ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

多様体

索引 多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

80 関係: 単位円単位球面南極南極大陸可微分多様体双曲幾何学同値関係媒介変数射影空間層 (数学)世界地図一般相対性理論平面座標人間代数多様体位相同型位相多様体位相幾何学位相空間微分微分同相写像微分形式地図地図帳地球区間 (数学)北極ペアノ曲線ハワイ州ハウスドルフ空間ユークリッド空間トーラスフラクタルドラゴンクエストシリーズベルンハルト・リーマンベクトルベクトル場ベクトル空間アルベルト・アインシュタインアンリ・ポアンカレアフィン空間イマヌエル・カントエルランゲン・プログラムカール・フリードリヒ・ガウスガーナゲッティンゲンゲオルク・アウグスト大学ゲッティンゲンコンピュータRPG...円柱 (数学)全単射球面積位相積分法緯度経度直積集合直線非ユークリッド幾何学解析関数高々 (数学)近傍 (位相空間論)関数 (数学)開集合接ベクトル空間恒等写像整数曲線1826年1827年1829年1854年1872年1895年1916年1936年6月10日 インデックスを展開 (30 もっと) »

単位円

数学において単位円(たんいえん、unit circle)とは、半径が 1 の円のことである。解析幾何学(いわゆる“座標幾何”)では特に原点(すなわち x 軸と y 軸の交点) O(0, 0) を中心とするものをいう。これは、原点からの距離が 1 であるような点の全体が描く軌跡のことと言っても同じことである。 単位円はしばしば S1 で表される(これは n 次元の球面 (sphere) という概念の n.

新しい!!: 多様体と単位円 · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: 多様体と単位球面 · 続きを見る »

南極

南極大陸の位置 南極大陸の衛星写真 南極旗 南極(なんきょく、Antarctic)とは、地球上の南極点、もしくは南極点を中心とする南極大陸およびその周辺の島嶼・海域(南極海)などを含む地域を言う。南極点を中心に南緯66度33分までの地域については南極圏と呼ぶ。南緯50度から60度にかけて不規則な形状を描く氷塊の不連続線である南極収斂線があり、これより南を南極地方とも呼ぶ。南極地方には、南極大陸を中心に南極海を含み、太平洋、インド洋、大西洋の一部も属する。 なお、1961年6月に発効した南極条約により、南緯60度以南の領有権主張は凍結(2012年現在、一部の国が現在も領有権を主張している)されており、軍事利用、核実験なども禁止されている。.

新しい!!: 多様体と南極 · 続きを見る »

南極大陸

南極大陸(なんきょくたいりく、、(または) 、、、、)は、地球の最も南にあり、南極点を含む大陸。南半球の南極地方にあり、南氷洋に囲まれた南極圏に位置する。5番目に大きな大陸であり約1400万km2の面積は、オーストラリア大陸のほぼ2倍に相当する。約98%は氷で覆われ、その厚さは平均2.00325kmに及ぶ。 南極大陸は、平均気温が最も低く、乾燥し、強風に晒され、また平均海抜も最も高い大陸である。年間降水量が海岸部分で200mm、内陸ではさらに少ない砂漠と考えられる。 南極大陸で観測された最低気温は、2010年8月10日に記録した-93.2である。この気温では人間が定住することは難しいが、約1000-5000人が大陸中に点在する研究所に年間を通して滞在している。自然状態では、寒冷な環境に適応可能な生物のみが生存し、多くの藻類、ダニ・線虫やペンギン・鰭脚類・節足動物などの動物類、バクテリア、菌類、植物および原生生物が繁殖している。植生はツンドラである。 かつて、「南の地」を意味するメガラニカ (Terra Australis) という大陸が空想されていた南極域に、公式に大陸が存在する事が確認されたのは1820年にロシアの探検家ファビアン・ゴットリープ・フォン・ベリングスハウゼンとがボストーク号(en)とミールヌイ号(en)で行った遠征に端を発する。しかし、厳しい自然環境や、当時は資源が見つからなかった事、そして孤立的な地理条件から、19世紀中はほとんど歯牙にかけられなかった。 1959年、12ヶ国の批准で始まった南極条約は、その後加盟国が49にまで増えた。条約は、軍事的活動や鉱物採掘、核爆発や核廃棄物の発生、各国家による領域主権の主張を禁止し、科学的研究の支援と生物地理区としての保護を定めた。多くの国から派遣された科学者たちが、研究や実験を行っている。.

新しい!!: 多様体と南極大陸 · 続きを見る »

可微分多様体

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。.

新しい!!: 多様体と可微分多様体 · 続きを見る »

双曲幾何学

双曲幾何学(そうきょくきかがく、)またはボヤイ・ロバチェフスキー幾何学 とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユークリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。 ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。 双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。 例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。 このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。.

新しい!!: 多様体と双曲幾何学 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 多様体と同値関係 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: 多様体と媒介変数 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 多様体と射影空間 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 多様体と層 (数学) · 続きを見る »

世界地図

世界地図 世界地図(せかいちず)は、地球全体、あるいは大部分を表現した地図である。 主に以下の事柄が、シンボル化した記号・文字・図形・各種色彩などによって平面上に表現される。.

新しい!!: 多様体と世界地図 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 多様体と一般相対性理論 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 多様体と平面 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 多様体と座標 · 続きを見る »

人間

人間(にんげん、英: human beingジーニアス和英辞典「人間」)とは、以下の概念を指す。.

新しい!!: 多様体と人間 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 多様体と代数多様体 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 多様体と位相同型 · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 多様体と位相多様体 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: 多様体と位相幾何学 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 多様体と位相空間 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 多様体と微分 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 多様体と微分同相写像 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 多様体と微分形式 · 続きを見る »

地(チ、ジ、つち)とは、土、陸、場所、下などを指す。比喩、抽象、哲学などの意味で使われる場合もある。.

新しい!!: 多様体と地 · 続きを見る »

地図

地図(ちず、英:mapブリタニカ百科事典「地図」 マップ、chart チャート)とは、地球表面の一部または全部を縮小あるいは変形し、記号・文字などを用いて表した図。.

新しい!!: 多様体と地図 · 続きを見る »

地図帳

地図帳(ちずちょう)とは、多くの地図を集め、一巻あるいは何巻かまとまった形で製本されたものをいう。地図集、アトラス(atlas)などともいわれる。大航海時代のヨーロッパにおいて爆発的に地理の知識が拡大したのに伴い、地図の発達と共に普及していったものである。現代でも、世界中で出版されており、主題別・地域別などに細分化されたものも多く見られる。また、分量も詳細に描かれ何巻ものシリーズになっている大型のものや、学校教育での教材として使われることなどを想定した中型のもの、利用者の使いやすさ重視して都市中心部などの特定の地域のみを描いた小型のものなど様々なものが登場している。.

新しい!!: 多様体と地図帳 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 多様体と地球 · 続きを見る »

区間 (数学)

数学における(実)区間(じつくかん、(real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、 を満たす数 全体の成す集合は、 と, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としてのを考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。.

新しい!!: 多様体と区間 (数学) · 続きを見る »

北極

北極(ほっきょく、英: Arctic)とは、地球などの惑星・天体の地軸と地表が交わる点のうち、北側のものである北極点の周辺地域、もしくは北極点そのものを指す。地球上では北極海などを含む地域で、特に白夜・極夜の見られる区域を北極圏と呼ぶ。 地球の自転軸上の北極点と方位磁石が示す北極である北磁極は異なる場所にあり、1000km程離れている。そのため、方位磁石が示す方向が必ずしも真北とは限らない。南北の磁極は移動し続けている。.

新しい!!: 多様体と北極 · 続きを見る »

ペアノ曲線

幾何学において,ペアノ曲線(Peano curve)は空間充填曲線の最初に発見された例であり,1890年ジュゼッペ・ペアノ (Giuseppe Peano) による.ペアノ曲線は単位区間から単位正方形の上への全射連続関数であるが,単射ではない.ペアノはこれら2つの集合が同じ濃度をもつというゲオルグ・カントルの以前の結果に動機づけられた.この例のため,「ペアノ曲線」をより一般に任意の空間充填曲線を指すために用いる著者もいる..

新しい!!: 多様体とペアノ曲線 · 続きを見る »

ハワイ州

ハワイ州(State of Hawaii 、Hawaiʻi)は、太平洋に位置するハワイ諸島にあるアメリカ合衆国の州である。漢字では「布哇」と書く。州都はオアフ島のホノルル市である。アメリカ合衆国50州の中で最後に加盟した州である。 ハワイ島、マウイ島、オアフ島、カウアイ島、モロカイ島、ラナイ島、ニイハウ島、カホオラウェ島の8つの島と100以上の小島からなるハワイ諸島のうち、ミッドウェー環礁を除いたすべての島が、ハワイ州に属している。北西ハワイ諸島の北西端からハワイ諸島の南東端のハワイ島まで、全長1,500マイル (2,400 km) にわたっている。州全体が島だけで構成されることではアメリカ合衆国で唯一の州である。アメリカ合衆国本土の南西、日本の南東、オーストラリアの北東と、太平洋の中央に位置し、地理的にも民族的にも近いポリネシアでは最も北にある列島で構成されている。その自然の多様な景観、暖かい熱帯性気候、豊富な公共の海浜と大洋に取り囲まれていること、および活火山の活動があることで、観光客、サーファー、生物学者、火山学者などに人気のある目的地になっている。独特の文化がある他に太平洋の中心にあることで、北アメリカやアジアの影響も多く受けている。130万人を超える人口の他に常に観光客やアメリカ軍軍事関係者が滞在している。.

新しい!!: 多様体とハワイ州 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 多様体とハウスドルフ空間 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 多様体とユークリッド空間 · 続きを見る »

トーラス

初等幾何学におけるトーラス(torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 (に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた に同相な図形の総称として用いられ、 の(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは では不可能で、 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。.

新しい!!: 多様体とトーラス · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 多様体とフラクタル · 続きを見る »

ドラゴンクエストシリーズ

ドラゴンクエストシリーズ(Dragon Quest Series)は、1986年5月27日に発売された『ドラゴンクエスト』を第一作とする、日本製コンピュータRPGのシリーズ作品。主にゲームデザイナーの堀井雄二を中心として製作され、スクウェア・エニックス(旧エニックス)が発売している。 2017年時点で、シリーズ累計出荷数と配信数は7,500万本を超えた。.

新しい!!: 多様体とドラゴンクエストシリーズ · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 多様体とベルンハルト・リーマン · 続きを見る »

ベクトル

ベクトル()またはベクター() ベクトルは Vektor に由来し、ベクターは vector に由来する。物理学などの自然科学の領域ではベクトル、プログラミングなどコンピュータ関係ではベクターと表記される、という傾向が見られることもある。また、技術文書などではしばしばJIS規格に準拠する形で、長音を除いたベクタという表記が用いられる。 は「運ぶ」を意味するvehere に由来し、18世紀の天文学者によってはじめて使われた。 ベクトルは通常の数(スカラー)と区別するために矢印を上に付けたり(例: \vec,\ \vec)、太字で書いたりする(例: \boldsymbol, \boldsymbol)が、分野によっては矢印も太字もせずに普通に書くこともある(主に解析学)。 ベクトル、あるいはベクターに関する記事と用法を以下に挙げる。.

新しい!!: 多様体とベクトル · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: 多様体とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 多様体とベクトル空間 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 多様体とアルベルト・アインシュタイン · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: 多様体とアンリ・ポアンカレ · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 多様体とアフィン空間 · 続きを見る »

イマヌエル・カント

イマヌエル・カント(Immanuel Kant、1724年4月22日 - 1804年2月12日)は、プロイセン王国(ドイツ)の哲学者であり、ケーニヒスベルク大学の哲学教授である。『純粋理性批判』、『実践理性批判』、『判断力批判』の三批判書を発表し、批判哲学を提唱して、認識論における、いわゆる「コペルニクス的転回」をもたらした。フィヒテ、シェリング、そしてヘーゲルへと続くドイツ古典主義哲学(ドイツ観念論哲学)の祖とされる。彼が定めた超越論哲学の枠組みは、以後の西洋哲学全体に強い影響を及ぼしている。.

新しい!!: 多様体とイマヌエル・カント · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: 多様体とエルランゲン・プログラム · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 多様体とカール・フリードリヒ・ガウス · 続きを見る »

ガーナ

ーナ共和国(ガーナきょうわこく)、通称ガーナは、西アフリカに位置する共和制国家で、イギリス連邦加盟国である。東にトーゴ、北にブルキナファソ、西にコートジボワールと国境を接し、南は大西洋に面する。首都はアクラ。 脱植民地化が活発であった最中の1957年に、サハラ以南のアフリカにおいて初めて現地人が中心となってヨーロッパの宗主国から独立を達成した国家である。イギリス領ゴールド・コーストと呼ばれていたが、独立に際して国名をガーナに変更した。初代大統領ンクルマは、アフリカ統一運動を推進したことで有名。かつてゴールド・コーストと呼ばれた海岸を保有しており、ダイヤモンドや金を産出する。カカオ豆の産地としても有名。2010年12月から沖合油田で原油生産が始まり、国際的に大きな注目を集めている。.

新しい!!: 多様体とガーナ · 続きを見る »

ゲッティンゲン

ッティンゲン(標準ドイツ語:Göttingen, 低ザクセン語:Chöttingen)は、ドイツ連邦共和国ニーダーザクセン州ゲッティンゲン郡に属す都市である。同州南部に位置する大学都市であり、教育・研究で強く特徴付けられる。都市名は「ゲッチンゲン」とも表記される。 ゲッティンゲンは、ハノーファー、ブラウンシュヴァイク、オスナブリュック、オルデンブルクに次ぐニーダーザクセン州で5番目に大きな都市であり、上級中心都市の機能を担っている。この街はゲッティンゲン郡の郡庁所在都市であり、同郡最大の都市である。1964年にニーダーザクセン州州議会で可決されたゲッティンゲン法により、それまでの郡独立市からゲッティンゲン郡に編入された。この都市はこれ以後も、特に定めない限り、郡独立市と同等の扱いを受けることになっている。 ゲッティンゲンは1965年に人口10万人を超え、これにより大都市となった。最寄りの大都市には、カッセル(約38km南西)、ヒルデスハイム(約70km北)、ブラウンシュヴァイク(約92km北東)、エアフルト(約98km南東)、ハノーファー(約105km北)、パーダーボルン(約120km西南西)がある。ゲッティンゲンはハノーファー=ブラウンシュヴァイク=ゲッティンゲン=ヴォルフスブルク大都市圏の南端にあたる。.

新しい!!: 多様体とゲッティンゲン · 続きを見る »

ゲオルク・アウグスト大学ゲッティンゲン

旧大講堂 大学内の風景 ゲオルク・アウグスト大学ゲッティンゲン(Georg-August-Universität Göttingen, 略称:GAU)は、ドイツのニーダーザクセン州ゲッティンゲンに位置する大学。ドイツに9つあるエクセレントセンターの一つ。ハノーファー選帝侯ゲオルク・アウグスト(英国王としてはジョージ2世)によって1737年に設立された。大学名はこの創設者にちなむものである。ゲッティンゲン大学とも通称する。.

新しい!!: 多様体とゲオルク・アウグスト大学ゲッティンゲン · 続きを見る »

コンピュータRPG

ンピュータRPG(コンピュータ・アールピージー)は、コンピュータゲームのジャンルの一つ。 元々、RPGは卓上で紙と鉛筆、サイコロ用いて行うものであり、それが計算機の発展とともにコンピューター上で展開されるようになったものであるが、それらの先駆段階を省いてRPG文化が輸入された日本では、初期からCRPGが席巻したため、「RPG」(アールピージー)がそのままCRPGを指すこと多い(本来のRPGはTRPG.

新しい!!: 多様体とコンピュータRPG · 続きを見る »

円柱 (数学)

数学において円柱(えんちゅう、cylinder)とは二次曲面(三次元空間内の曲面)の一種で、デカルト座標によって次の方程式で定義されるものである: この方程式は楕円柱を表し、a.

新しい!!: 多様体と円柱 (数学) · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 多様体と全単射 · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 多様体と球 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 多様体と球面 · 続きを見る »

積位相

位相幾何学とその周辺において、積空間(せきくうかん、product space)とは位相空間の族の直積に積位相 (product topology) と呼ばれるを入れた空間のことである。この位相は他の、もしかするとより明らかな、と呼ばれる位相とは異なる。箱位相も積空間に与えることができ、有限個の空間の直積では積位相と一致する。しかしながら、積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが積位相が「自然」であるという意味である。.

新しい!!: 多様体と積位相 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 多様体と積分法 · 続きを見る »

緯度

緯度(いど、Latitude, Breite)とは、経緯度(=経度・緯度。すなわち天体表面上の位置を示す座標)の一つである。以下特に断らない限り、地球の緯度について述べる。余緯度とは緯度の余角。.

新しい!!: 多様体と緯度 · 続きを見る »

経度

メルカトル図法による世界地図。縦の線が経線 経度(けいど、Longitude, Länge)とは、経緯度(=経度・緯度。すなわち天体表面上の位置を示す座標)の一つである。以下、特に断らない限り、地球の経度について述べる。.

新しい!!: 多様体と経度 · 続きを見る »

直積集合

数学において、集合のデカルト積(デカルト­せき、Cartesian product)または直積(ちょくせき、direct product)、直積集合、または単に積(せき、product)、積集合は、集合の集まり(集合族)に対して各集合から一つずつ元をとりだして組にしたもの(元の族)を元として持つ新たな集合である。 具体的に二つの集合 に対し、それらの直積とはそれらの任意の元 の順序対 全てからなる集合をいう。 では と書くことができる。有限個の集合の直積 も同様のn-組からなる集合として定義されるが、二つの集合の直積を入れ子 (nested) にして、 と帰納的に定めることもできる。.

新しい!!: 多様体と直積集合 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 多様体と直線 · 続きを見る »

非ユークリッド幾何学

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。.

新しい!!: 多様体と非ユークリッド幾何学 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: 多様体と解析関数 · 続きを見る »

高々 (数学)

数学において、高々(たかだか)という表現は、英語の at most に対応した厳密な意味を持つ用語である。 「多くとも」、「以下」と同義であるが、文脈によってはこれらよりも好まれる場合もある(例:「高々可算」とは言うが「可算以下」とは言わない。).

新しい!!: 多様体と高々 (数学) · 続きを見る »

近傍 (位相空間論)

平面上の集合 ''V'' が点 ''p'' の近傍であるのは、''p'' を中心とする小さな円板が ''V'' に含まれるときである。 矩形の頂点に対して、その矩形は近傍でない。 数学の位相空間論周辺分野でいう近傍(きんぼう、neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。 近傍の概念は開集合と内部の概念と密接な関連がある。.

新しい!!: 多様体と近傍 (位相空間論) · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 多様体と関数 (数学) · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 多様体と開集合 · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: 多様体と接ベクトル空間 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 多様体と恒等写像 · 続きを見る »

数(かず、すう、number)とは、.

新しい!!: 多様体と数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 多様体と整数 · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 多様体と曲線 · 続きを見る »

1826年

記載なし。

新しい!!: 多様体と1826年 · 続きを見る »

1827年

記載なし。

新しい!!: 多様体と1827年 · 続きを見る »

1829年

記載なし。

新しい!!: 多様体と1829年 · 続きを見る »

1854年

記載なし。

新しい!!: 多様体と1854年 · 続きを見る »

1872年

記載なし。

新しい!!: 多様体と1872年 · 続きを見る »

1895年

記載なし。

新しい!!: 多様体と1895年 · 続きを見る »

1916年

記載なし。

新しい!!: 多様体と1916年 · 続きを見る »

1936年

記載なし。

新しい!!: 多様体と1936年 · 続きを見る »

6月10日

6月10日(ろくがつとおか)はグレゴリオ暦で年始から161日目(閏年では162日目)にあたり、年末まであと204日ある。誕生花はジャスミン、ラベンダー。.

新しい!!: 多様体と6月10日 · 続きを見る »

ここにリダイレクトされます:

多様体論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »