ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

4次元多様体

索引 4次元多様体

数学において、4次元多様体 (4-manifold) は 4次元の位相多様体である。滑らかな4次元多様体 (smooth 4-manifold) は、をもつ 4次元多様体である。4次元では、低次元では注目すべき対比があり、位相多様体と滑らかな多様体の間で大きな差異がある。滑らかな構造を持たない 4次元多様体が存在し、たとえ、滑らかな構造が存在したとしても、一意であるとは限らない(すなわち、同相であるが微分同相ではない滑らかな多様体が存在する。.

18 関係: 単連結空間交叉形式 (4次元多様体)代数曲面低次元トポロジー位相同型位相多様体微分同相写像ポアンカレ予想ドナルドソンの定理エンリケス・小平の分類カービー・ジーベンマン不変量カービー計算シュプリンガー・サイエンス・アンド・ビジネス・メディアシンプレクティック多様体サイバーグ・ウィッテン不変量群の表現K3曲面Notices of the American Mathematical Society

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: 4次元多様体と単連結空間 · 続きを見る »

交叉形式 (4次元多様体)

数学において、向き付けられたコンパクト4次元多様体上の交叉形式(こうさけいしき、intersection form)は、4次元多様体の第2コホモロジー群上の特別な対称双線型形式である。この形式は、の存在に関する情報を含む4次元多様体のトポロジーの多くを反映している。.

新しい!!: 4次元多様体と交叉形式 (4次元多様体) · 続きを見る »

代数曲面

数学において、代数曲面(algebraic surface)とは、多様体のが 2 である代数多様体のことを言う。複素数体上の場合には、代数曲面は複素次元 2(複素多様体として)であり、非特異(non-singular)のときには、微分可能多様体としては次元 4 である。 代数曲面の理論は、代数曲線(コンパクトリーマン面で、実次元が 2 の純粋な曲面)と比較して非常に複雑である。しかしながら、およそ 100年前の(Italian school of algebraic geometry)以来、多くの結果が得られている。.

新しい!!: 4次元多様体と代数曲面 · 続きを見る »

低次元トポロジー

数学における低次元位相幾何学(ていじげんいそうきかがく、low-dimensional topologyは、4次元、あるいはそれ以下の次元の多様体の研究をする位相幾何学の一分野である。扱われる主題は、および4次元多様体の構造論、結び目理論および組み紐群などがある。低次元トポロジーは幾何学的位相幾何学の一部と見なすことができる。.

新しい!!: 4次元多様体と低次元トポロジー · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 4次元多様体と位相同型 · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 4次元多様体と位相多様体 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 4次元多様体と微分同相写像 · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: 4次元多様体とポアンカレ予想 · 続きを見る »

ドナルドソンの定理

数学では、ドナルドソンの定理(Donaldson's theorem)は、次元 4 の単連結な滑らかな多様体(smooth manifold)の(definite)な交叉形式は、対角化可能であるという定理である。交叉形式が正定値(負定値)であれば、交叉形式は整数上の単位行列(負の単位行列)に対角化可能である。.

新しい!!: 4次元多様体とドナルドソンの定理 · 続きを見る »

エンリケス・小平の分類

数学においてエンリケス・小平の分類(Enriques–Kodaira classification)とは、コンパクトな複素曲面を10個のクラスへ分類する方法のことである。分類の各クラスはモジュライ空間によりパラメーター化することができる。大部分のクラスのモジュライ空間については良く理解されているが、一般型の曲面については明確に記述するには複雑すぎるとみられており、部分的結果しか知られていない。 初めに が複素射影曲面の分類を記述し、その後小平邦彦 がそれを代数的ではないコンパクト曲面を含む分類へと拡張した。標数 p > 0 における曲面の同様の分類を、 が行い、 により完成された。この分類は、標数 2 の場合に特異および超特異(supersingular)なエンリケス曲面を含むことや、標数 2 又は 3 の場合に準超楕円曲面が得られることを除けば、標数 0 の場合と類似している。.

新しい!!: 4次元多様体とエンリケス・小平の分類 · 続きを見る »

カービー・ジーベンマン不変量

数学では、カービー・ジーベンマン不変量(Kirby–Siebenmann invariant)、あるいはカービー・ジーベンマン類(Kirby–Siebenmann class)は、位相多様体(topological manifold)が(piecewise linear structure)(PL構造)を持つと、0 となるような 4次コホモロジー群 の元である。命名は、(Robion Kirby)と(Larry Siebenmann)に因む。 e(M) \in H^4(M;\mathbf_2) which must vanish if a topological manifold M is to have a piecewise linear structure.

新しい!!: 4次元多様体とカービー・ジーベンマン不変量 · 続きを見る »

カービー計算

数学の位相幾何学の分野において、カービー計算(Kirby calculus)とは、3次元球面内の枠つき絡み目を カービー移動と呼ばれる有限種類の移動で変形する手法である。その名前は手法の開発者であるRobion Kirbyにちなむ。彼は四次元のを用いて次の事実を証明した。三次元多様体 M と N がそれぞれ枠付き絡み目 L と J に沿ったデーン手術によって得られるとき、それらが位相同型であるための必要十分条件は L と J がカービー移動の列で写りあうことである。Lickorish-Wallace の定理によると、任意の閉向き付け可能な三次元多様体は 3次元球面の中の絡み目に沿った手術で得られる。.

新しい!!: 4次元多様体とカービー計算 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 4次元多様体とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

シンプレクティック多様体

数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。.

新しい!!: 4次元多様体とシンプレクティック多様体 · 続きを見る »

サイバーグ・ウィッテン不変量

数学では、サイバーグ・ウィッテン不変量(Seiberg–Witten invariant)は、サイバーグ・ウィッテン理論を使ったコンパクトな 4次元多様体の不変量であり、により導入された。(Seiberg–Witten gauge theory)は、で研究された。 サイバーグ・ウィッテン不変量は、ドナルドソン不変量と似ていて、滑らかな 4次元多様体にかんする同様な(少しより強い)結果を証明することに使うことができる。サイバーグ・ウィッテン不変量は、ドナルドソン不変量に比べて、技術的には非常に容易である。たとえば、サイバーグ・ウィッテン方程式の解のモジュライ空間は、コンパクトとなる傾向があり、従って、ドナルドソン理論のコンパクト化の中の難しい問題を回避することができる。 さらに詳しいサイバーグ・ウィッテン不変量の記述は、,,,, を参照。シンプレクティック多様体とグロモフ・ウィッテン不変量の関係については、を参照。早期の歴史については、を参照。.

新しい!!: 4次元多様体とサイバーグ・ウィッテン不変量 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 4次元多様体と群の表現 · 続きを見る »

K3曲面

数学において、K3曲面 (K3 surface) とは、不正則数が で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。.

新しい!!: 4次元多様体とK3曲面 · 続きを見る »

Notices of the American Mathematical Society

Notices of the American Mathematical Societyとはアメリカ数学会が発行している、統合されている6/7月号を除いた会員制の月刊誌である。創刊号は1953年に発行された。1995年1月号からの各号は雑誌の公式サイトに全て掲載されている。2010年より主筆をが務めている。表紙は通常が載せられている。.

新しい!!: 4次元多様体とNotices of the American Mathematical Society · 続きを見る »

ここにリダイレクトされます:

4-多様体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »