ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

群 (数学)

索引 群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

107 関係: 加法半群半直積単位元単純群単調写像可解群同型定理同値関係変換 (数学)実数対称群対称性中心化群と正規化群一般線型群交代群交換子交換子部分群交換法則二面体群二項演算互いに素代数的構造位相群位数 (群論)モノイドユークリッド空間ユニタリ群ユニタリ行列ラグランジュの定理 (群論)リー群ルドヴィコ・フェラーリローレンツ群フィールズ賞ニールス・アーベルベクトル空間アンドレ・ヴェイユアーベル群アボリジニエヴァリスト・ガロアオーストラリアガリレイ変換ガロア理論ガロア群クロード・レヴィ=ストロースシローの定理ジョン・G・トンプソンジェロラモ・カルダーノ冪零群冪根...内部自己同型商群全単射八元数共役共役類元 (数学)剰余類回転群四元数四次方程式空間群群の中心群の直積群の拡大群論群準同型結合法則結婚結晶点群生成 (数学)物理学物性物理学特殊ユニタリ群特殊線型群特性部分群直交群直交行列直和行列行列式複素数西洋部分群部分群の指数自己同型自明群集合逆元P-群恒等写像核 (代数学)楕円曲線標数正則行列正規部分群準同型定理濃度 (数学)有理数有限群日本数学数学的構造整数整数の合同1945年20世紀 インデックスを展開 (57 もっと) »

加法

加法(かほう、addition, summation)とは、数を合わせることを意味する二項演算あるいは多項演算で、四則演算のひとつ。足し算(たしざん)、加算(かさん)、あるいは寄せ算(よせざん)とも呼ばれる。また、加法の演算結果を和(わ、)という。記号は「+」。 自然数の加法は、しばしば物の個数を加え合わせることに喩えられる。また数概念の拡張にしたがって、別の意味を持つ加法を考えることができる。たとえば実数の加法は、もはや自然数の加法のように物の個数を喩えに出すことはできないが、曲線の長さなど別の対象物を見出すことができる。 減法とは互いに逆の関係にあり、また例えば、負の数の加法として減法が捉えられるなど、加法と減法の関連は深い。これは代数学において加法群の概念として抽象化される。 無限個の数を加えること(総和法)については総和、級数、極限、ε–δ 論法などを参照。.

新しい!!: 群 (数学)と加法 · 続きを見る »

半群

数学における半群(はんぐん、semigroup)は集合 S とその上の結合的二項演算とをあわせて考えた代数的構造である。言い換えれば、半群とは演算が結合的なマグマのことをいう。半群の名は、既存の群の概念に由来するものである。半群は、各元が必ずしも逆元を持たないこと(さらに、単位元すら持たないかもしれないこと)が、群と異なる。 半群の演算はほとんど乗法的に書かれる(順序対 (x, y) に対して演算を施した結果を x • y などで、あるいは単に xy で表す)。 半群についてきちんとした形での研究が行われるようになるのは20世紀の初めごろからである。半群は、「無記憶」系 ("memoryless" system) すなわち各反復時点でゼロから開始される時間依存系 (time-dependent system) の抽象代数的な定式化の基盤であるので、数学の各種分野において重要な概念である。応用数学においては、半群はの基本モデルである。また偏微分方程式論では、半群は空間発展的かつ時間非依存な任意の方程式に対応している。有限半群論は1950年代以降、有限半群と有限オートマトンとの間の自然な関連性から、理論計算機科学の分野で特に重要となった。確率論では半群はマルコフ過程に関連付けられている 。.

新しい!!: 群 (数学)と半群 · 続きを見る »

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

新しい!!: 群 (数学)と半直積 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: 群 (数学)と単位元 · 続きを見る »

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

新しい!!: 群 (数学)と単純群 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 群 (数学)と単調写像 · 続きを見る »

可解群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。.

新しい!!: 群 (数学)と可解群 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: 群 (数学)と同型定理 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 群 (数学)と同値関係 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: 群 (数学)と変換 (数学) · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 群 (数学)と実数 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 群 (数学)と対称群 · 続きを見る »

対称性

対称性(たいしょうせい、ラテン語・ギリシャ語: συμμετρία symmetria, 独:Symmetrie, 英:symmetry)とは、ある変換に関して不変である性質である。 英語を音訳したシンメトリーと呼ぶこともあるが、2つのmは同時に発音されるため、英語の発音は「シメトリー」に近い。.

新しい!!: 群 (数学)と対称性 · 続きを見る »

中心化群と正規化群

数学、とくに群論において、群 の部分集合 の中心化群 (centralizer) とは、 の各元と可換な の元全体からなる集合であり、 の正規化群 (normalizer) とは、「全体で」 と可換な の元全体からなる集合である。 の中心化群と正規化群は の部分群であり、 の構造について知る手掛かりを得られる。.

新しい!!: 群 (数学)と中心化群と正規化群 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 群 (数学)と一般線型群 · 続きを見る »

交代群

交代群(こうたいぐん、alternating group, Alternierende Gruppe)とは、有限集合の偶置換全体がなす群である。集合 上の交代群は n 次の交代群、もしくは n 文字の交代群 (the alternating group on n letters) と呼ばれ、An もしくは Alt(n), \mathfrak_n という記号で表す。これは n 変数の交代式を不変とするような変数の置換がなす群と思ってもよい。 例として、4つの元からなる集合 の交代群 A4 は以下のようになる。A4.

新しい!!: 群 (数学)と交代群 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: 群 (数学)と交換子 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: 群 (数学)と交換子部分群 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

新しい!!: 群 (数学)と交換法則 · 続きを見る »

二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

新しい!!: 群 (数学)と二面体群 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: 群 (数学)と二項演算 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 群 (数学)と互いに素 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 群 (数学)と代数的構造 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: 群 (数学)と位相群 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: 群 (数学)と位数 (群論) · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 群 (数学)とモノイド · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 群 (数学)とユークリッド空間 · 続きを見る »

ユニタリ群

n 次のユニタリ群(ユニタリぐん、unitary group) U(n) とは、n 次ユニタリ行列のなす群のことである。演算は行列の積で与えられる。 ユニタリ群は一般線型群の部分群である。.

新しい!!: 群 (数学)とユニタリ群 · 続きを見る »

ユニタリ行列

ユニタリ行列(~ぎょうれつ、英:Unitary matrix)は、次を満たす複素正方行列 として定義される。 ここで、 は単位行列、 は行列 の随伴行列。 なお、実数で構成される行列の随伴は単に転置であるため実ユニタリ行列は直交行列に等しく、直交行列を複素数体へ拡張したものがユニタリ行列とも言える。.

新しい!!: 群 (数学)とユニタリ行列 · 続きを見る »

ラグランジュの定理 (群論)

群論において、ラグランジュの定理(英語:Lagrange's theorem)とは、次のような定理である。 実は、任意の群に対し、(選択公理を認めれば)指数を用いて次のような式が成り立つ。.

新しい!!: 群 (数学)とラグランジュの定理 (群論) · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 群 (数学)とリー群 · 続きを見る »

ルドヴィコ・フェラーリ

ルドヴィコ・フェラーリ(Ludovico Ferrari, 1522年2月2日-1565年10月5日)は、イタリアの数学者である。ロドヴィコ、フェルラーリ、フェルラリ、フェラリとも。 14歳の時に数学者ジェロラモ・カルダーノの家で召使いとして働き始めたが、その才能を認められカルダーノから数学の教えを受け、研究の手伝いをするようになった。26歳のフェラーリについて、日本の数学者である森毅は「やさしい声ときよらな面、しかし神の才と悪魔の心をもった青年」と評している。 「解法を公表しない」との誓いの元でニコロ・フォンタナ・タルタリアから解法を得たカルダーノは、弟子のフェラーリと共に一般的な三次方程式の解法等の研究に取り組んだ。この研究の過程で、フェラーリは四次方程式の解法を発見した。後にカルダーノは「アルス・マグナ」という数学書を出版し、この本の中でフェラーリの四次方程式の解法についても記している。「解法を公表しない」との誓いを破られたタルタリアは激怒し、カルダーノのことを非難するようになる。ここでカルダーノの弟子であるフェラーリは「自分もその場にいたがそのような誓いは立てていない」と主張しているが、真相は定かでない。タルターリアはカルダーノとの論争を望んだが、カルダーノはタルタリアの誘いには乗らず、以降タルタリアとフェラーリの論争が続いていくことになる。1548年、タルタリアとフェラーリが数学の公開討論を行うことになり、互いに31問ずつの問題を出し合った。この討論試合の詳細は明らかになっていない。フェラーリの勝利に終わったという説が有力である。この討論試合の後フェラーリの名声は高まり、各方面から仕事の依頼が来るようになった。皇帝の息子の家庭教師の依頼もあった。 1565年、ボローニャ大学教授につくが、同年に姉によりヒ素で毒殺されたとされている。.

新しい!!: 群 (数学)とルドヴィコ・フェラーリ · 続きを見る »

ローレンツ群

ヘンドリック・アントーン・ローレンツ (1853–1928)  物理学および数学において、ローレンツ群 (Lorentz group) は、(重力を除いた)全ての古典的な設定における物理現象を説明する基礎となる、ミンコフスキー時空上の全てのローレンツ変換が成す群である。ローレンツ群の名前はオランダ人物理学者ヘンドリック・ローレンツに因む。 ローレンツ変換の下では、次の法則および等式が不変に保たれる。.

新しい!!: 群 (数学)とローレンツ群 · 続きを見る »

フィールズ賞

フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ人数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863–1932) の提唱によって1936年に作られた賞のことである。.

新しい!!: 群 (数学)とフィールズ賞 · 続きを見る »

ニールス・アーベル

ニールス・ヘンリック・アーベル(Niels Henrik Abel、1802年8月5日 - 1829年4月6日)はノルウェーの数学者である。.

新しい!!: 群 (数学)とニールス・アーベル · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 群 (数学)とベクトル空間 · 続きを見る »

アンドレ・ヴェイユ

アンドレ・ヴェイユ(André Weil, 1906年5月6日 - 1998年8月6日)は、フランスの数学者で、20世紀を代表する数学者の一人である。思想家のシモーヌ・ヴェイユは妹、児童文学者のは娘である。.

新しい!!: 群 (数学)とアンドレ・ヴェイユ · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 群 (数学)とアーベル群 · 続きを見る »

アボリジニ

アボリジニのダンサー ディジュリドゥを吹く男性 アーネムランドの芸術家 アボリジニの農民たち(1858年) アボリジニ(Aborigine)は、オーストラリア大陸と周辺島嶼(タスマニア島など。ニューギニアやニュージーランドなどは含まない)の先住民である。イギリスを中心とするヨーロッパ人たちによる植民地化の以前からオーストラリア大陸やその周辺諸島に居住していた先住民の子孫たちである。オーストラリア先住民という場合はトレス海峡諸島民を含む。 「アボリジニ」に差別的な響きが強いうえ、言語集団が分かれていたオーストラリア先住民の多様性への配慮から、近年のオーストラリアでは呼称としてほとんど使われなくなった。代わりに現在ではアボリジナル、アボリジナル・ピープル、アボリジナル・オーストラリアン(Aboriginal Australians)またはオーストラリア先住民(オーストラリアせんじゅうみん、Indigenous Australians)という表現が一般化しつつある。.

新しい!!: 群 (数学)とアボリジニ · 続きを見る »

エヴァリスト・ガロア

ヴァリスト・ガロア(Évariste Galois, 1811年10月25日 - 1832年5月31日)は、フランスの数学者および革命家である。フランス語の原音()に忠実に「ガロワ」と表記されることもある。.

新しい!!: 群 (数学)とエヴァリスト・ガロア · 続きを見る »

オーストラリア

ーストラリア連邦(オーストラリアれんぽう、Commonwealth of Australia)、またはオーストラリア(Australia)は、オーストラリア大陸本土、タスマニア島及び多数の小島から成りオセアニアに属する国。南方の南極大陸とは7,877km離れている。イギリス連邦加盟国であり、英連邦王国の一国となっている。日本での略称は「豪州」である。.

新しい!!: 群 (数学)とオーストラリア · 続きを見る »

ガリレイ変換

リレイ変換(ガリレイへんかん、)とはある慣性系における物理現象の記述を別の慣性系での記述に変換するための座標変換の方法の一つである。ニュートンの運動方程式を不変に保つため、ガリレイ変換の前後でニュートン力学の法則は不変に保たれる。対して相対論的運動方程式やマクスウェルの方程式は不変に保たないため、光速に近い速度の関わる物理現象に適用すると現実の物理法則と乖離する。なお相対論的効果も考慮した変換はローレンツ変換を参照。.

新しい!!: 群 (数学)とガリレイ変換 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 群 (数学)とガロア理論 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

新しい!!: 群 (数学)とガロア群 · 続きを見る »

クロード・レヴィ=ストロース

ード・レヴィ=ストロース(Claude Lévi-Strauss、1908年11月28日 - 2009年10月30日)は、フランスの社会人類学者、民族学者。出身はベルギーの首都ブリュッセル。コレージュ・ド・フランスの社会人類学講座を1984年まで担当し、アメリカ先住民の神話研究を中心に研究を行った。アカデミー・フランセーズ会員。 専門分野である人類学、神話学における評価もさることながら、一般的な意味における構造主義の祖とされ、彼の影響を受けた人類学以外の一連の研究者たち、ジャック・ラカン、ミシェル・フーコー、ロラン・バルト、ルイ・アルチュセールらとともに、1960年代から1980年代にかけて、現代思想としての構造主義を担った中心人物のひとり。.

新しい!!: 群 (数学)とクロード・レヴィ=ストロース · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

新しい!!: 群 (数学)とシローの定理 · 続きを見る »

ジョン・G・トンプソン

ョン・G・トンプソン(2007年) ジョン・グリッグス・トンプソン(John Griggs Thompson, 1932年10月13日 - )は、アメリカの数学者。フロリダ大学名誉教授。有限群論の研究で名がある。 奇数位数の有限群は、すべて可解群であることを証明し、フィールズ賞を受ける。たった一人で極小単純群の分類を完成させた傑物である。.

新しい!!: 群 (数学)とジョン・G・トンプソン · 続きを見る »

ジェロラモ・カルダーノ

ェロラモ・カルダーノ(Gerolamo Cardano、1501年9月24日 - 1576年9月21日)は、16世紀のイタリアの人物。ジローラモ・カルダーノ(Girolamo Cardano)との表記もある。 ミラノで生まれ、ローマで没した。一般に数学者として知られている。本業は医者、占星術師、賭博師、哲学者でもあった。.

新しい!!: 群 (数学)とジェロラモ・カルダーノ · 続きを見る »

冪零群

群論における冪零群(べきれいぐん、nilpotent group)は、「ほとんど」アーベルな群である。この概念は、冪零群が可解群となるという事実に裏打ちされ、有限冪零群に対して位数が互いに素な二元は可換となる。有限冪零群はさらにでさえある。冪零群の概念の創始は1930年代におけるロシア人数学者の業績に帰せられる。 冪零群はガロワ理論において、また群の分類理論において、用いられる。あるいはまた、リー群の分類においても顕著である。 冪零あるいは降中心列・昇中心列といった用語は、(導来群を作る操作を、リー括弧積で代用した類似概念を用いて)リー環の理論においても用いられる(冪零リー環の項を参照)。.

新しい!!: 群 (数学)と冪零群 · 続きを見る »

冪根

冪根「冪」の字の代わりに略字の「巾」を用いることがある。(べきこん)、または累乗根(るいじょうこん)は、冪乗(累乗)に相対する概念で、冪乗すると与えられた数になるような新たな数のことをいう。数 の冪根はしばしば と書き表される。冪根 は以下の関係を満たす。 つまり、冪根 の 乗は に等しく、この意味で を の 乗根 と呼ぶ。 は指数 と呼ばれ、記号 は根号 と呼ばれる。また、根号の中に書かれた数 は時に被開平数 と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 と呼び、特に 乗根の主要根を主平方根 と呼ぶ。 数 の主要根 は指数関数と結び付けられ、 という関係が成り立つ は自然指数関数、 は自然対数。。.

新しい!!: 群 (数学)と冪根 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

新しい!!: 群 (数学)と内部自己同型 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: 群 (数学)と商群 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 群 (数学)と全単射 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: 群 (数学)と八元数 · 続きを見る »

共役

共軛、共役(きょうやく)は2つのものがセットになって結びついていること、同様の働きをすること。共軛の「軛」(くびき)は、人力車や馬車において2本の梶棒を結びつけて同時に動かすようにするための棒のことである。「軛」が常用漢字表外であったため、音読みの同じ「役」の字で代用され、現在では共役と書かれることが多い。いくつかの分野で用法がある。.

新しい!!: 群 (数学)と共役 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: 群 (数学)と共役類 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 群 (数学)と元 (数学) · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: 群 (数学)と剰余類 · 続きを見る »

回転群

(n 次の)回転群(かいてんぐん、rotation group)あるいは特殊直交群(とくしゅちょっこうぐん、special orthogonal group)とは、n行n列の直交行列であって、行列式が1のもの全体が行列の乗法に関してなす群をいう。SO(n) と書く。 SO(n) はコンパクトリー群であり、n.

新しい!!: 群 (数学)と回転群 · 続きを見る »

四元数

数学における四元数(しげんすう、quaternion(クォターニオン))は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 一般に、四元数は の形に表される。ここで、 a, b, c, d は実数であり、i, j, k は基本的な「四元数の単位」である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字でユニコードの Double-Struck Capital H, U+210D, )と書かれる。またこの代数を、クリフォード代数の分類に従って というクリフォード代数として定義することもできる。この代数 は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば は実数の全体 を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 )だからである。 従って、単位四元数は三次元球面 上の群構造を選んだものとして考えることができて、群 を与える。これは に同型、あるいはまた の普遍被覆に同型である。.

新しい!!: 群 (数学)と四元数 · 続きを見る »

四次方程式

四次方程式(よじほうていしき、quartic equation)とは、次数が 4 であるような代数方程式の事である。この項目では主に一変数の四次方程式を扱う。.

新しい!!: 群 (数学)と四次方程式 · 続きを見る »

空間群

間群(くうかんぐん、)は、結晶構造の対称性を記述するのに用いられる群である。群の元となる対称操作は、点群での対称操作(恒等操作、回転操作、鏡映操作、反転操作、回映操作、回反操作)に加え、並進操作(すべての点を平行に移動させる操作)である。 空間群は全部で230種類あり、すべての結晶はそのうちの1つに属している。ただし、原子の配列は原子の性質や化学結合によるため、大半の結晶構造は100種類程度の空間群に含まれる。 空間群を記述する方法には、ヘルマン・モーガン記号(Hermann-Mauguin)とシェーンフリース記号(Schoenflies)の2つがある。.

新しい!!: 群 (数学)と空間群 · 続きを見る »

群の中心

代数学における群 の核心または中心(ちゅうしん、center)この記法の Z はドイツ語で中心という意味の Zentrum に由来する。英語の center から のような記法が使われることも在るが、中心化群などと紛らわしい。 は の全ての元と可換となるような元全体の成す集合 である。 の中心は の部分群であり、定義からアーベル群(可換群)である。部分群としては、常に正規であり、特性的であるが必ずしも完全特性的 (fully characteristic) ではない。剰余群 は の内部自己同型群に同型である。 群 がアーベル群となることと となることとは同値である。これと正反対に、 が自明(つまり単位元のみからなる)ならば群 は中心を持たない (centerless) という。 中心に属する元はしばしば中心的 (central) であるといわれる。.

新しい!!: 群 (数学)と群の中心 · 続きを見る »

群の直積

数学、特に群論において、与えられたいくつかの群の直積(ちょくせき、direct product)は、それらを正規部分群として含むような新しい群を作る構成法である。.

新しい!!: 群 (数学)と群の直積 · 続きを見る »

群の拡大

数学において、群の拡大(ぐん-の-かくだい、group extension)は、一般に特定の正規部分群と剰余群を使って群を記述することを意味する。 および をふたつの群とするとき、 が による の拡大 (extension) であるとは短完全列 1\to N\to G\to Q\to 1 が存在することを言う。 が による の拡大(これとあべこべに " が の による拡大である" と書く文献もある)ならば は群であり、 は の正規部分群で剰余群 は群 に同型となる。群の拡大は、 と が既知の群であるとき、群 の性質を決定できるかという拡大の問題 (extension problem)の文脈で現れる。任意の有限群 は極大正規部分群 と単純剰余群 を持つから、任意の有限群は有限単純群の列として構成することができる。この事実があるため、有限単純群の分類の完成は動機付けられたのであった。 部分群 が群 の中心に含まれるような拡大は、中心拡大 (central extension)と呼ばれる。.

新しい!!: 群 (数学)と群の拡大 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 群 (数学)と群論 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 群 (数学)と群準同型 · 続きを見る »

結合法則

数学、殊に代数学における結合法則(けつごうほうそく、associative law) 、結合則、結合律あるいは演算の結合性(けつごうせい、associativity)は二項演算に対して考えられる性質の一つ。ひとつの数式にその演算の演算子が2個以上並んでいる時、その演算子について、左右どちらの側が優先されるかに関わらず結果が同じになるような演算は結合的 (associative) である。.

新しい!!: 群 (数学)と結合法則 · 続きを見る »

結婚

結婚(けっこん、marriage)とは、夫婦になること広辞苑 第五版 p.829 結婚。類似概念に婚姻(こんいん)があり、社会的に承認された夫と妻の結合平凡社『世界大百科事典』vol.10, 【婚姻】pp.607-608 末成道夫 執筆箇所をいう。後述のように学術的には「結婚」はもっぱら配偶関係の締結を指し、「婚姻」は配偶関係の締結のほか配偶関係の状態をも含めて指している『文化人類学事典』 弘文堂、1987年1月、246頁.

新しい!!: 群 (数学)と結婚 · 続きを見る »

結晶点群

結晶点群()とは、結晶において許される対称操作の集まりがつくる群(点群)のこと。ただしこの対称操作には並進操作は含まれない。結晶点群は32種類存在する。.

新しい!!: 群 (数学)と結晶点群 · 続きを見る »

生成 (数学)

数学における生成(せいせい、generate)とは、与えられた対象と条件に対して、その条件を満たしかつ与えられた対象を全て含むような最小の構成物を求めることである。このとき与えられた対象の集まりを生成系(生成集合)(generating set) といい、生成集合の各元を生成元 (generator) という。また、「最小の構成物」は生成系から生成されるという。生成系が1つの対象からなるような場合には、生成系と生成元は同一視できる。.

新しい!!: 群 (数学)と生成 (数学) · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 群 (数学)と物理学 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 群 (数学)と物性物理学 · 続きを見る »

特殊ユニタリ群

次の特殊ユニタリ群(とくしゅユニタリぐん、special unitary group) とは、行列式が1の 次ユニタリ行列の為す群の事である。群の演算は行列の積で与えられる。 特殊ユニタリ群 はユニタリ群 の部分群であり、さらに一般線型群 の部分群である。 特殊ユニタリ群は素粒子物理学において、電弱相互作用のワインバーグ=サラム理論や強い相互作用の量子色力学、あるいはそれらを統合した標準模型や大統一理論などに出てくる。.

新しい!!: 群 (数学)と特殊ユニタリ群 · 続きを見る »

特殊線型群

数学において、 体 上の次数 の特殊線型群(とくしゅせんけいぐん、special linear group)とは、 行列式が である 次正方行列のなす集合に、通常の行列の積と逆行列の演算が入った群である。この群は、行列式 の核として得られる、一般線型群 の正規部分群である。 ここで は の乗法群(つまり、 から を除いた集合)を表す。 特殊線型群の元は「特殊な」もの、つまりある多項式が定める一般線型群の部分代数多様体、である(行列式は多項式であることに注意)。.

新しい!!: 群 (数学)と特殊線型群 · 続きを見る »

特性部分群

数学、とくに群論という抽象代数学の分野において、特性部分群 (characteristic subgroup) はもとの群のすべての自己同型写像の下で不変な部分群である。共役は自己同型であるから、すべての特性部分群は正規部分群であるが、すべての正規部分群が特性部分群であるわけではない。特性部分群の例には、交換子部分群や群の中心がある。.

新しい!!: 群 (数学)と特性部分群 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 群 (数学)と直交群 · 続きを見る »

直交行列

交行列(ちょっこうぎょうれつ, )とは、転置行列と逆行列が等しくなる正方行列のこと。つまりn × n の行列 M の転置行列を MT と表すときに、MTM.

新しい!!: 群 (数学)と直交行列 · 続きを見る »

直和

数学における直和(ちょくわ、)は、既知の数学的対象を「貼り合わせ」て同じ種類の対象を新たに作り出す操作の一種で、歴史的経緯から対象によってやや異なる意味で用いられるが、大雑把には集合論的、代数学的、圏論的用法に大別できる。またいずれの用法においても、直和を取る対象が全て一つの大きな対象の部分となっている場合(内部直和、構造的直和)と、そのようなものを仮定しない場合(外部直和、構成的直和)を区別することができる(場合によってはそれらの記述は見かけ上大きく異なる)が、それらの間に自然な同型があるため理論上区別して扱わないこともある。そのような自然同型は、しばしば圏論的直和(あるいは双積)の普遍性によって捉えることができる。 直和を表すのに用いられる記号には \oplus, \coprod などがある。.

新しい!!: 群 (数学)と直和 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 群 (数学)と行列 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 群 (数学)と行列式 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 群 (数学)と複素数 · 続きを見る »

西洋

西洋(せいよう、)は、キリスト教文明に根ざしたヨーロッパ諸国、及び北アメリカを指すが、その指し示す範囲は多様である。歴史的にはオクシデント(Occident)とも呼ばれ、その対立概念は東洋(the East, Orient、オリエント)である。.

新しい!!: 群 (数学)と西洋 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

新しい!!: 群 (数学)と部分群 · 続きを見る »

部分群の指数

数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G: H| あるいは あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。.

新しい!!: 群 (数学)と部分群の指数 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 群 (数学)と自己同型 · 続きを見る »

自明群

数学において、自明群、自明な群 (trivial group)、単位群 はただ1つの元からなる群である。すべてのそのような群は同型であるので、英語などではしばしば定冠詞をつけて the trivial group などと呼ばれる。自明群のただ1つの元は単位元であるので普通 0, 1, e のように文脈に応じて表記される。群の演算が ∗ であれば によって定義される。 同様に定義される自明モノイド (trivial monoid) もまた群である。その唯一の元がそれ自身の逆元でありしたがって自明群と同じであるからである。 自明群を空集合と混同してはならない。(これは元を全くもたず、単位元を欠くため、群にはなりえない。) 任意の群 G が与えられると、単位元のみからなる部分集合は、それ自身が自明群である G の部分群であり、G の自明な部分群 (trivial subgroup) と呼ばれる。また、G 自身も明らかに G の部分群であるので、G も自明な部分群と呼ばれることがあるが、これは著者によって異なるので注意が必要である。群によってはこれら以外にも自明に部分群になるものがあるが、それらは自明な部分群とは呼ばれない。 "G は非自明な真の部分群をもたない" (G has no nontrivial proper subgroups) という言い回しが意味するのは、G のすべての部分群は自明群 および群 G 自身であるということである。.

新しい!!: 群 (数学)と自明群 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: 群 (数学)と集合 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 群 (数学)と逆元 · 続きを見る »

P-群

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、p-primary group)あるいは、p-群(ピーぐん、p-group)もしくは準素群(じゅんそぐん、primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。.

新しい!!: 群 (数学)とP-群 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: 群 (数学)と恒等写像 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 群 (数学)と核 (代数学) · 続きを見る »

楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

新しい!!: 群 (数学)と楕円曲線 · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 群 (数学)と標数 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: 群 (数学)と正則行列 · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: 群 (数学)と正規部分群 · 続きを見る »

準同型定理

抽象代数学における準同型定理(じゅんどうけいていり、fundamental theorem on homomorphisms; 準同型の, )は、与えられた構造をもつ二つの対象の間の準同型が与えられたとき、その準同型の核と像とを関係づける。 準同型定理は同型定理の証明に利用できる。 以下、群の場合に定理の主張を述べるが、同様の主張はモノイド、ベクトル空間、加群、環などについても成立する。.

新しい!!: 群 (数学)と準同型定理 · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 群 (数学)と濃度 (数学) · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 群 (数学)と有理数 · 続きを見る »

有限群

数学および抽象代数学において、有限群(ゆうげんぐん、finite group)とは台となっている集合Gが有限個の元しか持たないような群のことである。20世紀の間数学者は、特に有限群のや、可解群や冪零群 の理論などといった、有限群の理論のさまざまな面を深く研究していた。全ての有限群の構造の完全な決定は余りに遠大な目標だった: あり得る構造の数はすぐに圧倒的に大きくなった。しかし、単純群の完全な分類という目標は達成された。つまり任意の有限群の「組み立て部品」は現在では完全に知られている(任意の有限群は組成列を持つ)。 20世紀の後半には、シュヴァレーやといった数学者によってや関連する群の有限類似の理解が深まった。それらの群の族の一つには有限体上の一般線型群がある。 有限群は、ある数学的・物理的対象の構造を保つ変換が有限個しかない場合に、その対象の対称性を考えるときに出て来る群である。他方で、""を扱っているようにもみなせるリー群の理論は、関連するワイル群の影響を強く受ける。有限次ユークリッド空間に作用する鏡映によって生成される有限群も存在する。それゆえ、有限群の特性は、理論物理学や化学などの分野で役目を持つ。.

新しい!!: 群 (数学)と有限群 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: 群 (数学)と日本 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 群 (数学)と数学 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 群 (数学)と数学的構造 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 群 (数学)と整数 · 続きを見る »

整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

新しい!!: 群 (数学)と整数の合同 · 続きを見る »

1945年

この年に第二次世界大戦が終結したため、世界史の大きな転換点となった年である。.

新しい!!: 群 (数学)と1945年 · 続きを見る »

20世紀

摩天楼群) 20世紀(にじっせいき、にじゅっせいき)とは、西暦1901年から西暦2000年までの100年間を指す世紀。2千年紀における最後の世紀である。漢字で二十世紀の他に、廿世紀と表記される場合もある。.

新しい!!: 群 (数学)と20世紀 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »