはちょうど局所的な埋め込みである――つまり,任意の点 に対して, のある近傍 が存在して, が埋め込みとなり,逆に局所的な埋め込みははめ込みである.無限次元多様体に対して,これははめ込みの定義として取られることもある. がコンパクトならば,単射なはめ込みは埋め込みであるが, がコンパクトでなければ,そうとは限らない;連続全単射と同相を比較せよ..

新しい!!: 可微分多様体とはめ込み · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: 可微分多様体と単連結空間 · 続きを見る »

反対称テンソル

数学および理論物理学において、テンソルが添字の対に関して反対称 (anti­symmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符号が反転することを言う。また、交代的 (alternating) であるとは、それらを等しいと置いたとき零になることを言う。の標数が でないときこれら二つの概念は一致する(多重線型写像の項も参照)。.

新しい!!: 可微分多様体と反対称テンソル · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: 可微分多様体と古典力学 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 可微分多様体と双対ベクトル空間 · 続きを見る »

双正則写像

数学、特に1変数または多変数の複素解析学や複素代数幾何学において、双正則写像(そうせいそくしゃぞう、biholomorphism)とは、全単射の正則関数であって、その逆写像も正則となるもののことである。 より正確に述べると、双正則写像とは、n次元複素空間 Cn の開部分集合 U, V に対し、全単射な正則関数 φ: U → V であって、逆写像 φ−1: V → U もまた正則となるもののことである。より一般には、U と V は複素多様体としてよい。φ がその像への双正則写像であるためには、単射かつ正則であれば十分である(つまり逆写像の正則性は自動的に従う)ことが証明できる。 双正則写像 φ: U → V が存在するとき、U と V は双正則同値、あるいは単に双正則 であるという。 n.

新しい!!: 可微分多様体と双正則写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 可微分多様体と同値 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: 可微分多様体と同値類 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 可微分多様体と同値関係 · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: 可微分多様体と向き付け可能性 · 続きを見る »

多変数微分積分学

多変数(基礎)解析学または多変数微分積分学(multivariable calculus, multivariate calculus)とは、1変数の微分積分学を多変数へ拡張したもの、すなわち多変数関数における微分法および積分法を扱う解析学の一分野である。.

新しい!!: 可微分多様体と多変数微分積分学 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 可微分多様体と多項式 · 続きを見る »

多重線型写像

線型代数学において、多重線型写像(たじゅうせんけいしゃぞう、multilinear map)は各変数ごとに線型な多変数の関数である。正確には、多重線型写像は、V_1,\ldots,V_n とW\! をベクトル空間(あるいは可換環上の加群)として、次の性質を満たす写像 である: 各 i\! に対して、v_i\! を除くすべての変数を定数のまま止めると、f(v_1,\ldots,v_n) は v_i\! の線型写像である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体であれば、多重線型形式と呼ばれる。多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。 すべての変数が同じ空間に属していれば、、反対称、 k 重線型写像を考えることができる。基礎環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する。 f\colon V_1 \times \cdots \times V_n \to W\text を有限次元ベクトル空間の間の多重線型写像としよう。V_i\! の次元を d_i\!, W\! の次元を d\! とする。各 V_i\! に対して \ を、W\! に対して基底 \ を選べば(ベクトルにはボールドを用いた)、スカラー A_^k の集合を次によって定義できる: するとスカラー \ は多重線型写像 f\! を完全に決定する。とくに、1 \leq i \leq n\! に対して であれば、 -->f\colon R^2 \times R^2 \times R^2 \to R を考えよう。V_i.

新しい!!: 可微分多様体と多重線型写像 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 可微分多様体と多様体 · 続きを見る »

多様体の射

代数幾何学においてアフィン多様体の間の正則写像(せいそくしゃぞう、regular map)とは、それが多項式によって与えられる写像であることを言う。陽に書けば、 がそれぞれアフィン多様体 の(あるいは代数的集合)であるとき、 から への正則写像 は、各 が座標環 (I は X を定義するイデアル)に属するものとして、 なる形に書ける。ゆえに像 は に含まれる(つまり、 の定義方程式を満たす)。 より一般に、抽象代数多様体間の写像 が一点 において正則 (regular at a point)とは、 の近傍 と の近傍 が存在して、制限写像 が と との 上の写像として正則となることを言う。さらに が の任意の点において正則であるとき、 は正則 (regular) であるという。 代数多様体間の射は、その始域と終域にザリスキー位相を入れたとき連続でなければならない。より厳密に、抽象代数多様体をある種の局所環付き空間として定義するとき(例えば射影多様体に対する「環付き構造」は射影多様体の項を参照せよ)、この定義のもとでの代数多様体間の射とは台とする局所環付き空間の間の射のことを言う(故にたとえばこの射は定義により連続になる)。 となる特別の場合を考えるとき、正則写像 は正則函数 (regular function) と呼ばれ、これは微分幾何におけるスカラー函数に対応するものである。即ち、スカラー函数が一点 において正則 (regular) となるのは、 の適当な近傍においてそれが有理函数(つまり多項式の商)に書けて、かつその分母が において消えていないときに限られる。正則函数環(つまり、座標環あるいはより抽象的に構造層の大域切断の環)はアフィン代数幾何において基本的対象である。一方、連結射影多様体上の正則函数は定数しかない(これは複素解析におけるリウヴィルの定理の類似とみなせる)から、射影代数幾何では(正則函数ではなくて)直線束(あるいは因子)の大域切断を考えるのが普通である。 事実として、既約代数曲線 上の函数体 を取ると、この函数体に属する任意の函数 は から 上の射影直線への射として実現することができる。その像 は一点か、さもなくば射影直線全体である(これはの帰結である)。つまり、 が実際に定数なのでない限り、 は のどこかの点において値が となることを認めなければならない。いま、 のそのような(値が となる)点における振る舞いは、そのほかの点におけるよりも(ある意味で)悪くはならない。つまり、 は射影直線上にとった無限遠点として、それはメビウス変換によってどこでも好きなところに移すことができる。しかし幾何学的な必要により、函数の終域を(射影直線ではなく)アフィン直線に限らねばならないとすれば、有限な値しかとれないので、不十分である。 上の有理函数が正則であるための必要十分条件は、それが極を持たぬことである。これはハルトークスの拡張定理の類似である。 正則写像は定義によりアフィン多様体の圏における射である。特にアフィン多様体の間の正則写像は、その座標環の間の環準同型に反変的に一対一対応する。 逆もまた正則であるような正則写像は双正則(そうせいそく、biregular)であるといい、代数多様体の圏における同型射である。代数多様体間の射で台となる位相空間の間の同相となるものは必ずしも同型射ではない(反例はフロベニウス射 t \mapsto t^p で与えられる)。他方、 が双射双有理かつ の終域が正規代数多様体ならば は双正則である(参照)。 正則および双正則は非常に強い条件(射影空間上の定数でない正則函数は存在しない)から、それより弱い条件であるや双有理写像が同じくらいよく用いられる。 が代数多様体の間の射ならば、 の像はその閉包の稠密開集合を含む(を参照)。 複素代数多様体の間の正則写像は(複素解析的な意味での)正則写像 (holomorphic map) である(実際には少し差異があって、本項に言う代数幾何的な意味で正則 (regular) となるのは特異点が除去可能であるような有理型写像なのであるが、実用上はこの差異は無視されるのが普通)。特に、複素数平面の中への正則写像は、まさに通常の(複素解析的な意味の)正則函数に他ならない。.

新しい!!: 可微分多様体と多様体の射 · 続きを見る »

多様体の圏

数学の一分野である圏論において -級多様体の圏(たようたいのけん、category of manifolds) は、すべての -級可微分多様体を対象とし、すべての -級可微分写像(-回連続的微分可能写像を射とする圏である。二つの -級写像の合成はやはり -級となるから、確かにこれで圏が得られている。 しばしば特定の圏 に属する対象をモデルに持つ多様体( における多様体対象)のみを考えたいという場合が生じる。そのような限定された意味の多様体の成す圏は のように書き表す。同様に特定の空間 の上で定められる多様体の成す圏を と書く。 滑らかな多様体の圏 やの圏 も同様に考えられる。.

新しい!!: 可微分多様体と多様体の圏 · 続きを見る »

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

新しい!!: 可微分多様体と外微分 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: 可微分多様体と外積代数 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 可微分多様体と媒介変数 · 続きを見る »

定符号二次形式

数学において実ベクトル空間 V 上で定義された二次形式 Q が定符号(ていふごう、definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号(positive definite; 正値、正定値)または負の定符号(negative definite; 負値、負定値)に分けられる。 半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて同様に定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite) であると言う。 より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる。.

新しい!!: 可微分多様体と定符号二次形式 · 続きを見る »

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

新しい!!: 可微分多様体と実数直線 · 続きを見る »

完備化 (環論)

抽象代数学において、完備化(かんびか、completion)とは、環や加群上の関手であって、完備な位相環や加群になるような任意のものである。完備化は局所化と類似しており、これらは可換環を解析する最も基本的な手法である。完備可換環は一般の環よりも単純な構造をもっており、が適用される。 \hat M defined in a way analogous to the completion of a metric space using Cauchy sequences.

新しい!!: 可微分多様体と完備化 (環論) · 続きを見る »

完全微分形式

微分位相幾何学における微分形式が完全 (exact) である、または完全微分形式(かんぜんびぶんけいしき、exact differential form)、短く完全形式 (exact form) であるとは、別の微分形式でその外微分がもとの微分形式に一致するものが存在するときに言う。すなわち、完全形式は可積分である。短くまとめると、微分形式 が完全とは、微分形式 が存在して ようなものである。シュヴァルツの定理により、-の任意の完全形式は閉微分形式である。ポワンカレの補題はその部分的な逆を保証する。.

新しい!!: 可微分多様体と完全微分形式 · 続きを見る »

射影多様体

代数幾何学において,代数閉体 上の射影多様体(しゃえいたようたい,projective variety)とは, 上の( 次元)射影空間 の部分集合であって,素イデアルを生成する 係数 変数斉次多項式の有限族の零点集合として書けるものをいう.そのようなイデアルは多様体の定義イデアルと呼ばれる.あるいは同じことだが,代数多様体が射影的であるとは, のザリスキ閉部分多様体として埋め込めるときにいう. 1次元の射影多様体は射影曲線と呼ばれ,2次元だと射影曲面,余次元 1 だと射影超曲面と呼ばれる.射影超曲面は単独の斉次式の零点集合である. 射影多様体 が斉次素イデアル によって定義されているとき,商環 は の斉次座標環と呼ばれる.次数や次元のような基本的な不変量は,この次数環のヒルベルト多項式から読み取ることができる. 射影多様体は多くの方法で生じる.それらはであり,荒っぽく言えば「抜けている」点がない.逆は一般には正しくないが,はこの2つの概念の近い関係を記述する.多様体が射影的であることは直線束や因子を調べることによって示される. 射影多様体の顕著な性質の1つは,層コホモロジーの有限性である.滑らかな射影多様体に対して,セール双対性はポワンカレ双対性の類似と見なせる.それはまた射影曲線,すなわち 1 の射影多様体に対するリーマン・ロッホの定理を導く.射影曲線の理論は特に豊かで,曲線のによる分類を含む.高次元の射影多様体の分類問題は自然に射影多様体のモジュライの構成を導く.ヒルベルトスキームは所定のヒルベルト多項式をもつ の閉部分スキームをパラメトライズする.ヒルベルトスキームは,グラスマン多様体は特別な場合であるが,それ自身射影スキームでもある.幾何学的不変式論は別のアプローチを提供する.古典的なアプローチはタイヒミュラー空間やを含む. 古典にさかのぼる特に豊かな理論が,複素射影多様体,すなわち を定義する多項式が複素係数を持つ場合にある.大まかには,GAGA の原理により,射影複素解析空間(あるいは多様体)の幾何学は射影複素多様体の幾何学と等しい.例えば, 上の正則ベクトル束(より一般に連接解析的層)の理論は,代数的ベクトル束の理論と一致する.Chow の定理により,射影空間の部分集合が正則関数の族の零点集合であることと斉次多項式の零点集合であることは同値である.複素射影多様体に対する解析的な手法と代数的な手法の組合せはホッジ理論のような分野に通じる..

新しい!!: 可微分多様体と射影多様体 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 可微分多様体と層 (数学) · 続きを見る »

局所環

抽象代数学における局所環(きょくしょかん、local ring)は、1938年にヴォルフガンク・クルルによって導入された概念で、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。.

新しい!!: 可微分多様体と局所環 · 続きを見る »

局所環付き空間

数学における局所環付き空間(きょくしょかんつきくうかん、locally ringed space)とは、位相構造や正則構造といった数学的構造を反映する「関数のなす可換環」の層(考えている空間の構造層と呼ばれる)を付与された位相空間のことである。関数 が点 で消えていないとき、 のごく近くでは逆数関数 を考えられることが公理化される。.

新しい!!: 可微分多様体と局所環付き空間 · 続きを見る »

主束

数学において、主束(しゅそく、principal bundle)は、枠束を抽象化した概念である。 ここで枠束(frame bundle)とは、ファイバー束であって、任意の一点上のファイバー(繊維)が、あるベクトル空間における並び順の付いた基底全体の集合からなるものである。 主束は、構造群と呼ばれるある与えられた群 G により、ファイバーが G の主等質空間(英:principal homogeneous space)(G が自由かつ推移的に作用する集合のこと。G-トルソ(英:G-torsor)ともいう)になるものとして特徴付けられる。 これは、一般枠束におけるベクトル空間の全基底に対する一般線型群の作用を一般化したものである。 さらに、主 G 束(しゅ G そく、principal G-bundle)とは、ファイバー束であって、全てのファイバーが位相群 G の群の作用により主等質空間になるものをいう。 主 G 束は、群 G が束の構造群にもなるという意味で、G 束である。 主束は、位相幾何学および微分幾何学で重要な応用を有する。 主束は物理においても、ゲージ理論の根本的枠組みの一部を構成するという応用を見出した。 構造群 G を有するすべてのファイバー束は、一意に主 G 束を決定し、この主束により元の束が再構成できるという意味で、主束は、ファイバー束の理論に統一的枠組みを与える。.

新しい!!: 可微分多様体と主束 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 可微分多様体と一般線型群 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 可微分多様体と一般相対性理論 · 続きを見る »

幾何化予想

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。位相幾何学と微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年、グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。.

新しい!!: 可微分多様体と幾何化予想 · 続きを見る »

交叉理論

数学では、交叉理論(intersection theory)(もしくは、交点理論)は、代数幾何学では代数多様体の上ので部分多様体の交叉についての分野で、 代数トポロジーではコホモロジー環の中の交叉の計算についての分野である。多様体の理論は古くからあり、曲線のベズーの定理や(elimination theory)に起源を持つ。他方、トポロジー理論では、交叉理論はより手短に定義形式へたどり着く。.

新しい!!: 可微分多様体と交叉理論 · 続きを見る »

二重数

数学、特に線型代数学における二重数(にじゅうすう、dual numbers)は、実数の全体に実数ではない新しい元 ε で複零性 ε2.

新しい!!: 可微分多様体と二重数 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 可微分多様体と代数幾何学 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 可微分多様体と位相同型 · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 可微分多様体と位相多様体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 可微分多様体と位相空間 · 続きを見る »

作用素論

数学における作用素論(さようそろん、Operator theory)は、微分作用素や積分作用素をはじめとする線型作用素の研究である。各作用素は、有界性や閉性などといった特徴によって抽象的に表すことができ、また非線型作用素なども視野に含むこともあり得る。そのような研究は函数空間の位相に非常に依存しており、函数解析学の一分科を成す。 作用素の集合が体上の多元環を成すならば、それを作用素環と呼ぶ。作用素環を記述することもまた作用素論の一部である。.

新しい!!: 可微分多様体と作用素論 · 続きを見る »

体上の多元環

数学において体上の代数あるいは多元環(たげんかん、algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるとを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。.

新しい!!: 可微分多様体と体上の多元環 · 続きを見る »

余接空間

微分幾何学において、滑らかな(あるいは可微分)多様体の各点 x に x における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、x における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。.

新しい!!: 可微分多様体と余接空間 · 続きを見る »

余接束

数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。.

新しい!!: 可微分多様体と余接束 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 可微分多様体と微分 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: 可微分多様体と微分可能 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 可微分多様体と微分同相写像 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: 可微分多様体と微分幾何学 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 可微分多様体と微分形式 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 可微分多様体と微分作用素 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 可微分多様体と微分積分学 · 続きを見る »

ナッシュの埋め込み定理

ョン・フォーブス・ナッシュ (John Forbes Nash) の名に因んだナッシュの埋め込み定理 (Nash embedding theorems (or imbedding theorems)) は、すべてのリーマン多様体はユークリッド空間の中へ等長に埋め込むことができるという定理である。等長とは、すべてのの長さが保存されることを意味する。例えば、紙のページを引き伸ばしたり破ったりすることなしに折り曲げると、ページのユークリッド空間へのになる。ページに描かれた曲線はページが折り曲げられても同じ長さのままであるからだ。 第一の定理は、連続微分可能な(C1 級の)埋め込みに対するものであり、第二の定理は、解析的な埋め込みと、3 ≤ k ≤ ∞ に対して Ck 級の滑らかさを持つ埋め込みに関するものである。これらの 2つの定理は、互いに非常に異なっている。第一の定理は非常に容易に証明でき、非常に反直感的な結果を導くが、一方第二の定理の証明は非常に技巧的であるが結果はそれほど驚くようなものではない。 C1 定理は1954年に、Ck 定理は1956年に出版された。実解析的な定理は最初ナッシュにより1966年に扱われた。彼の議論は により非常に簡素化された。(この結果の局所版は、1920年代にエリ・カルタン (Élie Cartan) と (Maurice Janet) により証明された。)実解析的な場合は、ナッシュの逆関数の議論における smoothing operator(以下を参照)を、コーシーの評価に取り替えることができる。Ck の場合のナッシュの証明は、後に、 (h-principle) や (Nash–Moser implicit function theorem) へ拡張された。第二のナッシュの埋め込み定理の簡素化された証明は、 により得られた。彼は非線型偏微分方程式系を楕円系に帰着させ、が適用できるようにした。.

新しい!!: 可微分多様体とナッシュの埋め込み定理 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 可微分多様体とノルム · 続きを見る »

マイケル・フリードマン

マイケル・ハートレー・フリードマン(Michael Hartley Freedman, 1951年4月21日 - )はアメリカ合衆国の数学者。主に合衆国西部のカリフォルニア州と東部のニュージャージー州プリンストンにおいて活動。 トポロジー(位相幾何学)における難問とされるポアンカレ予想が四次元において成立することを証明したことで知られており、1986年にフィールズ賞を授与された。 現在はマイクロソフト社の研究機関マイクロソフトリサーチに所属し、量子コンピュータの開発に携わる。.

新しい!!: 可微分多様体とマイケル・フリードマン · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: 可微分多様体とハミルトン力学 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 可微分多様体とハウスドルフ空間 · 続きを見る »

ポアンカレの補題

数学において、ポアンカレの補題(ぽあんかれのほだい、Poincaré lemma)とは代数的位相幾何における定理の一つ。ユークリッド空間において、閉形式である微分形式が完全形式となることを主張する。.

新しい!!: 可微分多様体とポアンカレの補題 · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: 可微分多様体とメビウス変換 · 続きを見る »

モストウの剛性定理

数学において、モストウの剛性定理(Mostow's rigidity theorem)、あるいは強剛性定理(strong rigidity theorem)、モストウ・パラサードの剛性定理(Mostow–Prasad rigidity theorem)は、次元が 3 以上の有限体積の双曲多様体は、その基本群により決定され、従って一意となるという定理である。定理は閉多様体に対して で証明され、3次元の有限体積の双曲多様体に対しては で、少くとも次元が 3 以上である多様体に対しては で拡張された。 は、(Gromov norm)を使い、別な証明を与えた。 は、密接に関連する定理を証明した。特に、この定理は少くとも次元 3以上の双曲空間のアイソトピック群の余コンパクト離散群は、非自明な変形を持たないことを意味する。 モストウの剛性定理は (n > 2 に対し) 有限体積を持つ双曲 n-次元多様体の変形空間が、一点であることを示している。また、種数が g > 1 である双曲曲面に対して、次元 6g − 6 のモジュライ空間が存在し、(微分同相を同一視した)定曲率な計量をパラメトライズする。(このことは(Teichmüller theory)において重要な事実である。)3次元では、(hyperbolic Dehn surgery)定理と呼ばれるウィリアム・サーストンの「非剛性」定理が存在する。この定理は、同相写像の型が許される限りの有限体積の多様体上の双曲構造を変形することから帰結する。加えて、「無限」体積の多様体上の双曲構造の変形空間の豊かな理論も存在する。 2) is a point, for a hyperbolic surface of genus g > 1 there is a moduli space of dimension 6g − 6 that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. In dimension three, there is a "non-rigidity" theorem due to Thurston called the hyperbolic Dehn surgery theorem; it allows one to deform hyperbolic structures on a finite volume manifold as long as changing homeomorphism type is allowed. In addition, there is a rich theory of deformation spaces of hyperbolic structures on infinite volume manifolds.-->.

新しい!!: 可微分多様体とモストウの剛性定理 · 続きを見る »

ヤン=ミルズ理論

ヤン=ミルズ理論(-りろん、Yang-Mills theory)は、1954年に楊振寧とロバート・ミルズによって提唱された非可換ゲージ場の理論のことであるYang and Mills (1954)。 なお、その少し前にヴォルフガング・パウリStraumann, N: "On Pauli's invention of non-abelian Kaluza-Klein Theory in 1953" eprint arXiv.gr.

新しい!!: 可微分多様体とヤン=ミルズ理論 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 可微分多様体とユークリッド空間 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 可微分多様体とラグランジュ力学 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 可微分多様体とリー代数 · 続きを見る »

リー微分

数学においてリー微分(りーびぶん、Lie derivative)は、多様体 M 上のテンソル場全体の成す多元環上に定義される微分(導分とも)の一種である。ソフス・リーにちなんで名づけられた。M 上のリー微分全体の成すベクトル空間は次で定義されるリー括弧積 について無限次元のリー環を成す。リー微分は M 上の流れ(flow; フロー、activeen な微分同相写像)の無限小生成作用素としてベクトル場によって表される。もう少し別な言い方をすれば、リー群論の方法の直接の類似物ではあるが、M 上の微分同相写像全体の成す群は付随するリー環構造(もちろんそれはリー微分全体のなすリー環のことだが)を持つということができる。.

新しい!!: 可微分多様体とリー微分 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: 可微分多様体とリーマン多様体 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: 可微分多様体とリーマン幾何学 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: 可微分多様体とリーマン面 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: 可微分多様体とリーマン曲率テンソル · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 可微分多様体とリー群 · 続きを見る »

トポス

トポス(τόπος)とは、ギリシア語で「場所」を意味する語であり、以下の用法がある。.

新しい!!: 可微分多様体とトポス · 続きを見る »

トゥーリオ・レヴィ=チヴィタ

トゥーリオ・レヴィ=チヴィタ トゥーリオ・レヴィ=チヴィタ トゥーリオ・レヴィ=チヴィタ(Tullio Levi-Civita、1873年3月29日 - 1941年12月29日)は、イタリアパドヴァ出身のユダヤ人数学者。絶対微分学、テンソル解析学に貢献し、レヴィ=チヴィタ記号(エディントンのイプシロン)の考案者として名高い。また、レヴィ=チヴィタ接続(:en:Levi-Civita connection)やレヴィ=チヴィタ (クレーター)(:en:Levi-Civita (crater))に名前が伝わっている。.

新しい!!: 可微分多様体とトゥーリオ・レヴィ=チヴィタ · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: 可微分多様体とヘルマン・ワイル · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: 可微分多様体とテンソル · 続きを見る »

テンソル場

数学、物理学および工学におけるテンソル場(テンソルば、tensor field)は、数学的な空間(典型的にはユークリッド空間や多様体)の各点にテンソルを割り当てるものである。テンソル場は微分幾何学、代数幾何学、一般相対論において用いられ、物質の応力および歪みの解析やその他物理科学および工学における様々な応用に供される。テンソルがスカラー(長さのような値を表す数値)やベクトル(空間内の幾何学的な矢印)の一般化であるのと同様に、テンソル場はスカラー場およびベクトル場(それぞれ空間の各点にスカラーおよびベクトルを割り当てる)の一般化になっている。 一口に「テンソル」と呼ばれている概念でも、実際の数学的構造は「テンソル場」であるという場合も多い。例えばリーマン曲率テンソルなど。.

新しい!!: 可微分多様体とテンソル場 · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: 可微分多様体とテンソル積 · 続きを見る »

テンソル解析

数学におけるテンソル解析(テンソルかいせき、tensor calculus, tensor analysis)はベクトル解析をテンソル場(時空などの多様体上を変化するテンソル)に対して拡張するものである。 とその弟子トゥーリオ・レヴィ゠チヴィタによって展開され、アルベルト・アインスタインが自身の一般相対論の展開に用いた。無限小解析と対照的に、物理方程式を多様体上の座標の取り方にで表すことができる。 物理学や工学における、連続体力学、電磁気学、一般相対論など、テンソル解析は多くの実生活的な応用を持つ、.

新しい!!: 可微分多様体とテンソル解析 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 可微分多様体とテイラー展開 · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

新しい!!: 可微分多様体とファイバー束 · 続きを見る »

ドナルドソンの定理

数学では、ドナルドソンの定理(Donaldson's theorem)は、次元 4 の単連結な滑らかな多様体(smooth manifold)の(definite)な交叉形式は、対角化可能であるという定理である。交叉形式が正定値(負定値)であれば、交叉形式は整数上の単位行列(負の単位行列)に対角化可能である。.

新しい!!: 可微分多様体とドナルドソンの定理 · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

新しい!!: 可微分多様体とド・ラームコホモロジー · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 可微分多様体とホモトピー · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 可微分多様体とベルンハルト・リーマン · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 可微分多様体とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 可微分多様体とベクトル空間 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 可微分多様体とアルベルト・アインシュタイン · 続きを見る »

アトラス (多様体)

数学の特に微分位相幾何学におけるアトラス (atlas; 地図帳) あるいは座標近傍系(ざひょうきんぼうけい、co­ordinate neighbourhood system)は多様体を記述するために必要である。アトラスはチャート (chart; 地図) あるいは座標近傍 (co­ordinate neighbourhood) と呼ばれる元の族であり、各チャートは簡単に言えば多様体の各点の周りの適当な領域に座標を入れて考えられるようにするものである。例えば地表を多様体と見なせば、アトラスとその各チャートは日常的な意味で言う地図帳と各地図と考えられる。一般には、アトラスは多様体の厳密な定義の一部として含まれ、あるいは多様体と関連深いベクトル束などのファイバー束においても同様である。.

新しい!!: 可微分多様体とアトラス (多様体) · 続きを見る »

アプリオリ

アプリオリとは、経験的認識に先立つ先天的、自明的な認識や概念。カントおよび新カント学派の用法。ラテン語のa prioriに由来する。日本語では、「先験的」「先天的」「超越的」などと訳される。.

新しい!!: 可微分多様体とアプリオリ · 続きを見る »

アフィン写像

幾何学におけるアフィン写像(アフィンしゃぞう、affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、affine transformation)と呼ばれる。アフィン写像はアフィン空間の構造を保つ。.

新しい!!: 可微分多様体とアフィン写像 · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 可微分多様体とアフィン空間 · 続きを見る »

アフィン接続

数学の一分野である微分幾何学において、アフィン接続(affine connection)は、滑らかな多様体を幾何学的対象としている。そこでは、近くの接空間どうしを接続し、あたかも固定されたベクトル空間に値を持つ多様体上の函数であるかのように、接ベクトル場を微分とみなす。アフィン接続の考え方は、19世紀の幾何学とテンソル解析に起源を持つ。エリ・カルタン(Élie Cartan)(という一般理論の一部として)とヘルマン・ワイル(Hermann Weyl)(一般相対論の基礎付けの一部として)により研究された1920年代に、アフィン接続は完全に開発された。用語は、カルタンによるもので、ある変換によりユークリッド空間 Rn の中で接空間どうしを同一視することに起源を持つ。アフィン接続を選択すると、無限小では多様体を滑らかではないがアフィン空間のようにユークリッド空間を見ることができるというアイデアである。 滑らかな多様体上には無限個のアフィン接続が存在する。さらに多様体がリーマン計量を持つと、アフィン接続を自然に選択することができ、この接続をレヴィ・チヴィタ接続と呼ぶ。アフィン接続を選択することは、(接)ベクトル場を規定することと同値であり、合理的な性質(線型性やライプニッツ則)を満たす。このことは、接バンドル上の共変微分や(線型)接続として、アフィン接続が妥当な定義であることを意味する。アフィン接続の選択は、曲線に沿って変換する接ベクトルを意味するの考え方と同値でもある。このことはまた、上の平行性を持つ変換を定義する。標構バンドル上の無限小平行移動は、アフィン接続、アフィン群の、あるいは、標構バンドル上の接続の別の記述であることをも意味する。 アフィン接続の主な不変量は、捩れと曲率である。捩れはどのようにして、ベクトル場のリーブラケットがアフィン接続から再現可能かを測る。アフィン接続は、多様体の(アフィン)測地線を定義することに使われる。ここで使われる直線の幾何学である測地線は、通常のユークリッド幾何学からは非常に異なるにもかかわらず、ユークリッド空間の直線の一般化となっている。直線と測地線との違いは、測地線が接続の曲率の中に全ての情報をカプセル化していることである。 n by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

新しい!!: 可微分多様体とアフィン接続 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 可微分多様体とカール・フリードリヒ・ガウス · 続きを見る »

カービー・ジーベンマン不変量

数学では、カービー・ジーベンマン不変量(Kirby–Siebenmann invariant)、あるいはカービー・ジーベンマン類(Kirby–Siebenmann class)は、位相多様体(topological manifold)が(piecewise linear structure)(PL構造)を持つと、0 となるような 4次コホモロジー群 の元である。命名は、(Robion Kirby)と(Larry Siebenmann)に因む。 e(M) \in H^4(M;\mathbf_2) which must vanish if a topological manifold M is to have a piecewise linear structure.

新しい!!: 可微分多様体とカービー・ジーベンマン不変量 · 続きを見る »

クリストッフェル記号

リーマン幾何学において、クリストッフェル記号(クリストッフェルきごう、Christoffel symbols)またはクリストッフェルの三添字記号(クリストッフェルのさんそえじきごう、Christoffel three index symbols)とは、測地線の微分方程式を表すにあたってブルーノ・クリストッフェル (1829–1900) によって導入された記号を言う。 クリストッフェル記号には第一種記号 \left と第二種記号 \left\ の二種類があるが、基本的には第二種記号のことを意味する。.

新しい!!: 可微分多様体とクリストッフェル記号 · 続きを見る »

グリーンの定理

リーンの定理(グリーンのていり、Green's theorem)は、ベクトル解析の定理であるGeorge B. Arfken and Hans J. Weber (2005), chapter.1宮島 (2007), 第2章 。イギリスの物理学者ジョージ・グリーンが導出した。2 つの異なる定理がそれぞれグリーンの定理と呼ばれる。詳細は以下に記す。.

新しい!!: 可微分多様体とグリーンの定理 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 可微分多様体とコンパクト空間 · 続きを見る »

シンプレクティック同相写像

数学では、シンプレクティック同相(symplectomorphism)(あるいは、シンプレクティック写像(symplectic map)とも言う)は、シンプレクティック多様体のカテゴリでの同型のことを言う。古典力学では、シンプレクティック同相は、体積保存する写像で、相空間のシンプレクティック構造を保存する相空間の間の写像変換である。古典力学では正準変換と呼ばれる。.

新しい!!: 可微分多様体とシンプレクティック同相写像 · 続きを見る »

シンプレクティック多様体

数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。.

新しい!!: 可微分多様体とシンプレクティック多様体 · 続きを見る »

シンプレクティック幾何学

ンプレクティック幾何学(シンプレクティックきかがく、symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持つ。また、弦理論や超対称性との関わりも盛んに研究がなされている。.

新しい!!: 可微分多様体とシンプレクティック幾何学 · 続きを見る »

ジョン・ミルナー

ョン・ミルナー (John Milner、Milnor); 「Milner」表記.

新しい!!: 可微分多様体とジョン・ミルナー · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: 可微分多様体とジェームズ・クラーク・マクスウェル · 続きを見る »

ストークスの定理

トークスの定理(ストークスのていり、Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べるGeorge B. Arfken and Hans J. Weber (2005), chapter.1。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因むVictor J. Katz (1979)Victor J. Katz (2008), chapter.16。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。.

新しい!!: 可微分多様体とストークスの定理 · 続きを見る »

ソボレフ空間

数学においてソボレフ空間(ソボレフくうかん、Sobolev space)は、函数からなるベクトル空間で、函数それ自身とその与えられた階数までの導函数の ''Lp''-ノルムを組み合わせて得られるノルムを備えたものである。ここでいう微分を適当な弱い意味での微分と解釈することにより、ソボレフ空間は完備距離空間、したがってバナッハ空間を成す。直観的には、ソボレフ空間は(偏微分方程式のような応用範囲に対して)十分多くの導函数を持つ函数からなるバナッハ空間あるいはヒルベルト空間であって、函数の大きさと滑らかさの両方を測るようなノルムを備えたものということである。 ソボレフ空間の名称はロシア人数学者のセルゲイ・ソボレフに因む。ソボレフ空間の重要性は、偏微分方程式の解というものは古典的な意味での導函数を備える連続函数からなる古典的な空間の中ではなく、むしろソボレフ空間の中にあるとして捉えたほうが自然であるという事実にある。.

新しい!!: 可微分多様体とソボレフ空間 · 続きを見る »

ソフス・リー

マリウス・ソフス・リー(Marius Sophus Lie, 1842年12月17日 - 1899年2月18日)は、ノルウェーの数学者 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「リー」より。ISBN 978-4-00-080309-0 C3541 。.

新しい!!: 可微分多様体とソフス・リー · 続きを見る »

サードの定理

ードの定理(サードのていり、Sard's theorem)、サードの補題、モース・サードの定理は解析学の定理で、「ユークリッド空間(または多様体)から他のユークリッド空間(または多様体)への滑らかな関数 f について、f の臨界点全体の f による像は、ルベーグ測度が 0 である(つまり、零集合である)」ことを言うものである。ルベーグ測度が 0 であるというのは、そのような点が「ほとんどない」ということである。.

新しい!!: 可微分多様体とサードの定理 · 続きを見る »

サイモン・ドナルドソン

イモン・ドナルドソン(Simon Kirwan Donaldson, 1957年8月20日 - )は、イギリスの数学者。専門は代数幾何学、微分幾何学、大域解析学。 ケンブリッジ生まれ。ケンブリッジ大学とオックスフォード大学で数学を学ぶ。プリンストン高等研究所、オックスフォード大学を経て、現在インペリアル・カレッジ・ロンドン教授。マイケル・アティヤとナイジェル・ヒッチンの弟子。 1982年に四次元ユークリッド空間において異種微分構造が存在することを、Yang-Millsゲージ理論を用いて示し、当時の数学界に衝撃を与えた。この業績により1986年にフィールズ賞を受賞した。1986年王立協会選出。.

新しい!!: 可微分多様体とサイモン・ドナルドソン · 続きを見る »

円周

円周(えんしゅう、circumference)とは、円の周囲もしくは周長のこと。円周と直径の比率を円周率という。.

新しい!!: 可微分多様体と円周 · 続きを見る »

内積

線型代数学における内積(ないせき、inner product)は、(実または複素)ベクトル空間上で定義される非退化かつ正定値のエルミート半双線型形式(実係数の場合には対称双線型形式)のことである。二つのベクトルに対してある数(スカラー)を定める演算であるためスカラー積(スカラーせき、scalar product)ともいう。内積を備えるベクトル空間は内積空間と呼ばれ、内積の定める計量を持つ幾何学的な空間と見做される。エルミート半双線型形式の意味での内積はしばしば、エルミート内積またはユニタリ内積と呼ばれる。.

新しい!!: 可微分多様体と内積 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 可微分多様体と写像の合成 · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

新しい!!: 可微分多様体と写像の微分 · 続きを見る »

函数の全微分

微分法の分野における全微分(ぜんびぶん、total differential)は多変数の場合の函数の微分である。 を''n''(あるいはより一般に可微分多様体)の開集合として、全微分可能な函数 の全微分を と書けば、これは のように表される。全微分と偏微分の区別のため、全微分には "丸くない d" を用い、偏微分には "丸い d" つまり ∂ を用いる。以下、扱う函数は全て全微分を持つものと仮定するから、同時にそれは偏微分可能であり、また は上記の式として表すことが可能となることに注意。 伝統的には、あるいは現代においても自然科学などの分野においてしばしば、微分 などを無限小として扱う。一方現代数学的な取扱いでは、微分形式(特に微分 1-形式)と考える。これは完全に形式的な式と考えることもできるし、線型写像として扱うこともできる。函数 の点 における微分 は、各ベクトル に対して を通る -方向への方向微分を対応付ける線型写像になる。この意味において全微分は、全微分係数(全導函数)である。このことは函数の終域を やほかのベクトル空間あるいは多様体に取り換えても通用する。.

新しい!!: 可微分多様体と函数の全微分 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: 可微分多様体と商群 · 続きを見る »

全微分

微分積分学における多変数函数の全微分商、全微分係数あるいは単に全微分(ぜんびぶん、total derivative)は、外生的な変数の(任意に小さな)変分に対する函数の変分の割合(差分商)の極限である。このとき、外生的な変数による直接的な影響のみならず函数が持つ他の内生的変数を通じてもたらされる影響をも考慮する必要がある。これは(差分商の極限として定義される通常の実函数の微分を形式的に多変数化して得られる)より弱い概念である偏微分を用いるのでは有効な結果を得られないような解析学的主張に対して、より多くの結果を得られるということであり。またこの意味において、微分積分学の様々な概念がこの全微分をもとにして定義される。現代数学の多くの文献において、全微分(全微分可能)を単に微分(微分可能)のように言うことはよくある。 多変数函数に対する全微分可能性は、多変数の微分積分学における基本性質の一つである。函数の与えられた点における全微分可能性は、函数が局所的に線型変換で近似されることを意味している。これに対し、(任意方向の)偏微分は、任意方向を持つ直線上における線形近似に過ぎず、全体としては線型近似になるとは限らない。函数 の変数 に関する全微分の計算において、 以外の変数を定数と見なすことは必要でなく、実際他の変数が に依存することが許される。全微分では の に対する依存関係として、このような変数間の陰伏的な従属関係も含めて考えるのであるChiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.

新しい!!: 可微分多様体と全微分 · 続きを見る »

共変性と反変性

共変性(きょうへんせい、covariance)と反変性(はんぺんせい、contravariance)とは、ある変換に対して変換の対象が示す性質のこと。.

新しい!!: 可微分多様体と共変性と反変性 · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

新しい!!: 可微分多様体と勾配 (ベクトル解析) · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: 可微分多様体と回転 (ベクトル解析) · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 可微分多様体と四元数 · 続きを見る »

C*-環

数学における -環(しーすたーかん、C*-algebra)とは複素数体上の完備なノルム環で複素共役に類似の作用をもつものであり、フォン・ノイマン環と並ぶ作用素環論の主要な研究対象である。-代数(シースターだいすう)とも呼ばれる。1943年のGel'fand-Naimarkと1946年のRickartの研究によって公理系が与えられた。'-algebra' という用語は1947年にSegalによって導入された。 -環はその内在的な構造のみにもとづいて公理的に定義されるが、実はどんな -環もヒルベルト空間上の線形作用素のなす環で、随伴操作とノルムに関する位相で閉じたものとして実現されることが知られている。また、可換な -環を考えることは局所コンパクト空間上の複素数値連続関数環を考えることになり、その連続関数環からはもとの位相空間を復元できるので、可換 -環の理論は局所コンパクト空間の理論と等価だといえる。一般の -環は、群(あるいは亜群)など、幾何学的な文脈に現れながら普通の空間とは見なされないようなものを包摂しうる変形(「量子化」)された空間を表していると考えることもできる。.

新しい!!: 可微分多様体とC*-環 · 続きを見る »

種数

数(しゅすう、genus; ジーナス)は、数学用語で、分野によって似通っているがいくらか異なる意味を持つ。なお、genus の複数形は genera。.

新しい!!: 可微分多様体と種数 · 続きを見る »

積の微分法則

微分積分学における積の法則(せきのほうそく、product rule;ライプニッツ則)は、二つ(あるいはそれ以上)の函数の積の導函数を求めるのに用いる公式で、 あるいはライプニッツの記法では と書くことができる。あるいは無限小(あるいは微分形式)の記法を用いて と書いてもよい。三つの函数の積の導函数は である。.

新しい!!: 可微分多様体と積の微分法則 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 可微分多様体と積分法 · 続きを見る »

空間 (数学)

数学における空間(くうかん、space)は、集合に適当な数学的構造を加味したものをいう。 現代数学における「空間」の扱いは、古典的な扱いと比べると、極めて異なる。 数学的空間は(ある空間のクラスが基となる空間のクラスの特徴を全て受け継ぐという意味で)しばしば階層構造を示す。例えば、任意の内積空間は、‖x‖2.

新しい!!: 可微分多様体と空間 (数学) · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: 可微分多様体と空間ベクトル · 続きを見る »

符号数

数学、とくに線型代数学における符号数(ふごうすう、signature)は固有値の符号(正・負・零)を重複度を込めて数えたものである。.

新しい!!: 可微分多様体と符号数 · 続きを見る »

第二可算的空間

数学の位相空間論おける第二可算空間(だいにかさんくうかん、second-countable space)とは、第二可算公理を満たす位相空間のことである。空間が第二可算公理を満たすとは「その位相が可算な開基を持つ」ということを言う。つまり、位相空間 T が第二可算的であるとは、T の可算個の開集合からなる族 \mathcal.

新しい!!: 可微分多様体と第二可算的空間 · 続きを見る »

等価原理

等価原理(とうかげんり、)は、物理学における概念の一つで、重力を論じる一般相対性理論の構築原理として用いられる他に、異なる座標系での物理量測定の一致性についての議論でも登場する。.

新しい!!: 可微分多様体と等価原理 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

新しい!!: 可微分多様体と線型汎函数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 可微分多様体と群 (数学) · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: 可微分多様体と群の表示 · 続きを見る »

環上の多元環

数学の殊に環論において可換環上の代数あるいは多元環(たげんかん、algebra)は、体上の多元環の概念において係数体を考えるところを置き換えて可換環を係数環としたものである。 本項においては、環と言えば単位元を持つものと仮定する。.

新しい!!: 可微分多様体と環上の多元環 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

新しい!!: 可微分多様体と無限小 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 可微分多様体と物理学 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: 可微分多様体と特殊線型群 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: 可微分多様体と発散 (ベクトル解析) · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

新しい!!: 可微分多様体と発散定理 · 続きを見る »

芽 (数学)

数学において、位相空間の中あるいは上の対象の芽(め、が、germ)とは、その対象に同種の対象を加えて作られた同値類のうち、局所的な性質が共通するように集めてきたものを呼ぶ概念である。特に、問題の対象として関数(あるいは写像)や部分集合を考えることが多い。このアイデアの特定の実行において、問題の集合あるいは写像は解析的あるいは滑らかのようないくつかの性質をもつが、一般にはこれは必要とされない(問題の写像や関数は連続である必要さえない)。しかしながら、対象の定義されている空間は、局所的という言葉がなんらかの意味をもつために位相空間である必要がある。 名前は層 のメタファーの続きで cereal germ に由来している。穀物にとってそうであるように芽は(局所的に)関数の「心臓 (heart)」であるからだ。.

新しい!!: 可微分多様体と芽 (数学) · 続きを見る »

非可換幾何

数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換性が要求されるが、その条件を外すことによってどんな現象がとらえられるかが追求される。.

新しい!!: 可微分多様体と非可換幾何 · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

新しい!!: 可微分多様体と行列の階数 · 続きを見る »

複素幾何学

数学では、複素幾何学(complex geometry)は複素多様体や多変数複素函数の研究をする。複素解析における幾何学的な側面であるは代数幾何学への超越な応用は、この分野に属する。 本記事を通して、「解析的」という用語は簡単のために省略することがある。例えば、部分多様体や超曲面は、「解析的」という形容詞は省略する。また、他の記事の使いかたに従い、多様体(variety)は既約(irreducible)であることを仮定する。.

新しい!!: 可微分多様体と複素幾何学 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 可微分多様体と複素数 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 可微分多様体と解析関数 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 可微分多様体と計量テンソル · 続きを見る »

計量ベクトル空間

線型代数学における計量ベクトル空間(けいりょうベクトルくうかん、metric vector space)は、内積と呼ばれる付加的な構造を備えたベクトル空間であり、内積空間(ないせきくうかん、inner product space)とも呼ばれる。この付加構造は、空間内の任意の二つのベクトルに対してベクトルの内積と呼ばれるスカラーを対応付ける。内積によって、ベクトルの長さや二つのベクトルの間の角度などの直観的な幾何学的概念に対する厳密な導入が可能になる。また内積が零になることを以ってベクトルの間の直交性に意味を持たせることもできる。内積空間は、内積として点乗積(スカラー積)を備えたユークリッド空間を任意の次元(無限次元でもよい)のベクトル空間に対して一般化するもので、特に無限次元のものは函数解析学において研究される。 内積はそれに付随するノルムを自然に導き、内積空間はノルム空間の構造を持つ。内積に付随するノルムの定める距離に関して完備となる空間はヒルベルト空間と呼ばれ、必ずしも完備でない内積空間は(内積の導くノルムに関する完備化がヒルベルト空間となるから)前ヒルベルト空間 (pre-Hilbert space) と呼ばれる。複素数体上の内積空間はしばしばユニタリ空間 (unitary spaces) とも呼ばれる。.

新しい!!: 可微分多様体と計量ベクトル空間 · 続きを見る »

部分多様体

部分多様体(submanifold)とは多様体 M の部分集合 S であって、それ自体も多様体構造を持つものを指す。このとき、包含写像 i: S → M の性質によって、部分多様体はいくつかの種類に分けられる。.

新しい!!: 可微分多様体と部分多様体 · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: 可微分多様体と関数の台 · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: 可微分多様体と関数空間 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 可微分多様体と関手 · 続きを見る »

閉微分形式

微分位相幾何学における微分形式が閉 (closed) である、または閉微分形式(へいびぶんけいしき、closed differential form、短く閉形式 (closed form) とは、その外微分が零となるときに言う。 シュヴァルツの定理により、-函数係数の任意の完全微分形式は閉微分形式である。ポワンカレの補題はこの部分的な逆を保証する。.

新しい!!: 可微分多様体と閉微分形式 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 可微分多様体と集合 · 続きを見る »

集合の被覆

数学において被覆(ひふく、cover)とは、ある集合がその集合の部分集合の族で覆われるとき、その部分集合の族のことをいう。.

新しい!!: 可微分多様体と集合の被覆 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 可微分多様体と速度 · 続きを見る »

連鎖律

微分法において連鎖律(れんさりつ、chain rule)とは、複数の関数が合成された合成関数を微分するとき、その導関数がそれぞれの導関数の積で与えられるという関係式のこと。.

新しい!!: 可微分多様体と連鎖律 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 可微分多様体と逆写像 · 続きを見る »

逆函数定理

数学、特に微分学において逆函数定理(ぎゃくかんすうていり、inverse function theorem)とは、関数が定義域内のある点の近傍で可逆であるための十分条件を述べるものである。この定理から、逆関数の微分の公式が得られる。 さらに多変数微分積分学においてこの定理は、ヤコビ行列が正則となる点を定義域内に持つ任意の ''C''1 級へと一般化される。この一般化から、逆関数のヤコビ行列の公式が得られる。 このほか、複素正則関数、多様体間の可微分写像、バナッハ空間間の可微分写像などに対する逆関数定理も存在する。.

新しい!!: 可微分多様体と逆函数定理 · 続きを見る »

退化形式

数学、とくに線型代数学において、ベクトル空間 V 上の退化 (degenerate) 双線型形式 f(x, y) とは、V から V*(V の双対空間)への v \mapsto (x \mapsto f(x,v)) で与えられる写像が同型でないような双線型形式である。V が有限次元のときの同値な定義はそれが非自明な核をもつということである、すなわち V の 0 でない元 x が存在して、 となる。.

新しい!!: 可微分多様体と退化形式 · 続きを見る »

陰関数

数学の特に解析学における陰函数(いんかんすう、implicit function; 陰伏函数)は、陰伏方程式すなわち適当な多変数函数(しばしば多変数多項式) によって の形に表される関係によって(その函数の引数のうちの一つの変数のを残りの変数に関係付けることによって)陰伏的 (implicitly) に定義される函数を言う。 例えば、単位円を定める陰伏方程式は であり、このときの に対する陰函数 は、 によって陰伏的に定められる。この陰伏方程式が、 の連続函数として を定めるのは に対してのみ、かつ函数の値として非負の値のみ(あるいは非正の値のみ)を取るものとしたときである(非負または非正の二つの連続な枝がある)。陰函数定理はこのような関係がいつ陰伏函数を定義するのかという十分条件を与えるものである。 が多変数多項式であるときの なる形の関係に対して、この関係を満足する変数の値の組全体の成す集合を、 のときは陰伏曲線、 のときはと呼ぶ。このような陰伏方程式は代数幾何学の基盤であり、古典的な代数幾何学では多項式の零点を記述する陰伏方程式からなる連立方程式の解を研究する。そのようなはアフィン代数的集合と呼ばれる。 微分方程式の解は一般には陰函数の形で得られる。.

新しい!!: 可微分多様体と陰関数 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: 可微分多様体とLp空間 · 続きを見る »

接ベクトル

数学において、接ベクトル(tangent vector)とは、曲線や曲面に接するようなベクトルのことである。.

新しい!!: 可微分多様体と接ベクトル · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 可微分多様体と接ベクトル空間 · 続きを見る »

接続 (幾何学)

微分幾何学において、接続(せつぞく、connection)の考え方により、曲線や曲線の族にそって平行で整合性を持つデータの移動の考え方を詳しく示すことができる。 現代の幾何学には多くの種類の接続の考え方があり、移動したいデータが何であるかに依存する。例えば、アフィン接続は接続の最も基本的なタイプであるが、この接続はある曲線に沿ってある点から別な点へ多様体の接ベクトルを移動することを意味する。アフィン接続は、典型的には共変な微分形式として与えられ、ベクトル場の方向微分、つまり与えられた方向へのベクトル場の無限小移動をとることを意味する。 現代の幾何学では接続は非常に重要である。大きな理由は、接続によりある点での局所幾何学と別な点での局所幾何学を比較することが可能となるからである。微分幾何学は、接続の考え方のいくつかの変形を持っている。大きなグループ分けをすると 2つのグループがあり、局所の理論と無限小の理論である。局所理論は、やの考え方に最初から関係する。無限小の理論は、幾何学的なデータの微分と関係する。このように、共変微分は多様体上のベクトル場を他のベクトル場に沿った微分として特定することである。は、微分形式やリー群を使い接続の理論をある側面から定式化する方法である。は、許される場の運動方向を特定することによるファイバーバンドル、あるいは主バンドルでの接続のことを言う。は、ベクトルバンドルへ一般化したときの接続である。(本記事では、ベクトルバンドルについて接続を考えるとき、「Koszul接続」という単語を用いることとする.) さらに接続は、曲率や捩れテンソルような、幾何学的不変量をうまく定式化することにも使われる(曲率テンソルや曲率形式も参照)。.

新しい!!: 可微分多様体と接続 (幾何学) · 続きを見る »

接線

初等幾何学において接する(せっする、tangent)とは、その名を「触れること」を意味するtangere に由来し、「ただ触れるだけ」という直観的概念を定式化するものである。特に、曲線の接線(せっせん、tangent line, tangent)は、平面曲線に対しては、曲線上の一点が与えられたとき、その点において曲線に「ただ触れるだけ」の直線を意味する。ライプニッツは接線を、曲線上の無限に近い二点を通る直線として定義した。より具体的に解析幾何学において、与えられた直線が曲線 の (あるいは曲線上の点 )における接線であるとは、その直線が曲線上の点 を通り、傾きが の微分係数 に等しいときに言う。同様の定義は空間曲線やより高次のユークリッド空間内の曲線に対しても適用できる。 曲線と接線が相接する点は接点 (point of tangency) と言い、曲線との接点において接線は曲線と「同じ方向へ」進む。その意味において接線は、接点における曲線の最適直線近似である。 同様に、曲面の接平面は、接点においてその曲線に「触れるだけ」の平面である。このような意味での「接する」という概念は微分幾何学において最も基礎となる概念であり、接空間として大いに一般化される。.

新しい!!: 可微分多様体と接線 · 続きを見る »

接触 (数学)

数学において二つの函数が点 において -次の(あるいは -位の)接触(せっしょく、contact)をなすとは、 においてそれらの値および -階までの導函数の値が一致するときに言う。これは同値関係をなし、その同値類は一般にと呼ばれる。 点における高次の接触は、曲線などの幾何学的対象についても定義される(ここに、微分は弧長変数に関するものを考える)。この場合には、接触は接吻 とも呼ばれ、接する (tangent) という性質を一般化するものである。 曲線とその上の点が与えられたとき、ある固定した曲線族に属するとは、その曲線上の点において曲線族の中で可能な最も高次の接触を持つ曲線を言う。例えば接線は、直線族に属する接触曲線として、与えられた曲線と一次の接触を持つものである。また例えば曲線のは、円族の中で、与えられた曲線と二次の接触をなす(接触角が一致し曲率も等しい)ものを言う。他も同様。 は、奇数次元多様体上で定義される特定の一次微分形式を言う(を参照)。は座標変換と関係し、古典力学において重要である(ルジャンドル変換の項を参照せよ)。 多様体同士の接触はしばしばにおいて研究され、そこでの接触の分類として A-系列(: 交点,: 接点,: 接吻点, …)に加えて、球面と高次の接触を持つことによって定義されるを含む D-系列がある。 曲線と円との一次の接触 (tangent) 曲線と円との二次の接触 (osculating) 曲線と円との、曲線の頂点における、三次の接触.

新しい!!: 可微分多様体と接触 (数学) · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: 可微分多様体と接束 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: 可微分多様体と極大イデアル · 続きを見る »

概型

数学における概型あるいはスキーム (scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。 スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。.

新しい!!: 可微分多様体と概型 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: 可微分多様体と正則関数 · 続きを見る »

決定問題

決定問題(けっていもんだい、decision problem)とは、各入力に対して受理か拒絶かのうち片方を出力する形式の問題をいう。判定問題とも呼ばれる。形式的には、文字列全体の集合\ ^*、あるいは\ ^*の部分集合から\への写像である。 たとえば、ある命題論理式を充足する真理値割り当てがあるかないか(充足可能性問題)、与えられた自然数が素数か否か(素数判定問題)、といったものがある。これに対し、受理か拒絶かだけでなく真理値割り当てや素因数分解の結果といったものの出力を要求する問題は函数問題(function problem)と呼ばれる。 決定問題は、数学的に定式化しやすく、かつ出力に関わる時間を考慮しなくてよいことから、計算理論でよく使われる。.

新しい!!: 可微分多様体と決定問題 · 続きを見る »

沈め込み

数学において、沈め込み (submersion) とは、可微分多様体間の可微分写像であって微分がいたるところ全射であるもののことである。これは微分トポロジーにおいて基本的な概念である。沈め込みの概念ははめ込みの概念の双対である。.

新しい!!: 可微分多様体と沈め込み · 続きを見る »

準用・類推適用

準用(じゅんよう)とは、立法技術の1つであり、ある事柄について、別の類似した事柄に関する一定の規定に論理的に必要な修正を行った(羅:mutatis mutandis)内容の効力を及ぼすことをいう。似たような条文を重ねて記述することを避け、条文数を削減することができるというメリットがあるが、特に読替えが多い場合などは読みづらくなるというデメリットもある。 類似する立法技術として、みなし適用と「例による」旨の定めがある。 みなし適用は、ある事柄について、別の事柄に関する一定の規定を適用するに際しては当該別の事柄とみなすことにより、当該別の事柄に関する規定の効力を直接及ぼすことをいう。準用による法的な効果は準用規定そのものに基づくのに対して、みなし適用については元の規定そのものに基づく。準用においてもみなし適用においても、論理的に必要な読替え以外については、法令上さらに読替えが定められることがある。 これらに対して、「例による」は、別の事柄に関する特定の規定の効果を及ぼすのではなく、当該別の事柄に関する一定の法規範(例えば委任先の下位法令を含む。)に準じた効力を及ぼすものであるが、対象となる規定が必ずしも明確に特定されず、読替えも行われないため、内容が不鮮明になりがちである。準用の場合と同じく、「例による」規定そのものが法的な効果の根拠となる。 類推適用(るいすいてきよう)とは、法解釈技術の1つであり、ある事柄に関する規定の背後にある趣旨を別の事柄についても及ばせて新たな(明文のない)規範を発見ないし創造しそれを適用するものである。そのような趣旨のことを「類推の基礎」という。そして、そのための解釈技術を類推解釈(るいすいかいしゃく)とよぶ。明文の根拠のない規範を解釈により導くものであることから、罪刑法定主義または租税法律主義の下では、少なくとも被告人または納税者に不利益な形での類推適用は禁止されるものと考えられている。 類推適用の具体例として、権利外観法理に基づく民法94条2項の類推適用が挙げられる。このような解釈技術により、明文のある規定のみを適用した場合に比べて整合性のとれた法規範により、安易な一般条項の適用を回避しつつ、妥当な結論を導くことができることとなる。 準用と類推適用は異なる性質のものであるが、もたらす効果が類似することもあり、法学上まとめて解説されることが多く、本稿もそれに倣った。 Category:立法 Category:法令 en:mutatis mutandis.

新しい!!: 可微分多様体と準用・類推適用 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: 可微分多様体と滑らかな関数 · 続きを見る »

方向微分

数学において、多変数微分可能関数のある与えられた点 x におけるある与えられたベクトル v に沿った方向微分(ほうこうびぶん、)とは、直感的には、v によって特徴づけられた速度で x を通過する時の、その関数の即時的な変化率を意味する。したがって、他のすべての座標は定数として、ある一つのに沿った変化率を取るような、偏微分の概念を一般化するものである。 方向微分は、ガトー微分の特別な場合である。.

新しい!!: 可微分多様体と方向微分 · 続きを見る »

斜交群

数学において、斜交群(しゃこうぐん、symplectic group)またはシンプレクティック群は、極めて密接に関連するが、異なる 2 つの群を意味し得る。 この記事では、この二つの群を Sp(2n, F) および Sp(n) と記す。 前者と区別するため、後者は屡、コンパクト斜交群と呼ばれる。 多くの筆者が若干異なる記号を使う傾向にあるが、それは、2 の因数だけ異なる。 ここでの記号は、群を表現するために使う行列の大きさに合わせることとする。.

新しい!!: 可微分多様体と斜交群 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: 可微分多様体と擬リーマン多様体 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 可微分多様体と曲線 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: 可微分多様体と曲面 · 続きを見る »

1の分割

数学において、位相空間 X の 1 の分割(いちのぶんかつ、partition of unity)は、X から単位区間 への連続関数の集合 R であって、すべての点 x\in X に対して以下の二条件を満たすものである:.

新しい!!: 可微分多様体と1の分割 · 続きを見る »

2-形式

線型代数学において、2-形式 (two-form) は双線型形式の別名であり、典型的にはインフォーマルな議論で使われるが、双線型形式が歪対称であることを指し示すために使われることもある。 微分幾何学において、2-形式 (two-form) は 2 次の微分形式を意味する。言い換えると、2-形式はの歪対称2階共変テンソル場である。 与えられたベクトル場に対して、2-形式全体の空間は基底 1-形式のウェッジ積によって張られる。微分形式 (differential form) を参照。.

新しい!!: 可微分多様体と2-形式 · 続きを見る »

4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

新しい!!: 可微分多様体と4次元多様体 · 続きを見る »

ここにリダイレクトされます:

可微分写像幾何学的構造微分可能多様体滑らかな多様体滑らかな曲線滑らかな関数の層

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »