ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ベルンハルト・リーマン

索引 ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

74 関係: 多様体与えられた数より小さい素数の個数について一般相対性理論幾何学代数幾何学代数曲線位相幾何学ペーター・グスタフ・ディリクレマッジョーレ湖ハノーファー王国リーマン幾何学リーマン予想リーマン・ロッホの定理リーマンゼータ関数リーマン球面リーマン積分リーマン面リヒャルト・デーデキントルベーグ積分レオポルト・クロネッカーヴィルヘルム・ヴェーバーヴェルバーニアトゥーリオ・レヴィ=チヴィタヘルマン・ミンコフスキーヘルマン・ワイルテンソルディリクレの原理フンボルト大学ベルリンフェリックス・クラインフェルディナント・ゴットホルト・マックス・アイゼンシュタインドイツダフィット・ヒルベルトアルベルト・アインシュタインアンリ・ポアンカレイタリアエルランゲン・プログラムエルンスト・クンマーオーギュスタン=ルイ・コーシーカール・ワイエルシュトラスカール・フリードリヒ・ガウスカール・グスタフ・ヤコブ・ヤコビカール・ジーゲルグスタフ・ロッホゲオルク・アウグスト大学ゲッティンゲンゲオルク・カントールコーシー・リーマンの方程式ゼータ函数写像結核田中勇...特異点銀林浩複素解析解析学高瀬正仁足立恒雄近藤洋逸長岡亮介集合論杉浦光夫楕円函数数学者数論1826年1847年1849年1851年1854年1857年1859年1862年1866年7月20日9月17日 インデックスを展開 (24 もっと) »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: ベルンハルト・リーマンと多様体 · 続きを見る »

与えられた数より小さい素数の個数について

『ベルリン学士院月報』(1859年11月号)に掲載された論文。 『与えられた数より小さい素数の個数について』(あたえられたすうよりちいさいそすうのこすうについて、ドイツ語の原題: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, 英語での定訳: On the Number of Primes Less Than a Given Magnitude)は、19世紀のドイツの数学者であるベルンハルト・リーマンが1859年に発表した論文である。同年の学術誌『ベルリン学士院月報』(Monatsberichte der Königlich Preußischen Akadademie der Wissenschaften zu Berlin) 上に掲載された。解析学や幾何学の分野における業績が多かったリーマンが数論の分野で唯一発表した論文であり、わずか8ページしかなかったが、数々の画期的な内容を含み、後世に甚大な影響を及ぼした。特に解析的整数論においては、本論文は同分野の基本文献とされている。内容的には、この論文はあるべき大論文の要約版・研究速報と見なすことができたが、リーマン自身は7年後の1866年に39歳で没したため、本論文の詳細版が出版されることはついになかった。もし詳細版が出版されていれば、関連分野の研究は70年は短縮されただろうという指摘がある。 本論文には6個の予想が含まれていたが、リーマン没後、うち5つまでは後の数学者達によって証明が与えられた。最後に残されたのがリーマン予想であり、これは数論における最も重要な未解決問題の一つとされている。 この論文の影響はあまりに大きかったため、例えば複素数の表記方法として普通は (特に )と書くところを、リーマンゼータ関数の非自明な零点を論じる場合に限っては、本論文にちなんで と書く慣習がある と書く慣習はエトムント・ランダウ (1903年) から始まる。。また、「リーマンのゼータ関数」という名称も、元々オイラーが導入した関数であるにもかかわらず、本論文でリーマンが記号 を用いて記述したことから以後定着した。.

新しい!!: ベルンハルト・リーマンと与えられた数より小さい素数の個数について · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: ベルンハルト・リーマンと一般相対性理論 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: ベルンハルト・リーマンと幾何学 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: ベルンハルト・リーマンと代数幾何学 · 続きを見る »

代数曲線

数学における代数曲線(だいすうきょくせん、algebraic curve)、特にユークリッド幾何学における平面代数曲線 (plane algebraic curve) は、ユークリッド平面内の点集合であって、各点が適当な二変数多項式函数の零点として与えられるものを言う。.

新しい!!: ベルンハルト・リーマンと代数曲線 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: ベルンハルト・リーマンと位相幾何学 · 続きを見る »

ペーター・グスタフ・ディリクレ

ヨハン・ペーター・グスタフ・ルジューヌ・ディリクレ(Johann Peter Gustav Lejeune Dirichlet, 1805年2月13日 - 1859年5月5日)はドイツの数学者で、現代的形式の関数の定義を与えたことで知られている。.

新しい!!: ベルンハルト・リーマンとペーター・グスタフ・ディリクレ · 続きを見る »

マッジョーレ湖

マッジョーレ湖(マッジョーレこ、Lago Maggiore)、別名ヴェルバーノ湖(ヴェルバーノこ、Verbano)はイタリアのロンバルディア州とピエモンテ州の州境に有る湖で、北部はスイスのティチーノ州にまたがっている。 イタリアで2番目に広い湖で、面積は212.2km2、深さは最大372mである。.

新しい!!: ベルンハルト・リーマンとマッジョーレ湖 · 続きを見る »

ハノーファー王国

ハノーファー王国(Königreich Hannover)は、現在のドイツ北部、ニーダーザクセン州に存在した国家。 1803年にフランスに占領されたブラウンシュヴァイク=リューネブルク選帝侯領が領土を回復し、1814年のウィーン会議によって王国に昇格することで成立した。 ドイツ連邦の加盟国となり、1866年に普墺戦争に敗れてプロイセン王国に併合され、消滅した。以降は1946年までプロイセンの一州となった.

新しい!!: ベルンハルト・リーマンとハノーファー王国 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: ベルンハルト・リーマンとリーマン幾何学 · 続きを見る »

リーマン予想

1.

新しい!!: ベルンハルト・リーマンとリーマン予想 · 続きを見る »

リーマン・ロッホの定理

リーマン・ロッホの定理(リーマン・ロッホのていり、Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。.

新しい!!: ベルンハルト・リーマンとリーマン・ロッホの定理 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: ベルンハルト・リーマンとリーマンゼータ関数 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: ベルンハルト・リーマンとリーマン球面 · 続きを見る »

リーマン積分

数学の実解析の分野において、リーマン積分(リーマンせきぶん、Riemann integral)とは、区間上の関数の積分の最初の厳密な定式化であり、ベルンハルト・リーマンによって創始された。多くの関数や実際的な応用に対しては、リーマン積分は微分積分学の基本定理による計算や数値積分による近似計算が可能である。 リーマン積分は の有界集合上の関数に対して定義されるが、積分範囲にある種の極限を考えることにより、広義リーマン積分が定義される。広義リーマン積分との対比で、通常のリーマン積分を狭義リーマン積分とも呼ぶ。 リーマン積分は積分の多くの性質を示すのに有効であるが、積分と極限との交換に関係する性質を示すには理論的困難を伴うなど、いくつかの技術的欠点がある。この為こうした欠点を補うべくリーマン–スティルチェス積分やルベーグ積分など積分概念の別の定式化方法も提案されている。.

新しい!!: ベルンハルト・リーマンとリーマン積分 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: ベルンハルト・リーマンとリーマン面 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: ベルンハルト・リーマンとリヒャルト・デーデキント · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: ベルンハルト・リーマンとルベーグ積分 · 続きを見る »

レオポルト・クロネッカー

レオポルト・クロネッカー(Leopold Kronecker, 1823年12月7日 - 1891年12月29日)はドイツの数学者である。リーグニッツ(現在のポーランド・レグニツァ Legnica)生まれ。ユダヤ系。 彼は、ヤコビ、ディリクレ、アイゼンシュタイン、クンマーといったドイツの先達の後に立って、また、パリ滞在中にエルミートなどの影響によって、群論、モジュラー方程式、代数的整数論、楕円関数、また行列式の理論において大きな業績を残した。クロネッカーの名前は現在でも、クロネッカーのデルタ、クロネッカー積、クロネッカー=ウェーバーの定理、クロネッカーの青春の夢などに見ることができる。.

新しい!!: ベルンハルト・リーマンとレオポルト・クロネッカー · 続きを見る »

ヴィルヘルム・ヴェーバー

ヴィルヘルム・エドゥアルト・ヴェーバー(Wilhelm Eduard Weber、1804年10月24日 - 1891年6月23日)は、ドイツの物理学者。電気や磁気の精密な測定器具を製作して電磁気学の形成に貢献したほか、ガウスとともに電磁気の単位系の統一に努力し磁束のSI単位「ウェーバ」に名を残している。また、電気が荷電粒子の流れであるということを最初に主張した人物でもある。 生理学者のエルンスト・ヴェーバーは兄、エドゥアルト・ヴェーバーは弟。.

新しい!!: ベルンハルト・リーマンとヴィルヘルム・ヴェーバー · 続きを見る »

ヴェルバーニア

ヴェルバーニア(Verbania)は、イタリア共和国ピエモンテ州北部にある、人口約3万1000人の基礎自治体(コムーネ)。ヴェルバーノ・クジオ・オッソラ県の県都である。 マッジョーレ湖のほとりに位置する風光明媚な観光地であり、夏を中心に国内外から多くの観光客が訪れる。.

新しい!!: ベルンハルト・リーマンとヴェルバーニア · 続きを見る »

トゥーリオ・レヴィ=チヴィタ

トゥーリオ・レヴィ=チヴィタ トゥーリオ・レヴィ=チヴィタ トゥーリオ・レヴィ=チヴィタ(Tullio Levi-Civita、1873年3月29日 - 1941年12月29日)は、イタリアパドヴァ出身のユダヤ人数学者。絶対微分学、テンソル解析学に貢献し、レヴィ=チヴィタ記号(エディントンのイプシロン)の考案者として名高い。また、レヴィ=チヴィタ接続(:en:Levi-Civita connection)やレヴィ=チヴィタ (クレーター)(:en:Levi-Civita (crater))に名前が伝わっている。.

新しい!!: ベルンハルト・リーマンとトゥーリオ・レヴィ=チヴィタ · 続きを見る »

ヘルマン・ミンコフスキー

ヘルマン・ミンコフスキーまたはヘルマン・ミンコウスキー(Hermann Minkowski, 1864年6月22日 - 1909年1月12日)は、ロシア(リトアニア)生まれのユダヤ系ドイツ人数学者。ミンコフスキー空間と呼ばれる四次元の空間により、アルベルト・アインシュタインの特殊相対性理論に数学的基礎を与えた。また、時空を表すための方法として光円錐を考えた。その他に数論や幾何学に関する業績がある。 病理学者のオスカル・ミンコフスキーは兄。.

新しい!!: ベルンハルト・リーマンとヘルマン・ミンコフスキー · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: ベルンハルト・リーマンとヘルマン・ワイル · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ベルンハルト・リーマンとテンソル · 続きを見る »

ディリクレの原理

ディリクレの原理(ディリクレのげんり、Dirichlet's Principle)とは、調和関数に関するディリクレ問題の解を、あるクラスの関数の中でディリクレ積分を最小にするものとして調和関数を発見する方法である。ディリクレ問題の解決方法でもっとも重要な一般的方法がディリクレの原理である。 ディリクレの原理は の解を、次のディリクレ積分 を最小にするものを探すことで見つける方法である。.

新しい!!: ベルンハルト・リーマンとディリクレの原理 · 続きを見る »

フンボルト大学ベルリン

アレクサンダー・フォン・フンボルトの像 ベルリン・フンボルト大学(Humboldt-Universität zu Berlin)またはフンボルト大学ベルリンは、ドイツのベルリンにある大学。ドイツにおけるエクセレンス・イニシアティブ(Exzellenzinitiative)に指定された11のエリート大学の一つ。 プロイセン王国に1810年、教育改革者で言語学者のヴィルヘルム・フォン・フンボルトによってフリードリヒ・ヴィルヘルム大学 (Friedrich-Wilhelms-Universität) として創立された。ベルリンでは最も古い大学で、第二次世界大戦後にはフンボルト大学と改称され、ドイツ再統一後に現称となった。以下、本項では「フンボルト大学」と呼称する。.

新しい!!: ベルンハルト・リーマンとフンボルト大学ベルリン · 続きを見る »

フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

新しい!!: ベルンハルト・リーマンとフェリックス・クライン · 続きを見る »

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン(Ferdinand Gotthold Max Eisenstein、1823年4月16日 - 1852年10月11日)は、ドイツの数学者。楕円関数論、行列の理論やアイゼンシュタイン整数の発見などの業績を残したが若くして結核で亡くなった。ガウスやディリクレのもとで学び、ガウスも彼の才能を高く評価していた。ベルリン大学で学生時代に、レオポルト・クロネッカーと友人になった。リーマンはベルリン大学で彼の講義を受けている。 楕円関数論での研究では、(関数論に依拠するのではなく)整数論との関連を重視して多くの公式を具体的に与えた。この成果を晩年のクロネッカーが見出して、楕円関数論に新たな方向性をもたらすことになる。.

新しい!!: ベルンハルト・リーマンとフェルディナント・ゴットホルト・マックス・アイゼンシュタイン · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: ベルンハルト・リーマンとドイツ · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ベルンハルト・リーマンとダフィット・ヒルベルト · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ベルンハルト・リーマンとアルベルト・アインシュタイン · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: ベルンハルト・リーマンとアンリ・ポアンカレ · 続きを見る »

イタリア

イタリア共和国(イタリアきょうわこく, IPA:, Repubblica Italiana)、通称イタリアは南ヨーロッパにおける単一国家、議会制共和国である。総面積は301,338平方キロメートル (km2) で、イタリアではロスティバル(lo Stivale)と称されるブーツ状の国土をしており、国土の大部分は温帯に属する。地中海性気候が農業と歴史に大きく影響している。.

新しい!!: ベルンハルト・リーマンとイタリア · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: ベルンハルト・リーマンとエルランゲン・プログラム · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: ベルンハルト・リーマンとエルンスト・クンマー · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: ベルンハルト・リーマンとオーギュスタン=ルイ・コーシー · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: ベルンハルト・リーマンとカール・ワイエルシュトラス · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: ベルンハルト・リーマンとカール・フリードリヒ・ガウス · 続きを見る »

カール・グスタフ・ヤコブ・ヤコビ

ール・グスタフ・ヤコプ・ヤコビ(Carl Gustav Jacob Jacobi, 1804年12月10日 - 1851年2月18日)はドイツの数学者。.

新しい!!: ベルンハルト・リーマンとカール・グスタフ・ヤコブ・ヤコビ · 続きを見る »

カール・ジーゲル

ール・ルートヴィヒ・ジーゲル(Carl Ludwig Siegel, 1896年12月31日 - 1981年4月4日)は、ドイツの数学者。整数論、複素関数論、保型関数論、天体力学(三体問題)などを専攻。.

新しい!!: ベルンハルト・リーマンとカール・ジーゲル · 続きを見る »

グスタフ・ロッホ

タフ・ロッホ グスタフ・ロッホ(Gustav Roch, 1839年12月9日 - 1866年11月21日)はドイツの数学者。26年のごく短い生涯のうちにリーマン面の理論に関して顕著な業績を残したことで知られる。.

新しい!!: ベルンハルト・リーマンとグスタフ・ロッホ · 続きを見る »

ゲオルク・アウグスト大学ゲッティンゲン

旧大講堂 大学内の風景 ゲオルク・アウグスト大学ゲッティンゲン(Georg-August-Universität Göttingen, 略称:GAU)は、ドイツのニーダーザクセン州ゲッティンゲンに位置する大学。ドイツに9つあるエクセレントセンターの一つ。ハノーファー選帝侯ゲオルク・アウグスト(英国王としてはジョージ2世)によって1737年に設立された。大学名はこの創設者にちなむものである。ゲッティンゲン大学とも通称する。.

新しい!!: ベルンハルト・リーマンとゲオルク・アウグスト大学ゲッティンゲン · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: ベルンハルト・リーマンとゲオルク・カントール · 続きを見る »

コーシー・リーマンの方程式

数学の複素解析の分野において、コーシー・リーマンの方程式(Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対, に関するコーシー・リーマンの方程式は次の2つの方程式である: \begin (\text)\qquad & \frac.

新しい!!: ベルンハルト・リーマンとコーシー・リーマンの方程式 · 続きを見る »

ゼータ函数

数学では、ゼータ函数 (zeta function) のことを、普通はもともとはリーマンゼータ函数を例とした類似函数のことを言う。リーマンゼータ函数は、 で定義される。ゼータ函数には、下記のような函数がある。.

新しい!!: ベルンハルト・リーマンとゼータ函数 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: ベルンハルト・リーマンと写像 · 続きを見る »

結核

結核(けっかく、Tuberculosis)とは、マイコバクテリウム属の細菌、主に結核菌 (Mycobacterium tuberculosis) により引き起こされる感染症Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; & Mitchell, Richard N. (2007).

新しい!!: ベルンハルト・リーマンと結核 · 続きを見る »

田中勇

中勇(たなか いさむ、1905年(明治38年)1月20日 - 2000年(平成12年)2月12日)は、日本の実業家。東急グループの役員として五島慶太、五島昇親子の下で手腕を発揮し、「東急グループの大番頭」の異名で呼ばれた。社内では不要照明の節約や裏紙使用の奨励など、資源活用やコスト削減の徹底を推進した。.

新しい!!: ベルンハルト・リーマンと田中勇 · 続きを見る »

特異点

特異点(とくいてん、singularity)とは、ある基準 の下、その基準が適用できない (singular) 点である。したがって、特異点は基準があって初めて認識され、「—に於ける特異点」「—に関する特異点」という呼ばれ方をする。特異点という言葉は、数学と物理学の両方で用いられる。.

新しい!!: ベルンハルト・リーマンと特異点 · 続きを見る »

銀林浩

銀林 浩(ぎんばやし こう、1927年8月9日 - )は、日本の数学者、数学教育運動家、明治大学名誉教授。 東京出身。東京大学卒。遠山啓とともに考案した四則計算の指導体系「水道方式」を提唱。1962年、日本大学講師を退職、明治大学講師。1969年、経営学部教授。1980年、数学教育協議会委員長。2000年、明治大学を定年退任、名誉教授。息子の銀林純と共著で数学の英単語の本を出している。祖父は官選埼玉県知事だった銀林綱男。.

新しい!!: ベルンハルト・リーマンと銀林浩 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: ベルンハルト・リーマンと複素解析 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: ベルンハルト・リーマンと解析学 · 続きを見る »

高瀬正仁

正仁(たかせ まさひと、1951年1月23日- )は日本の数学者、数学史家。理学博士(九州大学)。九州大学基幹教育研究院教授、大正大学非常勤講師。専門は多変数関数論、数学史。.

新しい!!: ベルンハルト・リーマンと高瀬正仁 · 続きを見る »

足立恒雄

足立 恒雄(あだち のりお、1941年(昭和16年)11月12日 - )は日本の数学者。理学博士。早稲田大学名誉教授。専攻は代数的整数論、数学思想史。 数学が汎宇宙的な普遍性を持つ真理の体系であり、一貫した発展を遂げているという思想に疑問を呈し、数学は人類の種としての固有の財産であり、また時代・民族・個人に大いに依存しているという観点から、『』、『』、『』等の著作を多数著わしている。.

新しい!!: ベルンハルト・リーマンと足立恒雄 · 続きを見る »

近藤洋逸

近藤 洋逸(こんどう よういつ、1911年(明治44年) - 1979年(昭和54年))は日本の数学史家、科学思想史家。1946年(昭和21年)にゲーデルの赤い本を翻訳して出版した。.

新しい!!: ベルンハルト・リーマンと近藤洋逸 · 続きを見る »

長岡亮介

長岡 亮介(ながおか りょうすけ、1947年 - )は日本の数学者。元明治大学特任教授。専門は数学史、数学教育。元予備校講師。現在「意欲ある若手数学教育者支援組織 TECUM」主催者.

新しい!!: ベルンハルト・リーマンと長岡亮介 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: ベルンハルト・リーマンと集合論 · 続きを見る »

杉浦光夫

杉浦 光夫(すぎうら みつお、1928年 - 2008年3月11日)は、日本の数学者、東京大学名誉教授。 愛知県岡崎市出身。1946年、愛知県岡崎中学校(現・愛知県立岡崎高等学校)卒業。1953年、東京大学理学部数学科卒業。1961年、理学博士。東京大学教養学部助教授、教授、1989年、定年退官、名誉教授。 俳優杉浦直樹は従兄弟である。.

新しい!!: ベルンハルト・リーマンと杉浦光夫 · 続きを見る »

楕円函数

数学の一分野、複素解析における楕円函数(だえんかんすう、elliptic function)は、二方向に周期を持つ有理型のことをいう。歴史的には、楕円函数は楕円積分の逆函数として、ニールス・アーベルによって発見された(楕円積分は楕円の周長を求める問題に関連して研究されていたものである)。.

新しい!!: ベルンハルト・リーマンと楕円函数 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: ベルンハルト・リーマンと数学者 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: ベルンハルト・リーマンと数論 · 続きを見る »

1826年

記載なし。

新しい!!: ベルンハルト・リーマンと1826年 · 続きを見る »

1847年

記載なし。

新しい!!: ベルンハルト・リーマンと1847年 · 続きを見る »

1849年

記載なし。

新しい!!: ベルンハルト・リーマンと1849年 · 続きを見る »

1851年

記載なし。

新しい!!: ベルンハルト・リーマンと1851年 · 続きを見る »

1854年

記載なし。

新しい!!: ベルンハルト・リーマンと1854年 · 続きを見る »

1857年

記載なし。

新しい!!: ベルンハルト・リーマンと1857年 · 続きを見る »

1859年

記載なし。

新しい!!: ベルンハルト・リーマンと1859年 · 続きを見る »

1862年

記載なし。

新しい!!: ベルンハルト・リーマンと1862年 · 続きを見る »

1866年

記載なし。

新しい!!: ベルンハルト・リーマンと1866年 · 続きを見る »

7月20日

7月20日(しちがつはつか、しちがつにじゅうにち)はグレゴリオ暦で年始から201日目(閏年では202日目)にあたり、年末まであと164日ある。誕生花はナス、ルコウソウ。.

新しい!!: ベルンハルト・リーマンと7月20日 · 続きを見る »

9月17日

9月17日(くがつじゅうななにち、くがつじゅうしちにち)はグレゴリオ暦で年始から260日目(閏年では261日目)にあたり、年末まであと105日ある。.

新しい!!: ベルンハルト・リーマンと9月17日 · 続きを見る »

ここにリダイレクトされます:

Bernhard Riemann

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »