ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

可微分多様体と発散 (ベクトル解析)

ショートカット: 違い類似点ジャカード類似性係数参考文献

可微分多様体と発散 (ベクトル解析)の違い

可微分多様体 vs. 発散 (ベクトル解析)

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。. ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

可微分多様体と発散 (ベクトル解析)間の類似点

可微分多様体と発散 (ベクトル解析)は(ユニオンペディアに)共通で16ものを持っています: 外微分微分積分学ポアンカレの補題ユークリッド空間リー微分リーマン多様体テンソルテンソル場ド・ラームコホモロジーベクトル場勾配 (ベクトル解析)回転 (ベクトル解析)積の微分法則発散定理速度滑らかな関数

外微分

可微分多様体上、外微分(がいびぶん、exterior derivative)は関数の微分の概念を高次の微分形式に拡張する。外微分はエリ・カルタンによって最初に現在の形式で記述された。それによってベクトル解析のストークスの定理、ガウスの定理、グリーンの定理の自然な、距離に依存しない一般化ができる。 形式を無限小 次元平行面体を通る流量を測るものと考えれば、その外微分を -平行面体の境界を通る正味の流れを測るものと考えることができる。.

可微分多様体と外微分 · 外微分と発散 (ベクトル解析) · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

可微分多様体と微分積分学 · 微分積分学と発散 (ベクトル解析) · 続きを見る »

ポアンカレの補題

数学において、ポアンカレの補題(ぽあんかれのほだい、Poincaré lemma)とは代数的位相幾何における定理の一つ。ユークリッド空間において、閉形式である微分形式が完全形式となることを主張する。.

ポアンカレの補題と可微分多様体 · ポアンカレの補題と発散 (ベクトル解析) · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ユークリッド空間と可微分多様体 · ユークリッド空間と発散 (ベクトル解析) · 続きを見る »

リー微分

数学においてリー微分(りーびぶん、Lie derivative)は、多様体 M 上のテンソル場全体の成す多元環上に定義される微分(導分とも)の一種である。ソフス・リーにちなんで名づけられた。M 上のリー微分全体の成すベクトル空間は次で定義されるリー括弧積 について無限次元のリー環を成す。リー微分は M 上の流れ(flow; フロー、activeen な微分同相写像)の無限小生成作用素としてベクトル場によって表される。もう少し別な言い方をすれば、リー群論の方法の直接の類似物ではあるが、M 上の微分同相写像全体の成す群は付随するリー環構造(もちろんそれはリー微分全体のなすリー環のことだが)を持つということができる。.

リー微分と可微分多様体 · リー微分と発散 (ベクトル解析) · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

リーマン多様体と可微分多様体 · リーマン多様体と発散 (ベクトル解析) · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

テンソルと可微分多様体 · テンソルと発散 (ベクトル解析) · 続きを見る »

テンソル場

数学、物理学および工学におけるテンソル場(テンソルば、tensor field)は、数学的な空間(典型的にはユークリッド空間や多様体)の各点にテンソルを割り当てるものである。テンソル場は微分幾何学、代数幾何学、一般相対論において用いられ、物質の応力および歪みの解析やその他物理科学および工学における様々な応用に供される。テンソルがスカラー(長さのような値を表す数値)やベクトル(空間内の幾何学的な矢印)の一般化であるのと同様に、テンソル場はスカラー場およびベクトル場(それぞれ空間の各点にスカラーおよびベクトルを割り当てる)の一般化になっている。 一口に「テンソル」と呼ばれている概念でも、実際の数学的構造は「テンソル場」であるという場合も多い。例えばリーマン曲率テンソルなど。.

テンソル場と可微分多様体 · テンソル場と発散 (ベクトル解析) · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

ド・ラームコホモロジーと可微分多様体 · ド・ラームコホモロジーと発散 (ベクトル解析) · 続きを見る »

ベクトル場

ベクトル場(ベクトルば、vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとでベクトル場を表示するときは座標に対してベクトルを与えるような関数を考えることになるが、座標系を変更したときにこの関数は一定の規則に従って変換を受けることが要請される。 ベクトル場の概念は物理学や工学においても積極的にもちいられ、例えば動いている流体の速さと向きや、磁力や重力などの力の強さと向きなどが空間的に分布している状況を表すために用いられている。 現代数学では多様体論にもとづき、多様体上の接ベクトル束の断面として(接)ベクトル場が定義される。.

ベクトル場と可微分多様体 · ベクトル場と発散 (ベクトル解析) · 続きを見る »

勾配 (ベクトル解析)

ベクトル解析におけるスカラー場の勾配(こうばい、gradient; グラディエント)は、各点においてそのスカラー場の変化率が最大となる方向への変化率の値を大きさにもつベクトルを対応させるベクトル場である。簡単に言えば、任意の量の空間における変位を、傾きとして表現(例えば図示)することができるが、そこで勾配はこの傾きの向きや傾きのきつさを表している。 ユークリッド空間上の関数の勾配を、別なユークリッド空間に値を持つ写像に対して一般化したものは、ヤコビ行列で与えられる。さらに一般化して、バナッハ空間から別のバナッハ空間への写像の勾配をフレシェ微分を通じて定義することができる。.

勾配 (ベクトル解析)と可微分多様体 · 勾配 (ベクトル解析)と発散 (ベクトル解析) · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

可微分多様体と回転 (ベクトル解析) · 回転 (ベクトル解析)と発散 (ベクトル解析) · 続きを見る »

積の微分法則

微分積分学における積の法則(せきのほうそく、product rule;ライプニッツ則)は、二つ(あるいはそれ以上)の函数の積の導函数を求めるのに用いる公式で、 あるいはライプニッツの記法では と書くことができる。あるいは無限小(あるいは微分形式)の記法を用いて と書いてもよい。三つの函数の積の導函数は である。.

可微分多様体と積の微分法則 · 発散 (ベクトル解析)と積の微分法則 · 続きを見る »

発散定理

散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理(Gauss' theorem)とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された 。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。.

可微分多様体と発散定理 · 発散 (ベクトル解析)と発散定理 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

可微分多様体と速度 · 発散 (ベクトル解析)と速度 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

可微分多様体と滑らかな関数 · 滑らかな関数と発散 (ベクトル解析) · 続きを見る »

上記のリストは以下の質問に答えます

可微分多様体と発散 (ベクトル解析)の間の比較

発散 (ベクトル解析)が45を有している可微分多様体は、176の関係を有しています。 彼らは一般的な16で持っているように、ジャカード指数は7.24%です = 16 / (176 + 45)。

参考文献

この記事では、可微分多様体と発散 (ベクトル解析)との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »