ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

可微分多様体と関数の台

ショートカット: 違い類似点ジャカード類似性係数参考文献

可微分多様体と関数の台の違い

可微分多様体 vs. 関数の台

数学において、可微分多様体(かびぶんたようたい、differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。 フォーマルに言えば、可微分多様体は大域的に定義されたを持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。 微分可能性は文脈によって連続微分可能、k 回微分可能、滑らか、正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場やベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学、一般相対論、ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによって exterior calculus (外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。. 数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

可微分多様体と関数の台間の類似点

可微分多様体と関数の台は(ユニオンペディアに)共通で10ものを持っています: 実数直線層 (数学)位相空間ハウスドルフ空間ユークリッド空間コンパクト空間線型汎函数群 (数学)滑らかな関数1の分割

実数直線

数学における実数直線(じっすうちょくせん、real line, real number line)は、その上の各点が実数であるような直線である。つまり、実数直線とは、すべての実数からなる集合 を、幾何学的な空間(具体的には一次元のユークリッド空間)とみなしたものということである。この空間はベクトル空間(またはアフィン空間)や距離空間、位相空間、測度空間あるいは線型連続体としてみることもできる。 単に実数全体の成す集合としての実数直線は記号 (あるいは黒板太字の &#x211d) で表されるのがふつうだが、それが一次元のユークリッド空間であることを強調する意味で と書かれることもある。 本項では の位相幾何学的、幾何学的あるいは実解析的な側面に焦点を当てる。もちろん実数の全体は一つの体として代数学でも重要な意味を持つが、その文脈での が直線として言及されるのは稀である。そういった観点を含めた の詳細は実数の項を参照のこと。.

可微分多様体と実数直線 · 実数直線と関数の台 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

可微分多様体と層 (数学) · 層 (数学)と関数の台 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

位相空間と可微分多様体 · 位相空間と関数の台 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

ハウスドルフ空間と可微分多様体 · ハウスドルフ空間と関数の台 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ユークリッド空間と可微分多様体 · ユークリッド空間と関数の台 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

コンパクト空間と可微分多様体 · コンパクト空間と関数の台 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

可微分多様体と線型汎函数 · 線型汎函数と関数の台 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

可微分多様体と群 (数学) · 群 (数学)と関数の台 · 続きを見る »

滑らかな関数

数学において、関数の滑らかさ(なめらかさ、smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。.

可微分多様体と滑らかな関数 · 滑らかな関数と関数の台 · 続きを見る »

1の分割

数学において、位相空間 X の 1 の分割(いちのぶんかつ、partition of unity)は、X から単位区間 への連続関数の集合 R であって、すべての点 x\in X に対して以下の二条件を満たすものである:.

1の分割と可微分多様体 · 1の分割と関数の台 · 続きを見る »

上記のリストは以下の質問に答えます

可微分多様体と関数の台の間の比較

関数の台が57を有している可微分多様体は、176の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は4.29%です = 10 / (176 + 57)。

参考文献

この記事では、可微分多様体と関数の台との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »