ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

リーマン幾何学

索引 リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

40 関係: 基本群埋め込み (数学)単連結空間双曲幾何学宇宙の形一般ガウス・ボネの定理一般相対性理論微分同相写像微分幾何学微分位相幾何学ナッシュの埋め込み定理ユークリッド幾何学ユークリッド空間リーマン多様体リーマン幾何学の基本定理リッチテンソルドイツベルンハルト・リーマンベッチ数アルベルト・アインシュタインアングルアーベル群オイラー標数ガウス・ボネの定理ガウス曲率グリゴリー・ペレルマン共役類球面等長写像距離空間重力離散群Integral捩れ (代数学)楕円幾何学断面曲率擬リーマン多様体曲率時空1850年代

基本群

数学、特に代数トポロジーにおいて、基本群(きほんぐん、fundamental group)とは、ある固定された点を始点と終点にもつふたつのループが互いに連続変形可能かを測る点付き位相空間に付帯する群である。直観的には、それは位相空間にある穴についての情報を記述している。基本群はホモトピー群の最初で最も単純な例である。基本群は位相不変量である。つまり同相な位相空間は同じ基本群を持っている。 基本群は被覆空間の理論を用いて研究することができる。なぜなら、基本群は元の空間に付帯する普遍被覆空間の被覆変換群に一致するからである。基本群のアーベル化は、その空間の第一ホモロジー群と同一視することできる。位相空間が単体複体に同相のとき、基本群は群の生成子と関係式のことばで明示的に記述することができる。 基本群はアンリ・ポアンカレによって1895年に論文"Analysis situs"で定義された。ベルンハルト・リーマンとポアンカレとフェリックス・クラインの仕事でリーマン面の理論において基本群の概念が現れた。基本群は閉曲面の位相的な完全な分類を提供するだけでなく、複素函数のモノドロミー的性質の記述もする。.

新しい!!: リーマン幾何学と基本群 · 続きを見る »

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: リーマン幾何学と埋め込み (数学) · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: リーマン幾何学と単連結空間 · 続きを見る »

双曲幾何学

双曲幾何学(そうきょくきかがく、)またはボヤイ・ロバチェフスキー幾何学 とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユークリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。 ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。 双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。 例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。 このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。.

新しい!!: リーマン幾何学と双曲幾何学 · 続きを見る »

宇宙の形

宇宙の形(うちゅうのかたち、shape of Universe)は、宇宙の幾何学を記述する宇宙物理学のテーマの一つのくだけた呼び名である。宇宙の幾何学は局所幾何と大域幾何の両方からなる。宇宙の形は、おおざっぱには曲率と位相幾何学により分けられ、厳密にはその両方の範疇をはみ出ている。より形式には、このテーマは、どの3-多様体が、4次元の時空のの空間区分に対応するのかを調べることにある。 時空の形、宇宙の曲率、時空の曲率とも呼ばれる。.

新しい!!: リーマン幾何学と宇宙の形 · 続きを見る »

一般ガウス・ボネの定理

一般ガウス・ボネの定理(generalized Gauss–Bonnet theorem)(チャーン・ガウス・ボネの定理とも呼ばれる)は、偶数次元の閉リーマン多様体のオイラー特性数を曲率から導かれるある多項式の積分として表す定理である。 M を境界のないコンパクトな向き付け可能な 2n 次元リーマン多様体とし、Ω をレヴィ・チヴィタ接続の曲率形式とする。これは、Ω が M 上の \mathfrak s\mathfrak o(2n) に値を持つ 2-形式であることを意味する。そのために、Ω は成分が 2-形式である反対称 2n × 2n 行列であるので、可換環 \wedge^\,T^*M 上の行列である。従って、2n-形式を成分にもつパフィアン Pf(Ω) をとることができる。この状況で一般ガウス・ボネの定理は となる。ここで χ(M) は、M のオイラー数を表す。この定理は、ガウス・ボネの定理の高次元化である。.

新しい!!: リーマン幾何学と一般ガウス・ボネの定理 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: リーマン幾何学と一般相対性理論 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: リーマン幾何学と微分同相写像 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: リーマン幾何学と微分幾何学 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: リーマン幾何学と微分位相幾何学 · 続きを見る »

ナッシュの埋め込み定理

ョン・フォーブス・ナッシュ (John Forbes Nash) の名に因んだナッシュの埋め込み定理 (Nash embedding theorems (or imbedding theorems)) は、すべてのリーマン多様体はユークリッド空間の中へ等長に埋め込むことができるという定理である。等長とは、すべてのの長さが保存されることを意味する。例えば、紙のページを引き伸ばしたり破ったりすることなしに折り曲げると、ページのユークリッド空間へのになる。ページに描かれた曲線はページが折り曲げられても同じ長さのままであるからだ。 第一の定理は、連続微分可能な(C1 級の)埋め込みに対するものであり、第二の定理は、解析的な埋め込みと、3 ≤ k ≤ ∞ に対して Ck 級の滑らかさを持つ埋め込みに関するものである。これらの 2つの定理は、互いに非常に異なっている。第一の定理は非常に容易に証明でき、非常に反直感的な結果を導くが、一方第二の定理の証明は非常に技巧的であるが結果はそれほど驚くようなものではない。 C1 定理は1954年に、Ck 定理は1956年に出版された。実解析的な定理は最初ナッシュにより1966年に扱われた。彼の議論は により非常に簡素化された。(この結果の局所版は、1920年代にエリ・カルタン (Élie Cartan) と (Maurice Janet) により証明された。)実解析的な場合は、ナッシュの逆関数の議論における smoothing operator(以下を参照)を、コーシーの評価に取り替えることができる。Ck の場合のナッシュの証明は、後に、 (h-principle) や (Nash–Moser implicit function theorem) へ拡張された。第二のナッシュの埋め込み定理の簡素化された証明は、 により得られた。彼は非線型偏微分方程式系を楕円系に帰着させ、が適用できるようにした。.

新しい!!: リーマン幾何学とナッシュの埋め込み定理 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: リーマン幾何学とユークリッド幾何学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: リーマン幾何学とユークリッド空間 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: リーマン幾何学とリーマン多様体 · 続きを見る »

リーマン幾何学の基本定理

リーマン幾何学において、リーマン幾何学の基本定理(fundamental theorem of Riemannian geometry)は、任意のリーマン多様体(あるいは、擬リーマン多様体)には、捩れのない計量接続が一意的に存在するという定理である。この接続は、与えられた計量のレヴィ・チヴィタ接続(Levi-Civita connection)と呼ばれる。ここに、計量接続(あるいは、リーマン接続)は、計量テンソルを保存する接続である。正確には、 リーマン幾何学の基本定理:(M, g) をリーマン多様体(あるいは、擬リーマン多様体)とすると、一意に次の条件を満たす接続 ∇ が存在する。.

新しい!!: リーマン幾何学とリーマン幾何学の基本定理 · 続きを見る »

リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

新しい!!: リーマン幾何学とリッチテンソル · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: リーマン幾何学とドイツ · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: リーマン幾何学とベルンハルト・リーマン · 続きを見る »

ベッチ数

代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

新しい!!: リーマン幾何学とベッチ数 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: リーマン幾何学とアルベルト・アインシュタイン · 続きを見る »

アングル

アングル.

新しい!!: リーマン幾何学とアングル · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: リーマン幾何学とアーベル群 · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: リーマン幾何学とオイラー標数 · 続きを見る »

ガウス・ボネの定理

微分幾何学において、ガウス・ボネの定理(Gauss–Bonnet theorem)、あるいはガウス・ボネの公式(Gauss–Bonnet formula)は、(曲率の意味で)曲面の幾何学と(オイラー標数の意味での)曲面のトポロジーと結びつける重要な定理である。命名はこの定理に最初に気づいたが出版しなかったカール・フリードリッヒ・ガウス(Carl Friedrich Gauss)と、1848年に特殊な場合について出版した(Pierre Ossian Bonnet)にちなんでいる。.

新しい!!: リーマン幾何学とガウス・ボネの定理 · 続きを見る »

ガウス曲率

微分幾何学において、曲面上のある点でのガウス曲率(Gauss curvature、あるいは、Gaussian curvature)は、与えられた点での主曲率、κ1 と κ2 の積である。神聖ローマ帝国(当時)のカール・フリードリヒ・ガウスにより1827年に発表された。 ガウス曲率は、空間への等長的に埋め込む(embedded)方法へ依存するのではなく、曲面上での距離にのみ依存する曲率を、それ自身から測る曲率である。ガウス曲率の命名は、カール・フリードリッヒ・ガウス(Carl Friedrich Gauss)に因み、彼の著作である 驚異の定理()の記載内容である。 記号で書き出すと、ガウス曲率 Κ は、 と定義される。ここに κ1 と κ2 は主曲率である。 1 and κ2, of the given point.

新しい!!: リーマン幾何学とガウス曲率 · 続きを見る »

グリゴリー・ペレルマン

リゴリー・ヤコヴレヴィチ・ペレルマンまたはペレリマン(Григорий Яковлевич Перельман, Grigory Yakovlevich Perelman, 1966年6月13日 – )は、ロシア出身の数学者。.

新しい!!: リーマン幾何学とグリゴリー・ペレルマン · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: リーマン幾何学と共役類 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: リーマン幾何学と球面 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: リーマン幾何学と等長写像 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: リーマン幾何学と距離空間 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: リーマン幾何学と重力 · 続きを見る »

離散群

数学において,位相群 の離散部分群(りさんぶぶんぐん,discrete subgroup)とは,部分群 であって, の開被覆で任意の開部分集合が の元をちょうどひとつ含むようなものが存在するものである.言い換えると, の における部分空間位相は離散位相である.例えば,整数の全体 は実数の全体 (標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散群の圏の間には同型がある.離散群はしたがってその(抽象)群と同一視できる. 位相群あるいはリー群に「自然に逆らって」離散位相を入れると有用な場合がある.例えばの理論やリー群の群コホモロジーにおいてである. 離散は距離空間の任意の点に対して等長変換のもとでの点の像の集合が離散集合であるような等長変換群である.離散は離散等長変換群である対称変換群である..

新しい!!: リーマン幾何学と離散群 · 続きを見る »

Integral

integral(インテグラル)は、日本の出版社・ジャイブが発行するテーブルトークRPG(TRPG)関係の文庫レーベル。2005年3月の創刊時は「ジャイブTRPGシリーズ」の名称であったが、創刊と同時に開設していたサポート用のポータルサイト「INTEGRAL」と2007年7月にレーベル名を統一した。 リプレイ・サプリメント・TRPGを原作とする小説化作品を中心に刊行しているが、2010年12月よりオリジナル小説の刊行を開始した。.

新しい!!: リーマン幾何学とIntegral · 続きを見る »

捩れ (代数学)

抽象代数学において、捩れ(ねじれ、torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。.

新しい!!: リーマン幾何学と捩れ (代数学) · 続きを見る »

楕円幾何学

楕円幾何学(だえんきかがく、英語:elliptic geometry)は、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、ある特徴(至る所で正の曲率)を持つ曲がった空間の中における幾何学を論じた数学の一分野。リーマンが球面モデルを考えたため、楕円幾何学の事を指してリーマン幾何学と呼ぶこともあるが、一般にはリーマン幾何学とは別のものである。.

新しい!!: リーマン幾何学と楕円幾何学 · 続きを見る »

断面曲率

リーマン幾何学において、断面曲率(sectional curvature)は、を記述する方法のひとつである。断面曲率 K(σp) は p の接空間内の 2次元平面 σp に依存する。断面曲率は曲面のガウス曲率であり、σp 方向の点 p から始まる測地線より得られる p での接平面 σp を持つ(言い換えると、この平面は、p でのの下の像である。断面曲率は、多様体上の 2次元のファイバーバンドル上の滑らかな実数値函数である。 断面曲率は、リーマン曲率テンソルを完全に決定する。 p) depends on a two-dimensional plane σp in the tangent space at p. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp (in other words, the image of σp under the exponential map at p). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold. The sectional curvature determines the curvature tensor completely.-->.

新しい!!: リーマン幾何学と断面曲率 · 続きを見る »

擬リーマン多様体

微分幾何学において、擬リーマン多様体 (pseudo-Riemannian manifold)(また、半リーマン多様体 (semi-Riemannian manifold) ともいう)は、リーマン多様体の一般化であり、そこでは計量テンソルが必ずしもでないこともある。代わって、非退化というより弱い条件が、計量テンソルへ導入される。 一般相対論で極めて重要な多様体として、ローレンツ多様体 (Lorentzian manifold) があり、そこでは、一つの次元が他の次元とは反対の符号を持っている。このことは、接ベクトルが時間的、光的、空間的へと分類される。時空は 4次元ローレンツ多様体としてモデル化される。.

新しい!!: リーマン幾何学と擬リーマン多様体 · 続きを見る »

曲率

曲率(きょくりつ、)とは曲線や曲面の曲がり具合を表す量である。 例えば、半径 r の円周の曲率は 1/r であり、曲がり具合がきついほど曲率は大きくなる。この概念はより抽象的な図形である多様体においても用いられる。曲面上の曲線の曲率を最初に研究したのは、ホイヘンスとされ、ニュートンの貢献もさることながら、オイラーは曲率の研究に本格的に取り組んだ。その他モンジュ、ベルヌーイ、ムーニエなども研究した。.

新しい!!: リーマン幾何学と曲率 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: リーマン幾何学と時空 · 続きを見る »

1850年代

1850年代(せんはっぴゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1850年から1859年までの10年間を指す十年紀。.

新しい!!: リーマン幾何学と1850年代 · 続きを見る »

ここにリダイレクトされます:

リーマン幾何リーマン幾何学の局所定理と大域定理リーマン空間

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »