ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

テンソル場

索引 テンソル場

数学、物理学および工学におけるテンソル場(テンソルば、tensor field)は、数学的な空間(典型的にはユークリッド空間や多様体)の各点にテンソルを割り当てるものである。テンソル場は微分幾何学、代数幾何学、一般相対論において用いられ、物質の応力および歪みの解析やその他物理科学および工学における様々な応用に供される。テンソルがスカラー(長さのような値を表す数値)やベクトル(空間内の幾何学的な矢印)の一般化であるのと同様に、テンソル場はスカラー場およびベクトル場(それぞれ空間の各点にスカラーおよびベクトルを割り当てる)の一般化になっている。 一口に「テンソル」と呼ばれている概念でも、実際の数学的構造は「テンソル場」であるという場合も多い。例えばリーマン曲率テンソルなど。.

49 関係: ひずみ向き付け可能性多様体工学一般相対性理論平行移動代数幾何学余接空間余接束微分幾何学微分形式微分法微分方程式応力メビウスの帯ユークリッド空間リー微分リーマン曲率テンソルレヴィ・チヴィタ接続テンソルテンソル積ベクトル場ベクトル空間ベクトル束アフィン接続スピノル場スカラー (物理学)スカラー場円柱共変微分理論物理学積分変換空間ベクトル絶対値環 (数学)環上の加群物理学直線束計量テンソル関手連鎖律Well-defined接ベクトル空間接束捩れテンソル楕円体滑らかな関数断面 (位相幾何学)数学

ひずみ

ひずみ(Strain)は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。.

新しい!!: テンソル場とひずみ · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: テンソル場と向き付け可能性 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: テンソル場と多様体 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: テンソル場と工学 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: テンソル場と一般相対性理論 · 続きを見る »

平行移動

ユークリッド幾何学における平行移動(へいこういどう、translation)は全ての 点を決まった方向に一定の距離だけ動かす写像である。 物理学における平行移動は並進運動 (translational motion) と呼ばれる。.

新しい!!: テンソル場と平行移動 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: テンソル場と代数幾何学 · 続きを見る »

余接空間

微分幾何学において、滑らかな(あるいは可微分)多様体の各点 x に x における余接空間 (cotangent space) と呼ばれるベクトル空間を取り付けることができる。余接空間は、より直接的な定義があるが(下記参照)、典型的には、x における接空間の双対空間として定義される。余接空間の元は余接ベクトル (cotangent vector) あるいは接余ベクトル (tangent covector) と呼ばれる。.

新しい!!: テンソル場と余接空間 · 続きを見る »

余接束

数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。.

新しい!!: テンソル場と余接束 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: テンソル場と微分幾何学 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: テンソル場と微分形式 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: テンソル場と微分法 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: テンソル場と微分方程式 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: テンソル場と応力 · 続きを見る »

メビウスの帯

メビウスの帯 メビウスの帯(メビウスのおび、Möbius strip, Möbius band)、またはメビウスの輪(メビウスのわ、Möbius loop)は、帯状の長方形の片方の端を180°ひねり、他方の端に貼り合わせた形状の図形(曲面)である。メービウスの帯ともいう。 数学的には向き付け不可能性という特徴を持ち、その形状が化学や工学などに応用されているほか、芸術や文学において題材として取り上げられることもある。.

新しい!!: テンソル場とメビウスの帯 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: テンソル場とユークリッド空間 · 続きを見る »

リー微分

数学においてリー微分(りーびぶん、Lie derivative)は、多様体 M 上のテンソル場全体の成す多元環上に定義される微分(導分とも)の一種である。ソフス・リーにちなんで名づけられた。M 上のリー微分全体の成すベクトル空間は次で定義されるリー括弧積 について無限次元のリー環を成す。リー微分は M 上の流れ(flow; フロー、activeen な微分同相写像)の無限小生成作用素としてベクトル場によって表される。もう少し別な言い方をすれば、リー群論の方法の直接の類似物ではあるが、M 上の微分同相写像全体の成す群は付随するリー環構造(もちろんそれはリー微分全体のなすリー環のことだが)を持つということができる。.

新しい!!: テンソル場とリー微分 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: テンソル場とリーマン曲率テンソル · 続きを見る »

レヴィ・チヴィタ接続

リーマン幾何学では、レヴィ・チヴィタ接続 (Levi-Civita connection) は多様体の接バンドル上の特別な接続であり、特別とは捩れをもたない(metric connection)、つまり、捩れを持たない与えられた(擬)リーマン計量を保存する接バンドル上の接続(アフィン接続)である。 リーマン幾何学の基本定理は、これらの性質を満たす接続が一意的に決まることを言っている。 リーマン多様体や擬リーマン多様体の理論では、共変微分はレヴィ・チヴィタ接続のために使われる。局所座標系の観点からは、この接続の成分はクリストッフェル記号と呼ばれる。.

新しい!!: テンソル場とレヴィ・チヴィタ接続 · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: テンソル場とテンソル · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: テンソル場とテンソル積 · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

新しい!!: テンソル場とベクトル場 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: テンソル場とベクトル空間 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: テンソル場とベクトル束 · 続きを見る »

アフィン接続

数学の一分野である微分幾何学において、アフィン接続(affine connection)は、滑らかな多様体を幾何学的対象としている。そこでは、近くの接空間どうしを接続し、あたかも固定されたベクトル空間に値を持つ多様体上の函数であるかのように、接ベクトル場を微分とみなす。アフィン接続の考え方は、19世紀の幾何学とテンソル解析に起源を持つ。エリ・カルタン(Élie Cartan)(という一般理論の一部として)とヘルマン・ワイル(Hermann Weyl)(一般相対論の基礎付けの一部として)により研究された1920年代に、アフィン接続は完全に開発された。用語は、カルタンによるもので、ある変換によりユークリッド空間 Rn の中で接空間どうしを同一視することに起源を持つ。アフィン接続を選択すると、無限小では多様体を滑らかではないがアフィン空間のようにユークリッド空間を見ることができるというアイデアである。 滑らかな多様体上には無限個のアフィン接続が存在する。さらに多様体がリーマン計量を持つと、アフィン接続を自然に選択することができ、この接続をレヴィ・チヴィタ接続と呼ぶ。アフィン接続を選択することは、(接)ベクトル場を規定することと同値であり、合理的な性質(線型性やライプニッツ則)を満たす。このことは、接バンドル上の共変微分や(線型)接続として、アフィン接続が妥当な定義であることを意味する。アフィン接続の選択は、曲線に沿って変換する接ベクトルを意味するの考え方と同値でもある。このことはまた、上の平行性を持つ変換を定義する。標構バンドル上の無限小平行移動は、アフィン接続、アフィン群の、あるいは、標構バンドル上の接続の別の記述であることをも意味する。 アフィン接続の主な不変量は、捩れと曲率である。捩れはどのようにして、ベクトル場のリーブラケットがアフィン接続から再現可能かを測る。アフィン接続は、多様体の(アフィン)測地線を定義することに使われる。ここで使われる直線の幾何学である測地線は、通常のユークリッド幾何学からは非常に異なるにもかかわらず、ユークリッド空間の直線の一般化となっている。直線と測地線との違いは、測地線が接続の曲率の中に全ての情報をカプセル化していることである。 n by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

新しい!!: テンソル場とアフィン接続 · 続きを見る »

スピノル場

素粒子物理学において、2s \ 次元のスピノル場(スピノルば、Spinor field)はスピンs \ の粒子を記述する。ここでsは整数または半整数である。 2s \ 次元のスピノルはs \ 次元のテンソルと同程度の情報を含む。 よって、整数スピンの粒子(ボゾン)はテンソル場やスピノル場で記述することができるが、半整数スピンの粒子(フェルミオン)はスピノル場でのみ記述することができる。.

新しい!!: テンソル場とスピノル場 · 続きを見る »

スカラー (物理学)

物理学ではスカラー(scalar)とは、大きさのみを持つ量のことをいう。大きさと向きを持つベクトルに対比する概念である。ハミルトンは、「1つのスケール上に含まれるマイナス無限大からプラス無限大までの、すべての数値」と表現した。 例えば物体が空間内を運動するときの速度が大きさと方向を含むベクトルであるのに対し、その絶対値(大きさ)である速さは方向を持たないスカラーである。他にも質量、長さ、エネルギー、電荷、温度などはスカラー量である。一方でベクトル量の代表的なものは力、電界、運動量などである。 より狭義にはスカラーは座標系に依存しないことが要求される。.

新しい!!: テンソル場とスカラー (物理学) · 続きを見る »

スカラー場

ラー場(スカラーば、scalar field)とは、数学および物理学において、空間の各点に数学的な数やなんらかの物理量のスカラー値を対応させた場である。スカラー場には「空間(あるいは時空)の同一点におけるスカラー場の値が、観測者が同じ単位を用いる限りにおいて必ず一致する」という意味で座標に依存しない (coordinate-independent) ことが要求される。物理学で用いられるスカラー場の例としては、空間全体にわたる温度分布や、液体の圧力分布、ヒッグス場のようなスピンを持たない量子場などが挙げられる。これらの場はスカラー場の理論における主題である。.

新しい!!: テンソル場とスカラー場 · 続きを見る »

円柱

円柱.

新しい!!: テンソル場と円柱 · 続きを見る »

共変微分

微分幾何学における共変微分(きょうへんびぶん、covariant derivative)とは、可微分多様体上の微分演算を言う。クリストッフェル並びにレヴィ=チヴィタ、リッチによって導入された。局所表示をとった場合その変換規則は共変(covariant)となる。.

新しい!!: テンソル場と共変微分 · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: テンソル場と理論物理学 · 続きを見る »

積分変換

数学の分野における積分変換(せきぶんへんかん、)とは、次の形をとるような変換 T のことである: この積分変換の入力は関数 f であり、出力は関数 Tf である。積分変換は作用素の一種である。 多くの便利な積分変換が存在する。個々の積分変換は、その変換の核関数 (kernel function) あるいは核 (kernel, nucleus) と呼ばれる二変数関数 K を定めれば決まる。 いくつかの核関数には逆 K−1(u, t) が存在し、それは(大まかに言えば)次のような逆変換を満たす: このような公式は反転公式と呼ばれる。二変数の順番が変わっても変化しないような核は対称核と呼ばれる。.

新しい!!: テンソル場と積分変換 · 続きを見る »

空間ベクトル

間ベクトル(くうかんベクトル、Vektor, vector, vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトルである。平面上や空間内の矢印(有向線分)として幾何学的にイメージされる。ベクトルという用語はハミルトンによってスカラーなどの用語とともに導入された。スカラーはベクトルとは対比の意味を持つ。 この記事では、ユークリッド空間内の幾何ベクトル、とくに 3次元のものについて扱い、部分的に一般化・抽象化された場合について言及する。本項目で特に断り無く空間と呼ぶときは、3次元実ユークリッド空間のことを指す。.

新しい!!: テンソル場と空間ベクトル · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: テンソル場と絶対値 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: テンソル場と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: テンソル場と環上の加群 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: テンソル場と物理学 · 続きを見る »

直線束

数学における直線束(ちょくせんそく、line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。.

新しい!!: テンソル場と直線束 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: テンソル場と計量テンソル · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: テンソル場と関手 · 続きを見る »

連鎖律

微分法において連鎖律(れんさりつ、chain rule)とは、複数の関数が合成された合成関数を微分するとき、その導関数がそれぞれの導関数の積で与えられるという関係式のこと。.

新しい!!: テンソル場と連鎖律 · 続きを見る »

Well-defined

数学における は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。 でないことは、 であることとは異なる。 は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「 である」といった形で用いる。名詞形 などもあり、これを 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。.

新しい!!: テンソル場とWell-defined · 続きを見る »

接ベクトル空間

多様体上の接ベクトル空間(せつベクトルくうかん、英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。.

新しい!!: テンソル場と接ベクトル空間 · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: テンソル場と接束 · 続きを見る »

捩れテンソル

微分幾何学では、捩れ(torsion)とは、曲線に関する(moving frame)のツイストや捩れ方を特徴づける方法のことをいう。曲線の捩れ(torsion of a curve)は、たとえばフレネ・セレの公式に現れるように、曲線の捩れ具合を、曲線の発展として接ベクトルについての量(むしろ、フレネ・セレの標構の接ベクトルについての回転)として測る。曲面の幾何学では、測地線の捩れ(geodesic torsion)は、どのように曲面がその上の曲線について捩れているかを記述する。曲率の考えは、どのくらい動標構が捩れることなく曲線に沿って「回っている」かを測る。 さらに一般的には、アフィン接続(つまり、接バンドル上の(connection)のこと)をもつ微分可能多様体上では、捩れ形式や曲率形式は、接続の基本不変量である。この脈絡では、曲線に沿って(parallel transport)すると、接空間がどのくらい捩れるかを本質的に特徴つける量が捩れである。一方、曲率はどれくらい接空間が曲線にそって回るかを記述するようである。捩れは具体的にテンソル、多様体上の(vector-valued) 2-形式として表わされる。∇ を微分可能多様体上のアフィン接続形式とすると、捩れテンソルは、ベクトル場 X と Y により、 と定義される。ここに は(Lie bracket of vector fields)である。 捩れは、測地線の幾何学の研究にとって特に有用である。パラメータ化された測地線の系が与えられると、捩れの違いによる差異はあるが、それらの測地線を持つアフィン接続のクラスを特定することができる。((Finsler geometry)のように、)計量を持たない状況下でも可能な、レヴィ・チヴィタ接続を一般化となる捩れを併せ持つような接続が一意に存在する。また、捩れを併せ持つことは、(G-structure)や(Cartan's equivalence method)の研究で、重要な役割を果たす。 捩れは、また、捩れ形式に伴う(projective connection)を通してパラメータ付けを持たない測地線の族の研究にも有用である。相対論では、捩れ形式の考えは(Einstein–Cartan theory)の形で、理論の中に実現されている。 T(X,Y).

新しい!!: テンソル場と捩れテンソル · 続きを見る »

楕円体

楕円体(だえんたい、ellipsoid)とは楕円を三次元へ拡張したような図形であり、その表面は二次曲面である。楕円面の方程式は である。ここで a, b, c はそれぞれx軸、y軸、z軸方向の径の半分の長さに相当する。なお a.

新しい!!: テンソル場と楕円体 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

新しい!!: テンソル場と滑らかな関数 · 続きを見る »

断面 (位相幾何学)

位相幾何学の分野におけるファイバー束の断面(だんめん)あるいは切断(せつだん、section)若しくは横断面 (cross-section) とは、底空間をファイバー束の中に実現する写像或いはその像をいう。.

新しい!!: テンソル場と断面 (位相幾何学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: テンソル場と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »