ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

可微分多様体と沈め込み

ショートカット: 違い類似点ジャカード類似性係数参考文献

可微分多様体と沈め込みの違い

可微分多様体 vs. 沈め込み

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。. 数学において、沈め込み (submersion) とは、可微分多様体間の可微分写像であって微分がいたるところ全射であるもののことである。これは微分トポロジーにおいて基本的な概念である。沈め込みの概念ははめ込みの概念の双対である。.

可微分多様体と沈め込み間の類似点

可微分多様体と沈め込みは(ユニオンペディアに)共通で6ものを持っています: はめ込み位相多様体ファイバー束サードの定理写像の微分行列の階数

はめ込み

数学において,はめ込み (immersion) は可微分多様体の間の可微分写像であって微分がいたるところ単射であるもののことである.明示的には, がはめ込みであるとは, が のすべての点 において単射関数であることをいう(ここで は多様体 の点 における接空間を表す).同じことであるが, がはめ込みであるとは,その微分が の次元に等しい定数を持つことである: 関数 それ自身は単射である必要はない. 関連概念は埋め込みである.滑らかな埋め込みは位相的な埋め込みでもある単射はめ込み であり,したがって は におけるその像に微分同相である.はめ込みはちょうど局所的な埋め込みである――つまり,任意の点 に対して, のある近傍 が存在して, が埋め込みとなり,逆に局所的な埋め込みははめ込みである.無限次元多様体に対して,これははめ込みの定義として取られることもある. がコンパクトならば,単射なはめ込みは埋め込みであるが, がコンパクトでなければ,そうとは限らない;連続全単射と同相を比較せよ..

はめ込みと可微分多様体 · はめ込みと沈め込み · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

位相多様体と可微分多様体 · 位相多様体と沈め込み · 続きを見る »

ファイバー束

ファイバー束(ファイバーそく、fiber bundle, fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。.

ファイバー束と可微分多様体 · ファイバー束と沈め込み · 続きを見る »

サードの定理

ードの定理(サードのていり、Sard's theorem)、サードの補題、モース・サードの定理は解析学の定理で、「ユークリッド空間(または多様体)から他のユークリッド空間(または多様体)への滑らかな関数 f について、f の臨界点全体の f による像は、ルベーグ測度が 0 である(つまり、零集合である)」ことを言うものである。ルベーグ測度が 0 であるというのは、そのような点が「ほとんどない」ということである。.

サードの定理と可微分多様体 · サードの定理と沈め込み · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

写像の微分と可微分多様体 · 写像の微分と沈め込み · 続きを見る »

行列の階数

線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 の階数 (あるいは または丸括弧を落として )は、 の列空間(列ベクトルの張るベクトル空間)の次元に等しく、また の行空間の次元とも等しい。行列の階数は、対応する線型写像の階数である。.

可微分多様体と行列の階数 · 沈め込みと行列の階数 · 続きを見る »

上記のリストは以下の質問に答えます

可微分多様体と沈め込みの間の比較

沈め込みが18を有している可微分多様体は、176の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は3.09%です = 6 / (176 + 18)。

参考文献

この記事では、可微分多様体と沈め込みとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »