ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

物理学者の一覧

索引 物理学者の一覧

物理学者の一覧(ぶつりがくしゃのいちらん)は、物理学の歴史を彩る、世界の有名な物理学者を一覧する。 主として物理学史において既に評価が定まった過去の物理学者を一覧し、近現代の物理学者についてはその「有名な」を保証するため、次の基準に基づいて選んである。 なお、日本の物理学者の一覧、:Category:物理学者も参照。.

447 関係: 加速器原子論原子核原子模型偏光南部陽一郎坪井忠二坂田昌一境界層増本量大陸移動説天文学者の一覧寺田寅彦小田稔小谷正雄小柴昌俊小林・益川理論小林誠 (物理学者)不確定性原理不思議の国のトムキンス中谷宇吉郎中間子中性子万有引力久保亮五今井功 (物理学者)仁科芳雄仕事 (物理学)伏見康治強磁性位相差顕微鏡土星の環地球物理学北垣敏男ナビエ–ストークス方程式マリ・キュリーマリア・ゲッパート=メイヤーマルティヌス・フェルトマンマルグリット・ペレーマレー・ゲルマンマンネ・シーグバーンノーベル賞マックス・ボルンマックス・プランクマックス・フォン・ラウエマックス・クノールマイケル・ファラデーマイケルソン・モーリーの実験マクスウェルの方程式マセドニオ・メローニ...チャンドラセカール・ラマンチャンドラセカール限界チャールズ・バークラチンダル現象チェレンコフ放射ネヴィル・モットネプツニウムハミルトニアンハンス・アルヴェーンハンス・クリスティアン・エルステッドハドロンハインリヒ・レンツハインリヒ・ヘルツポール・ランジュバンポール・ヴィラールポール・ディラックポール・エーレンフェストポアソン比ポアソン方程式メーグナード・サーハーメーザーモット絶縁体ヤングの実験ユリウス・ロベルト・フォン・マイヤーユージン・ウィグナーヨハネス・ファン・デル・ワールスヨハネス・ケプラーヨハン・ロシュミットヨハン・ヴィルヘルム・リッターヨゼフ・フォン・フラウンホーファーラマン効果ラルス・オンサーガーラプラスの悪魔ライマン系列ラウラ・バッシラグランジュ力学ラジウムリチャード・E・テイラーリチャード・P・ファインマンリーゼ・マイトナーリカルド・ジャコーニルネ・ブロンロルネ・デカルトルートヴィッヒ・ボルツマンルートヴィヒ・プラントルルドルフ・パイエルスルドルフ・クラウジウスルイ・ド・ブロイルイージ・ガルヴァーニルイス・ウォルター・アルヴァレズレーザーレーザー冷却レフ・ランダウレオポルド・ノビーリレオンハルト・オイラーレオン・フーコーレオン・クーパーロバート・ミリカンロバート・ボイルロバート・フックロバート・ウィリアム・ウッドロバート・オッペンハイマーロバート・B・ラフリンローレンツ変換ロータル・マイヤーロイ・グラウバーロシュミット数ワインバーグ=サラム理論ヴァルター・ハイトラーヴィルヘルム・レントゲンヴィルヘルム・ヴィーンヴィルヘルム・ヒットルフヴィタリー・ギンツブルクヴェルナー・ハイゼンベルクヴォルフガング・パウリボルツマン定数ボルタ電池ボース粒子ボイルの法則ボイル=シャルルの法則トマス・ヤングトランジスタトーマス・ゼーベックトビアス・マイヤーヘルマン・フォン・ヘルムホルツヘンリー・モーズリー (物理学者)ヘンリー・キャヴェンディッシュヘンドリック・ローレンツヘーラルト・トホーフトブライアン・ジョゼフソンブラウン管ブラウン運動ブレーズ・パスカルプランク定数プラズマパリティ対称性の破れパーヴェル・チェレンコフパーシー・ブリッジマンパウリの排他原理パウル・ペーター・エバルトパウル・シェラーパスカルの原理パスクアル・ヨルダンビッグバンピーター・マンスフィールドピーター・デバイピーター・ゼーマンピエール・キュリーピエール=シモン・ラプラステオドール・ヘンシュデバイ模型ディラックの海ディラック方程式フランチェスコ・マリア・グリマルディフランクレポートフランク・ウィルチェックフランク=ヘルツの実験フランコ・ラゼッティフランシウムフラウンホーファー線フリードリッヒ・パッシェンフリッツ・ゼルニケフレネルレンズフレッド・ホイルフレデリック・ジョリオ=キュリーフレデリック・サムナー・ブラケットフーリエ変換フーコーの振り子フックの法則ファラデーの電磁誘導の法則ファラデーの電気分解の法則ファンデルワールス力ファインマン・ダイアグラムフィリップ・レーナルトフィリップ・アンダーソンフィリップ・アベルソンフェルディナント・ブラウンドミトリ・メンデレーエフド・ブロイ波ドップラー効果ドニ・パパンニュートン力学ニールス・ボーアニコラ・レオナール・サディ・カルノーニコラス・ブルームバーゲンニコラス・ケンマーホーミ・J・バーバーホーキング放射ホイヘンス=フレネルの原理ダランベールのパラドックスダニエル・ベルヌーイダイオードベルヌーイの定理ベン・ロイ・モッテルソンベンジャミン・フランクリンベンゼン分子間力嵯峨根遼吉周波数周期律周期表アルマン・フィゾーアルバート・マイケルソンアルフレート・ヴェーゲナーアルベルト・アインシュタインアルキメデスアルキメデスの原理アレッサンドロ・ボルタアレクセイ・アブリコソフアレクサンドル・プロホロフアレクサンドル・フリードマンアンペールの法則アンペアアンリ・ナビエアンリ・ベクレルアントワーヌ・セザール・ベクレルアントニオ・パチノッティアンデルス・オングストロームアンドレイ・サハロフアンドレ=マリ・アンペールアンダーソン局在アーネスト・ラザフォードアーネスト・ウォルトンアーヴィング・ラングミュアアッベ数アブドゥッサラームアイザック・ニュートンアウグスト・リーギイリヤ・プリゴジンイリヤ・フランクイレーヌ・ジョリオ=キュリーウィラード・ギブズウィリアム・ローワン・ハミルトンウィリアム・トムソンウィリアム・ヘンリー・フォックス・タルボットウィリアム・クルックスウィリアム・ショックレーウィーンの変位則ウィークボソンウィグナー結晶ウォルター・ブラッテンエミリオ・セグレエネルギーエネルギー保存の法則エルンスト・マッハエルンスト・ルスカエルンスト・アッベエルンスト・シュテュッケルベルクエルヴィン・シュレーディンガーエワルド球エンリコ・フェルミエヴァンジェリスタ・トリチェリエットーレ・マヨラナエトヴェシュ・ロラーンドエティエンヌ・ルイ・マリュスエフゲニー・リフシッツエドモンド・ハレーエドワード・ミルズ・パーセルエドワード・モーリーエドワード・テラーオレステ・ピッチョーニオングストロームオーギュスタン・ジャン・フレネルオットー・ハーンオスカル・クラインカルマン渦カルノーサイクルカルロ・マテウッチカルロ・ルビアカルツァ=クライン理論カール・デイヴィッド・アンダーソンカール・フリードリヒ・フォン・ヴァイツゼッカーカール・フリードリヒ・ガウスガリレオ・ガリレイガンマ線ガブリエル・リップマンガブリエル・ファーレンハイトガスパール=ギュスターヴ・コリオリキャヴェンディッシュの実験キルヒホッフの法則ギヨーム・アモントンギンツブルグ-ランダウ理論クライン–ゴルドン方程式クライン=仁科の公式クラウジウス・クラペイロンの式クリントン・デイヴィソンクリスチャン・ドップラークリスティアーン・ホイヘンスクルックス管クロード・コーエン=タヌージクーロンの法則クヌート・オングストロームクォークグリエルモ・マルコーニグンナー・ノルドシュトルムグスタフ・ヘルツグスタフ・キルヒホフケネス・ウィルソンケプラーの法則ゲージ理論コリオリの力シメオン・ドニ・ポアソンシャルル・ド・クーロンシュレーディンガー方程式ジャン・ペランジャン・ル・ロン・ダランベールジャック・シャルルジュリアン・シュウィンガージュールジュール・グレゴリー・チャーニージョン・バーディーンジョン・ティンダルジョン・ドルトンジョン・ホール (物理学者)ジョン・ウィリアム・ストラット (第3代レイリー男爵)ジョン・クラーク・スレイタージョン・コッククロフトジョン・タウンゼント (物理学者)ジョージ・パジェット・トムソンジョージ・フィッツジェラルドジョージ・ウーレンベックジョージ・ガモフジョージ・ガブリエル・ストークスジョセフ・ルイ・ゲイ=リュサックジョセフソン効果ジョゼフ・ラーモアジョゼフ・フーリエジョゼフ・ジョン・トムソンジョゼフ=ルイ・ラグランジュジェームズ・チャドウィックジェームズ・プレスコット・ジュールジェームズ・クラーク・マクスウェルジェイムス・フランクジェイムズ・デュワースレイター行列式スーパーカミオカンデストークスの定理スブラマニアン・チャンドラセカールスピン角運動量スティーヴン・ワインバーグスティーヴン・ホーキングセンダストセオドア・ライマンセオドア・フォン・カルマンゼーマン効果ゼーベック効果ソール・パールマッターサハの電離公式サティエンドラ・ボース内山龍雄八木・宇田アンテナ八木秀次光子光学光速剛体倍数比例の法則BCS理論石原純理論物理学教程磁性紫外線線形応答理論繰り込み結晶田中舘愛橘熱力学熱力学温度熱伝導界面化学物理学者特性X線益川敏英相対性理論百科全書音速避雷針運動の第1法則運動方程式荒勝文策菊池正士華氏衝撃波行列力学西島和彦 (物理学者)西川正治西澤潤一解析学高エネルギー物理学魔法瓶近藤効果近藤淳茅誠司蒸気機関量子力学量子ホール効果自由エネルギー自由落下長岡半太郎電子顕微鏡電磁気学電気電気素量電波電流計集団運動模型逆2乗の法則陰極線陽電子KS鋼N線X線X線天文学林忠四郎李政道松山基範核磁気共鳴楊振寧水素水素スペクトル系列水素爆弾永宮健夫気体反応の法則気圧江崎玲於奈波動方程式湯川秀樹朝永振一郎本多光太郎流体流体力学日本の天文学者の一覧日本の物理学者の一覧放射線放電21cm線 インデックスを展開 (397 もっと) »

加速器

加速器(かそくき、particle accelerator)とは、荷電粒子を加速する装置の総称。原子核/素粒子の実験による基礎科学研究のほか、癌治療、新素材開発といった実用にも使われる。 前者の原子核/素粒子の加速器実験では、最大で光速近くまで粒子を加速させることができる。粒子を固定標的に当てる「フィックスドターゲット実験」と、向かい合わせに加速した粒子を正面衝突させる「コライダー実験」がある。.

新しい!!: 物理学者の一覧と加速器 · 続きを見る »

原子論

原子論(げんしろん、atomism)とは、“すべての物質は非常に小さな、分割不可能な粒子(Atom、原子)で構成されている”、とする仮説、理論、主義などのこと。.

新しい!!: 物理学者の一覧と原子論 · 続きを見る »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: 物理学者の一覧と原子核 · 続きを見る »

原子模型

原子模型(げんしもけい、atomic theory, atomic model)とは、原子の内部の構造についてのモデルである。.

新しい!!: 物理学者の一覧と原子模型 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 物理学者の一覧と偏光 · 続きを見る »

南部陽一郎

南部 陽一郎(なんぶ よういちろう、1921年1月18日 - 2015年7月5日 産経新聞 2015年7月17日閲覧 大阪大学 2015年7月17日閲覧)は日本出身、アメリカ国籍の理論物理学者。シカゴ大学名誉教授、大阪市立大学名誉教授、大阪大学特別栄誉教授、立命館アジア太平洋大学アカデミック・アドバイザー。専門は素粒子理論。理学博士(東京大学 1952年)。 日本の福井県福井市出身。自宅が大阪府豊中市にあり、シカゴに在住していた。1970年に日本からアメリカ合衆国へ帰化した。.

新しい!!: 物理学者の一覧と南部陽一郎 · 続きを見る »

坪井忠二

坪井 忠二(つぼい ちゅうじ、1902年(明治35年)9月9日 - 1982年(昭和57年)11月19日)は、日本の地球物理学者、随筆家。東京大学名誉教授。理学博士で、寺田寅彦の弟子として知られている。.

新しい!!: 物理学者の一覧と坪井忠二 · 続きを見る »

坂田昌一

坂田 昌一(さかた しょういち、1911年1月18日 - 1970年10月16日)は日本の物理学者。元名古屋大学教授。湯川秀樹、朝永振一郎とともに日本の素粒子物理学をリードした。 特に、1950年代半ばから1960年代半ばまで、坂田の率いるグループは素粒子の構造に関しては、世界の最先端を走り続け、素粒子論の基本構造を解明し、追随をゆるさなかった。.

新しい!!: 物理学者の一覧と坂田昌一 · 続きを見る »

境界層

境界層(きょうかいそう、boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって発見された。.

新しい!!: 物理学者の一覧と境界層 · 続きを見る »

増本量

増本 量(ますもと はかる、1895年(明治28年)1月9日 - 1987年(昭和62年)8月12日)は、日本の金属物理学者。東北大学名誉教授。広島県安芸郡矢賀村(現広島市東区矢賀町)出身。.

新しい!!: 物理学者の一覧と増本量 · 続きを見る »

大陸移動説

パンゲア大陸の分裂 スナイダー=ペレグリニによる図 ウェーゲナー『大陸と海洋の起源』第4版(1929年)より 大陸移動説(たいりくいどうせつ、)は、大陸は地球表面上を移動してその位置や形状を変えるという学説。大陸漂移説(たいりくひょういせつ)ともいう。 発想自体は古くからあり様々な人物が述べているが、一般にはドイツの気象学者アルフレート・ヴェーゲナーが1912年に提唱した説を指す。ウェーゲナーの大陸移動説は発表後長く受容されなかったが、現在はプレートテクトニクス理論の帰結のひとつとして実証され受け入れられている。.

新しい!!: 物理学者の一覧と大陸移動説 · 続きを見る »

天文学者の一覧

天文学者の一覧(てんもんがくしゃのいちらん)は、天文学者の一覧である。なお日本の天文学者は多数にわたるのでノーベル物理学賞受賞者・文化勲章受章者のみ掲載する。ノーベル物理学賞受賞者・文化勲章受章者以外の日本の天文学者については日本の天文学者の一覧を参照。 括弧内は国名、生年。ユリウス暦とグレゴリオ暦ではグレゴリオ暦を優先。.

新しい!!: 物理学者の一覧と天文学者の一覧 · 続きを見る »

寺田寅彦

寺田 寅彦(てらだ とらひこ、1878年(明治11年)11月28日 - 1935年(昭和10年)12月31日)は、戦前の日本の物理学者、随筆家、俳人。吉村冬彦(大正11年から使用)、寅日子、牛頓(“ニュートン”)、藪柑子(“やぶこうじ”)の筆名でも知られる。高知県出身(出生地は東京市)。.

新しい!!: 物理学者の一覧と寺田寅彦 · 続きを見る »

小田稔

小田 稔(おだ みのる、1923年2月24日 - 2001年3月1日)は、日本の天文学者、宇宙物理学者。東京大学名誉教授。.

新しい!!: 物理学者の一覧と小田稔 · 続きを見る »

小谷正雄

小谷 正雄(こたに まさお、1906年1月14日 - 1993年6月6日)は、日本の分子物理学者、生物物理学者。東京大学・東京理科大学名誉教授、東京理科大学元学長。京都府生まれ。今上天皇の教育係を務める。.

新しい!!: 物理学者の一覧と小谷正雄 · 続きを見る »

小柴昌俊

小柴 昌俊(こしば まさとし、1926年(大正15年)9月19日 - )は、日本の物理学者・天文学者。1987年、自らが設計を指導・監督したカミオカンデによって史上初めて自然に発生したニュートリノの観測に成功したことにより、2002年にノーベル物理学賞を受賞した。日本学士院会員。 学位は、ロチェスター大学Ph.D.、東京大学理学博士。称号は日本学術会議栄誉会員、東京大学特別栄誉教授・東京大学名誉教授、明治大学名誉博士、東京都名誉都民、杉並区名誉区民、横須賀市名誉市民、杉並区立桃井第五小学校名誉校長。勲等は勲一等旭日大綬章、文化勲章受章。.

新しい!!: 物理学者の一覧と小柴昌俊 · 続きを見る »

小林・益川理論

小林・益川理論(こばやし・ますかわりろん)は、小林誠(京都大学、当時)と益川敏英(京都大学、当時)によって1973年に発表された理論である。.

新しい!!: 物理学者の一覧と小林・益川理論 · 続きを見る »

小林誠 (物理学者)

イタリア国立核物理学研究所所長ニコラ・カビボ(左)と 小林誠 小林 誠(こばやし まこと、1944年4月7日 - )は、日本の理論物理学者。素粒子理論を専門分野とし、小林の名が付けられた「CKM行列 (Cabibbo-Kobayashi-Maskawa matrix)」や「小林・益川理論」で知られる。ノーベル物理学賞、日本学士院賞受賞。文化功労者、文化勲章受章者。名古屋大学の特別教授および素粒子宇宙起源研究機構諮問委員会座長、高エネルギー加速器研究機構の特別栄誉教授、独立行政法人日本学術振興会の理事および学術システム研究センター所長、財団法人国際高等研究所のフェローを務める。.

新しい!!: 物理学者の一覧と小林誠 (物理学者) · 続きを見る »

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

新しい!!: 物理学者の一覧と不確定性原理 · 続きを見る »

不思議の国のトムキンス

不思議の国のトムキンス (Mr. Tompkins in Wonderland) は1940年にケンブリッジ大学出版局から出版された科学空想物語で、著者ジョージ・ガモフは原子核のアルファ崩壊理論やビッグバン宇宙論で知られた世界的な物理学者である。本作は、主人公トムキンスが夢の中で相対性理論や量子力学の効果が日常的に容易に観察出来る不思議な世界に入り込んで色々と思いがけない出来事を体験する、というかたちでこれら非日常的な物理の世界を解き明かす、という内容である。.

新しい!!: 物理学者の一覧と不思議の国のトムキンス · 続きを見る »

中谷宇吉郎

中谷 宇吉郎(なかや うきちろう、1900年(明治33年)7月4日 - 1962年(昭和37年)4月11日)は、日本の物理学者、随筆家。位階は正三位。勲等は勲一等。学位は理学博士(京都帝国大学・1931年)。 北海道大学理学部教授を北海道帝国大学時代から務め、世界で初となる人工雪の製作に成功した。.

新しい!!: 物理学者の一覧と中谷宇吉郎 · 続きを見る »

中間子

中間子 (英:meson) とは、一つのクォークと一つの反クォークから構成される亜原子粒子である。素粒子物理学の標準模型では、ハドロンの一種である。別称としてメゾンまたはメソンが、旧称としてメソトロン、メゾトロンまたは湯川粒子がある。.

新しい!!: 物理学者の一覧と中間子 · 続きを見る »

中性子

中性子(ちゅうせいし、neutron)とは、原子核を構成する粒子のうち、無電荷の粒子の事で、バリオンの1種である。原子核反応式などにおいては記号 n で表される。質量数は原子質量単位で約 、平均寿命は約15分でβ崩壊を起こし陽子となる。原子核は、陽子と中性子と言う2種類の粒子によって構成されている為、この2つを総称して核子と呼ぶ陽子1個で出来ている 1H と陽子3個で出来ている 3Li の2つを例外として、2015年現在の時点で発見報告のある原子の内、最も重い 294Og までの全ての"既知の"原子核は陽子と中性子の2種類の核子から構成されている。。.

新しい!!: 物理学者の一覧と中性子 · 続きを見る »

万有引力

万有引力(ばんゆういんりょく、universal gravitation)または万有引力の法則(ばんゆういんりょくのほうそく、law of universal gravitation)とは、「地上において質点(物体)が地球に引き寄せられるだけではなく、この宇宙においてはどこでも全ての質点(物体)は互いに gravitation(.

新しい!!: 物理学者の一覧と万有引力 · 続きを見る »

久保亮五

久保 亮五(くぼ りょうご、1920年2月15日 - 1995年3月31日)は、日本の物理学者。東京大学、京都大学、慶應義塾大学で教授、パリ大学、シカゴ大学、ペンシルベニア大学、ニューヨーク州立大学で客員教授を務めた。 統計物理学、物性物理学の分野で国際的に知られた。 特に線形応答理論の構築に貢献し、彼の提案した理論は「久保理論」の名でも呼ばれている。 1997年に生前の業績を記念して井上科学振興財団が久保亮五記念賞を創設した。.

新しい!!: 物理学者の一覧と久保亮五 · 続きを見る »

今井功 (物理学者)

今井 功(いまい いさお、1914年(大正3年)10月7日 - 2004年(平成16年)10月24日)は日本の物理学者で、文化勲章受章者。専門は流体力学で、特に航空機の飛行に関係した空気力学の基礎理論において大きな業績を上げた。.

新しい!!: 物理学者の一覧と今井功 (物理学者) · 続きを見る »

仁科芳雄

仁科 芳雄(にしな よしお、1890年(明治23年)12月6日 - 1951年(昭和26年)1月10日)は、日本の物理学者である。岡山県浅口郡里庄町浜中の出身。日本に量子力学の拠点を作ることに尽くし、宇宙線関係、加速器関係の研究で業績をあげた。日本の現代物理学の父である。 死去から4年後の1955年、原子物理学とその応用分野の振興を目的として仁科記念財団が設立された。この財団では毎年、原子物理学とその応用に関して著しい業績を上げた研究者に仁科記念賞を授与している。 ニールス・ボーアのもとで身に着けたその自由な学風は、朝永振一郎のひきいた東京文理科大学グループ(南部陽一郎、西島和彦ら)、および、坂田昌一の名大グループ(小林誠、益川敏英、坂田モデルにU(3)群を導入した大貫義郎ら)に伝えられ、素粒子論や物性などを日本に根付かせ世界レベルの研究が多く出た点でも名高い。.

新しい!!: 物理学者の一覧と仁科芳雄 · 続きを見る »

仕事 (物理学)

物理学における仕事(しごと、work)とは、物体に加わる力と、物体の変位の内積によって定義される物理量である。エネルギーを定義する物理量であり、物理学における種々の原理・法則に関わっている。 物体に複数の力がかかる場合には、それぞれの力についての仕事を考えることができる。ある物体 A が別の物体 B から力を及ぼされながら物体 A が移動した場合には「物体 A が物体 B から仕事をされた」、または「物体 B が物体 A に仕事をした」のように表現する。ただし、仕事には移動方向の力の成分のみが影響するため、力が物体の移動方向と直交している場合には仕事はゼロであり、「物体 B は物体 A に仕事をしない」のように表現をする。力が移動方向とは逆側に向いている場合は仕事は負になる。これらの事柄は変位と力のベクトルの内積として仕事が定義されることで数学的に表現される。すなわち仕事は正負の符号をとるスカラー量である。 仕事が行われるときはエネルギーの増減が生じる。仕事は正負の符号をとるスカラー量であり、正負の符号は混乱を招きやすいが、物体が正の仕事をした場合は物体のエネルギーが減り、負の仕事をした場合には物体のエネルギーが増える。仕事の他のエネルギーの移動の形態として熱があり、熱力学においては仕事を通じて内部エネルギーなどの熱力学関数が定義され、エネルギー保存則が成り立つように熱が定義される。 作用・反作用の法則により力は相互的であるが、仕事は相互的ではない。物体 B が物体 A に力を及ぼしているとき、物体 B は物体 A から逆向きで同じ大きさの力を及ぼされている。しかし物体 B が物体 A に仕事をするときに、物体 B は物体 A から逆符号の仕事をされているとは限らない。例えば、物体が床などの固定された剛な面の上を移動するとき、床と物体との間の摩擦抗力により、床は物体に仕事をするが、床は移動しないため、物体は床に仕事をしない。.

新しい!!: 物理学者の一覧と仕事 (物理学) · 続きを見る »

伏見康治

伏見 康治(ふしみ こうじ、1909年6月29日 - 2008年5月8日)は日本の理論物理学者、理学博士。公明党参議院議員(1期)。正四位勲二等(没時)。 本来の仕事である物理学、特に統計力学の分野で大きな研究業績を上げた他、戦後日本の科学研究体制の確立と発展にも力を尽くし、原子力平和利用研究を推進、さらには科学者の社会的責任のアピールと行動、一般向け書籍による物理の面白さの啓発・普及、そして対称性の美の追究など、多方面に大きな足跡を残した。.

新しい!!: 物理学者の一覧と伏見康治 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 物理学者の一覧と強磁性 · 続きを見る »

位相差顕微鏡

位相差顕微鏡(いそうさけんびきょう)とは、光線の位相差をコントラストに変換して観察できる光学顕微鏡のことである。標本を無染色・非侵襲的に観察することができるため、特に生物細胞を観察する場合や臨床検査に多く用いられる。また、石綿の検出にも使用される。.

新しい!!: 物理学者の一覧と位相差顕微鏡 · 続きを見る »

土星の環

2006年9月15日、土星食の日にカッシーニによって撮影された土星の環の全景(明るさは誇張されている)。メインリングの外側、G環のすぐ内側の10時の方角に「ペイル・ブルー・ドット」(地球)が見える。 構成する粒子の径に応じて彩色した画像 土星の環(どせいのわ)は、太陽系で最も顕著な惑星の環である。μm単位からm単位の無数の小さな粒子が集団になり、土星の周りを回っている。環の粒子はほぼ全て水の氷であり、塵やその他の物質が少量混入している。 環からの反射光によって土星の視等級が増すが、地球から裸眼で土星の環を見ることはできない。ガリレオ・ガリレイが最初に望遠鏡を空に向けた翌年の1610年、彼は人類で初めて土星の環を観測したが、ガリレオはそれが何であるかはっきり認識することはなかった。1655年、クリスティアーン・ホイヘンスは初めて、それが土星の周りのディスクであると記述した。ピエール=シモン・ラプラス以降、多くの人が、土星の環は多数の小さな環の集合であると考えているが、実際には、環と環の間に何もない空隙の数は少ない。実際には、密度や明るさに部分的に極大部や極小部のある同心円の環帯であると考える方が正確である。 土星の環には、粒子の密度が急激に落ちる空隙が多数ある。そのうち2つでは、既知の衛星が運行しており、また他の空隙の多くは、土星の衛星と不安定共鳴を起こす場所にある。残りの空隙は、その生成過程が不明である。一方、タイタン環やG環等は、安定共鳴状態によってその安定性が維持されている。 メインリングの外側にはフェーベ環がある。これは、他のリングから27°傾き、フェーベのように逆行している。 最近の研究では、土星の環は土星に衝突する前に氷の殻を引き裂かれた衛星の残骸であるとする説がある。.

新しい!!: 物理学者の一覧と土星の環 · 続きを見る »

地球物理学

地球物理学(ちきゅうぶつりがく、)は、地球を物理的な手法を用いて研究する学問分野。20世紀後半に大きく発展した。 地球物理学に含まれる分野として、.

新しい!!: 物理学者の一覧と地球物理学 · 続きを見る »

北垣敏男

北垣 敏男(きたがき としお、1922年12月13日-2016年2月28日 )は日本の物理学者。東北大学名誉教授。専門は、高エネルギー物理学。理学博士。世界に於ける高エネルギー加速器研究に関する第一人者。.

新しい!!: 物理学者の一覧と北垣敏男 · 続きを見る »

ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

新しい!!: 物理学者の一覧とナビエ–ストークス方程式 · 続きを見る »

マリ・キュリー

マリア・スクウォドフスカ=キュリー(Maria Skłodowska-Curie, 1867年11月7日 - 1934年7月4日)は、現在のポーランド(ポーランド立憲王国)出身の物理学者・化学者である。フランス語名はマリ・キュリー(、ファーストネームは日本語ではマリーとも)。キュリー夫人 として有名である。 ワルシャワ生まれ。放射線の研究で、1903年のノーベル物理学賞、1911年のノーベル化学賞を受賞し、パリ大学初の女性教授職に就任した。1909年、アンリ・ド・ロチルド (1872-1946) からキュリー研究所を与えられた。 放射能 (radioactivity) という用語は彼女の発案による。.

新しい!!: 物理学者の一覧とマリ・キュリー · 続きを見る »

マリア・ゲッパート=メイヤー

ウェーデン国王グスタフ6世 マリア・ゲッパート=メイヤー(マリーア・ゲッパート=マイアー)(Maria Göppert-Mayer、1906年6月28日 - 1972年2月20日)は、ドイツ生まれのアメリカの物理学者。数少ない女性のノーベル物理学賞受賞者の1人である。 ドイツ帝国・オーバーシュレジエンのカトヴィッツ(現在のポーランド領カトヴィツェ)に生まれた。 1910年、父フリードリヒ・ゲッパートが小児医科の教授になるため、家族はゲッティンゲンに移住した。マリアは大学の学生や講師、後のノーベル賞受賞者になる、フェルミやハイゼンベルク、ディラック、パウリらに囲まれて育った。彼女自身もゲッティンゲン大学に学びボルンらの教えを受けた。1930年にと結婚して、夫の国のアメリカに移住した。夫も物理学者でその専門は統計力学、特に不完全気体の理論で知られる。 1931年から1939年までボルチモアのジョンズ・ホプキンス大学で働き、1940年から1946年までコロンビア大学の研究員となり、1946年シカゴ大学の講師-准教授となった。サラ・ローレンス大学で教鞭をとり、シカゴ大学で研究を行い、時にロスアラモス国立研究所も訪れた。この頃1963年にノーベル賞受賞することになる「魔法数」に関する研究など原子核モデルの研究をおこなった。また、アルゴンヌ国立研究所の研究員も務めた。同じ頃同じテーマで研究していたドイツの研究者たちの1人ハンス・イェンセンと"Elementary Theory of Nuclear Shell Structure"を出版した。1963年、2人はノーベル物理学賞を受賞した。 1953年には、国際理論物理学会 東京&京都で来日した。1960年にはカリフォルニア大学サンディエゴ校の物理学の専任教授に就任した。 ゲッパート=メイヤーの死後、女性の物理学者に贈られるがアメリカ物理学会によって創設された。.

新しい!!: 物理学者の一覧とマリア・ゲッパート=メイヤー · 続きを見る »

マルティヌス・フェルトマン

マルティヌス・フェルトマン(またはヴェルトマン)(Martinus J.G. Veltman、1931年6月27日 - )オランダの物理学者である。1999年 電弱相互作用の量子構造の解明によりゲラルド・トフーフトとノーベル物理学賞を受賞した。 1960年代を通じ場の量子論の研究を行った。1971年ユトレヒト大学で大学院生だったトフーフトにヤン=ミルズ理論の繰り込みに関するテーマを与えて、この分野の長年の課題を解決して注目を集めた。その後、トフーフトと離れて、アメリカのミシガン大学へ移った。(科学読物『セカンド・クリエイション』ロバート・P・クリース他(早川書房)) 1963-64 年の米SLAC国立加速器研究所滞在中にSchoonschip (オランダ語 で「きれいな船 (clean ship)」の意) という名前のソフトウェアを開発した。これは数学における方程式に対して記号的な操作を行うものであり、数式処理ソフトウェアとしては最初期のものであると考えられている。.

新しい!!: 物理学者の一覧とマルティヌス・フェルトマン · 続きを見る »

マルグリット・ペレー

マルグリット・ペレー(Marguerite Catherine Perey、1909年10月19日 - 1975年5月13日)はフランスの物理学者。1939年にフランシウムを発見した。1949年からストラスブール大学の教授を務めた。 セーヌ=サン=ドニ県ヴィルモンブルで生まれた。1929年からマリ・キュリーの助手をつとめた。パリのキュリー研究所で、1939年アクチニウムのα崩壊により生成したフランシウム223を確認した。フランシウムには安定同位体は存在せず、最も半減期が長いフランシウム223でも半減期は22分である。 category:フランスの物理学者 Category:化学元素発見者 Category:ストラスブール大学の教員 Category:キュリー研究所 (パリ)の人物 Category:1909年生 Category:1975年没.

新しい!!: 物理学者の一覧とマルグリット・ペレー · 続きを見る »

マレー・ゲルマン

マレー・ゲルマン(Murray Gell-Mann、1929年9月15日 - )は、アメリカ・ニューヨーク生まれの物理学者。表記はマレイまたはゲル=マンとも。1969年、「素粒子の分類と相互作用に関する発見と研究」でノーベル物理学賞を受賞。 「クォークの父」と呼ばれる。「複雑系(複雑適応系)」研究で有名なサンタフェ研究所の設立者のひとり。 13か国語を操り、心理学、人類学、考古学、鳥類学にも造詣が深い。クォーク、ストレンジネス、色荷(カラー)などを命名したことでも知られる。.

新しい!!: 物理学者の一覧とマレー・ゲルマン · 続きを見る »

マンネ・シーグバーン

ール・マンネ・イェオリ・シーグバーン(Karl Manne Georg Siegbahn、1886年12月3日 - 1978年9月26日)は、スウェーデンの物理学者である。X線分光学の分野の研究で1924年のノーベル物理学賞を受賞した。ジーグバーン、ジークバーンの表記も見られる。息子のカイ・シーグバーンも、1981年にノーベル物理学賞を受賞している。.

新しい!!: 物理学者の一覧とマンネ・シーグバーン · 続きを見る »

ノーベル賞

ノーベル賞(ノーベルしょう)は、ダイナマイトの発明者として知られるアルフレッド・ノーベルの遺言に従って1901年から始まった世界的な賞である。物理学、化学、生理学・医学、文学、平和および経済学の「5分野+1分野」で顕著な功績を残した人物に贈られる。 経済学賞だけはノーベルの遺言にはなく、スウェーデン国立銀行の設立300周年祝賀の一環としてノーベルの死後70年後にあたる1968年に設立されたものであり、ノーベル財団は「ノーベル賞ではない」としているが、一般にはノーベル賞の一部門として扱われることが多い。.

新しい!!: 物理学者の一覧とノーベル賞 · 続きを見る »

マックス・ボルン

マックス・ボルン(Max Born, 1882年12月11日 - 1970年1月5日)は、ドイツの理論物理学者。量子力学の初期における立役者の一人である。1954年ノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とマックス・ボルン · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とマックス・プランク · 続きを見る »

マックス・フォン・ラウエ

マックス・テオドール・フェリックス・フォン・ラウエ(Max Theodor Felix von Laue、1879年10月9日 - 1960年4月24日) は、ドイツの物理学者。結晶によるX線の回折現象を発見し、X線が電磁波であることを示した。その業績により1914年のノーベル物理学賞を受賞した。光学、結晶学、量子力学、超伝導、相対性理論といった分野への科学的貢献に加え、約40年に渡ってドイツの科学的研究開発の進歩を管理する立場でも貢献した。特に第二次世界大戦後のドイツ科学界の再生に貢献した。また、国家社会主義には強く反対した。.

新しい!!: 物理学者の一覧とマックス・フォン・ラウエ · 続きを見る »

マックス・クノール

マックス・クノール(Max Knoll、1897年7月17日- 1969年11月6日)はドイツの電気技術者。電子顕微鏡の発明者の1人である。 クノールはベルリン工科大学で高電圧技術で学位をえた。1931年にベルリン工科大学のエルンスト・ルスカと電子顕微鏡を開発した。1932年から1945年までテレフンケン社でテレビジョンの開発を行いながらベルリン工科大学で教えた。1948年から1956年までアメリカのプリンストン大学の電気工学の教授となった。 エルンスト・ルスカは電子顕微鏡の開発の功績で1986年に80歳でノーベル物理学賞を受賞するが、これはクノールの没後17年もたったあとである。 Category:ドイツの電気技術者 Category:プリンストン大学の教員 Category:1897年生 Category:1969年没.

新しい!!: 物理学者の一覧とマックス・クノール · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: 物理学者の一覧とマイケル・ファラデー · 続きを見る »

マイケルソン・モーリーの実験

マイケルソン・モーリーの実験(マイケルソン・モーリーのじっけん、Michelson-Morley experiment)とは、1887年にアルバート・マイケルソンとエドワード・モーリーによって行なわれた光速に対する地球の速さの比 の二乗 を検出することを目的とした実験であるなお、この実験は現在のケース・ウェスタン・リザーブ大学で行なわれた。。 マイケルソンは、この業績により1907年にノーベル賞を受賞したこの実験は、エーテル理論を初めて否定した物理学史における重要な役割を果たしたものとして知られている。同時に、「第二次科学革命の理論面の端緒」ともされている。 Earl R. Hoover, Cradle of Greatness: National and World Achievements of Ohio’s Western Reserve (Cleveland: Shaker Savings Association, 1977).

新しい!!: 物理学者の一覧とマイケルソン・モーリーの実験 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 物理学者の一覧とマクスウェルの方程式 · 続きを見る »

マセドニオ・メローニ

マセドニオ・メローニ(Macedonio Melloni、1798年4月11日パルマ-1854年8月11日ポルティチ)はイタリアの物理学者である。熱の放射の物理的性質が光と同じであることを実験的に示したことで知られる。 パルマに生れた。1824年パルマ大学の教授になったが、1831年のカルボナリの革命に加担したため、フランスへ逃れなければならなかった。1839年にナポリに戻り、すぐにベスビアス天文台の所長になり1848年までその職にあった。ナポリ近郊のポルティチで死んだ。.

新しい!!: 物理学者の一覧とマセドニオ・メローニ · 続きを見る »

チャンドラセカール・ラマン

ー・チャンドラシェーカル・ヴェンカタ・ラーマン(Sir Chandrasekhara Venkata Raman、(、)、1888年11月7日 - 1970年11月21日)はインドの物理学者。1930年のノーベル物理学賞受賞者。ラマン効果(ラマンスペクトル)の発見者である。 タミル・ナードゥ州のティルッチラーッパッリ生まれ。アーンドラ・プラデーシュ州のヴィシャーカパトナムで育つ。マドラス管区大学で学び、1917年にコルカタ大学の教授となる。そこで、光学の研究を行った。インド本国で研究したインド人研究者としては初めてのノーベル賞受賞者であり、インド人としても有色人種としても1913年にノーベル文学賞を受賞したタゴールに次ぐ受賞者となった。 1934年にインド理科大学院の学長となった。1957年にはレーニン平和賞を受賞する。 1983年にノーベル物理学賞を受賞したスブラマニアン・チャンドラセカールの叔父にあたる。.

新しい!!: 物理学者の一覧とチャンドラセカール・ラマン · 続きを見る »

チャンドラセカール限界

チャンドラセカール限界(チャンドラセカールげんかい、Chandrasekhar Limit)とは、白色矮星の質量の理論的な上限値のことである。この質量限界は、英領インド出身の物理学者スブラマニアン・チャンドラセカールにより提唱された。彼は、後の1983年にこの先駆的な研究が評価されてノーベル物理学賞を受賞している。理論値と実際の観測により、現在では太陽質量の1.44倍程度と考えられている。 太陽のようなある程度の質量(およそ太陽質量の8倍程度以下)を持つ恒星は、その成長の末期に白色矮星となるが、白色矮星になった際に、この限界値よりも質量が大きな場合、重力による収縮が起こって超新星爆発を起こし、中性子星になると考えられている。 もっとも、Ia型超新星のように、太陽質量の約1.4倍を超える質量を持つ白色矮星が起こしたと考えられる超新星も複数発見されている。.

新しい!!: 物理学者の一覧とチャンドラセカール限界 · 続きを見る »

チャールズ・バークラ

チャールズ・バークラ(Charles Glover Barkla、1877年6月7日 - 1944年10月23日)は、イギリスの物理学者である。特性X線の発見の功績により1917年にノーベル物理学賞を受賞した。 チェシャー州ウィドゥネスに生まれ、リヴァプール大学、ケンブリッジ大学キングス・カレッジで学んだ。1909年にロンドン大学のキングス・カレッジ・ロンドンの物理学の教授となった。1913年にはエディンバラ大学の自然科学の教授になり、終生そこの教授であった。 1909年に C.A. Sadlerと元素に電子線をあてると、元素に固有な波長を持つ特性X線が発生することを発見した。 発見当時は特性X線の物理的意義は必ずしも明確でなかったが、1913年ヘンリー・モーズリーによって、特性X線の波長と原子の原子番号の関係が明らかにされた(モーズリーの式)。モーズリーは第一次世界大戦で戦死したため、ノーベル賞の受賞を逃したが、バークラは1917年ノーベル賞を受賞した。 スコットランドのエディンバラで没した。.

新しい!!: 物理学者の一覧とチャールズ・バークラ · 続きを見る »

チンダル現象

チンダル現象の例 チンダル現象(チンダルげんしょう、Tyndall effect, Tyndall scattering)は、光の特性によって起こる物理化学的現象の一つ。分散系に光を通したときに、光が主にミー散乱によって散乱され、光の通路がその斜めや横からでも光って見える現象を言う。 19世紀イギリスの物理学者ジョン・ティンダルによって発見されたため、この名がある。 太陽が雲に隠れているときに雲の切れ間あるいは端から光が漏れ、光線の柱が放射状に地上へ降り注いで見える薄明光線は身近なチンダル現象の一種である。 ミー散乱の強度は粒子径と波長がほぼ等しいときに最大となり、光の入射方向より特に前方側に多く散乱する特徴がある。ミー散乱の強度は波長に特に依存しないので、太陽光の場合は白っぽく見えることになる。.

新しい!!: 物理学者の一覧とチンダル現象 · 続きを見る »

チェレンコフ放射

チェレンコフ放射(チェレンコフほうしゃ、Čerenkov radiation)とは、荷電粒子が物質中を運動する時、荷電粒子の速度がその物質中の光速度よりも速い場合に光が出る現象。チェレンコフ効果ともいう。このとき出る光をチェレンコフ光、または、チェレンコフ放射光と言う。 この現象は、1934年にパーヴェル・チェレンコフにより発見され、チェレンコフ放射と名付けられた。その後、イリヤ・フランクとイゴール・タムにより、その発生原理が解明された。これらの功績により、この3名は1958年のノーベル物理学賞を受けた。.

新しい!!: 物理学者の一覧とチェレンコフ放射 · 続きを見る »

ネヴィル・モット

ー・ネヴィル・フランシス・モット(Sir Nevill Francis Mott、1905年9月30日 - 1996年8月8日)は、イギリスの物理学者。ケンブリッジ大学教授。1977年、「磁性体と無秩序系の電子構造の理論的研究」によりフィリップ・アンダーソン、ヴァン・ヴレックとともにノーベル物理学賞を受賞。リーズ出身。.

新しい!!: 物理学者の一覧とネヴィル・モット · 続きを見る »

ネプツニウム

ネプツニウム (neptunium) は原子番号93の元素。元素記号は Np。アクチノイド元素の一つ。また最も軽い超ウラン元素でもある。銀白色の金属で、展性、延性に富んでいる。常温、常圧(25℃、1atm)での安定な結晶構造は斜方晶系。280 付近から正方晶系となり、更に580 付近より体心立方構造 (BCC) が安定となる。比重は20.45、融点は640 、沸点は3900 。原子価は+3から+7価(+5価が安定)。 ネプツニウム239の半減期は2.4日。ウラン238は天然にも存在するので、ネプツニウム239、プルトニウム239は天然にもごく僅かに存在する。他にネプツニウム236(半減期15.4万年)、ネプツニウム237(半減期214万年)などがある。 ネプツニウム237はネプツニウム系列(ネプツニウム237からタリウム205までの崩壊過程の系列)の親核種である。この系列の元素で半減期が一番長いネプツニウム237でも半減期が214万年しかないため、この系列は天然には極めて稀にしか存在しないが、最終系列核種のビスマス、タリウムはごく普遍的に天然に存在する。また、ウラン鉱の中から極微量のネプツニウムが核種崩壊の際の副産物としてしばしば発見される。ネプツニウム237は、核兵器の爆発によって生成する。.

新しい!!: 物理学者の一覧とネプツニウム · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: 物理学者の一覧とハミルトニアン · 続きを見る »

ハンス・アルヴェーン

ハンネス・アルヴェーン(Hannes Olof Gösta Alfvén, 1908年5月30日 - 1995年4月2日)は、スウェーデンの地球物理学者・物理学者である。ハネス・アルベーンともいう。 スウェーデンのノーショーピング生まれ。ウプサラ大学卒。1934年からウプサラ大学で物理学の教鞭を執り、1940年にスウェーデン王立工科大学の教授となった。 磁場中の伝導性流体においては、通常の流体とは異なり、縦波だけでなく横波(アルヴェーン波、アルベン波ともいう)も伝播しうることを明らかにするなど、プラズマ物理学の一つの基盤である磁気流体力学の基礎を築いた。1970年にノーベル物理学賞を受賞した。 そのほか、磁気圏中の荷電粒子の運動の研究など、磁気圏・電離圏物理学の基礎となる様々な研究成果を挙げた。ビッグバン・モデルに基づく標準的宇宙論に対して、プラズマ宇宙論を提唱した。 叔父に作曲家のヒューゴ・アルヴェーンがいる(スウェーデンを代表する国民楽派の作曲家)。.

新しい!!: 物理学者の一覧とハンス・アルヴェーン · 続きを見る »

ハンス・クリスティアン・エルステッド

ハンス・クリスティアン・エルステッド(Hans Christian Ørsted:1777年8月14日 - 1851年3月9日)はデンマークの物理学者、化学者である。電流が磁場を形成することを発見し、電磁気学の基礎を築いた。カント哲学の信奉者であり、19世紀後半の科学の方向性を決定付けた1人である。 1824年、Selskabet for Naturlærens Udbredelse (SNU) すなわち自然科学普及協会を創設。Danish Meteorological Institute やデンマーク特許庁などの組織の前身となった団体の創設にも関わった。また、思考実験という観念を明確に述べた最初の近代人でもある。 いわゆるデンマーク黄金時代のリーダーの1人とされ、ハンス・クリスチャン・アンデルセンとは親友だった。弟のアナス・エルステッド(Anders Sandøe Ørsted)は政治家となり、1853年から1854年までデンマーク首相を務めた。 彼の名は、磁場のCGS単位エルステッド (Oe) として残っている。.

新しい!!: 物理学者の一覧とハンス・クリスティアン・エルステッド · 続きを見る »

ハドロン

ハドロン (hadron) は、素粒子標準模型において強い相互作用で結びついた複合粒子のグループである。 強粒子とも訳されるが、現代では素粒子物理学者がこの和名で呼ぶことはほとんどない。 この名称は、ギリシャ語の「強い」の意のἁδρόςに由来し、1962年にレフ・オクンによって付けられた。.

新しい!!: 物理学者の一覧とハドロン · 続きを見る »

ハインリヒ・レンツ

ハインリヒ・レンツ(Heinrich Friedrich Emil Lenz, 1804年2月12日 - 1865年2月10日)は、1833年のレンツの法則で有名なバルト・ドイツ人の物理学者。ハインリッヒ・レンツとも表記される.

新しい!!: 物理学者の一覧とハインリヒ・レンツ · 続きを見る »

ハインリヒ・ヘルツ

ハインリヒ・ルドルフ・ヘルツ(Heinrich Rudolf Hertz, 1857年2月22日 - 1894年1月1日)は、ドイツの物理学者。マックスウェルの電磁気理論をさらに明確化し発展させた。1888年に電磁波の放射の存在を、それを生成・検出する機械の構築によって初めて実証した。.

新しい!!: 物理学者の一覧とハインリヒ・ヘルツ · 続きを見る »

ポール・ランジュバン

ポール・ランジュヴァン (Paul Langevin、1872年1月23日 – 1946年12月19日)は、フランスの物理学者。.

新しい!!: 物理学者の一覧とポール・ランジュバン · 続きを見る »

ポール・ヴィラール

ポール・ヴィラール ポール・ヴィラール(Paul Ulrich Villard,1860年9月28日 -1934年1月13日)はフランスの化学者、物理学者である。1900年にウランから放出される放射線の中のガンマ線を発見した。 物理化学の分野の研究者であった。ガンマ線を発見した時はパリの高等師範学校の化学部門で働いていた。1896年のアンリ・ベクレルのウランからの放射線の発見は当時の物理学の最先端の研究分野となり、ベクレルやラザフォードやキュリー夫妻らによって、放射線の正体が何であるかの研究がすすめられていた。放射線に正電荷をもつアルファ線と、負電荷をもつベータ線があって、それらの粒子線の質量と電荷の比などが研究されていた。ヴィラールは放射線の飛跡の写真から、電荷を持たず、透過力の高い3番目の種類の放射線の存在を発見し、1900年に発表した。当時はアルファ線、ベータ線の正体が物理学者たちのもっとも興味のある対象であったため、ヴィラールの発見は注目されなかった。ヴィラール自身もガンマ線の研究を続けなかった。なお、この放射線がガンマ線と名づけられるのは1903年、ラザフォードによってである。.

新しい!!: 物理学者の一覧とポール・ヴィラール · 続きを見る »

ポール・ディラック

ポール・エイドリアン・モーリス・ディラック(Paul Adrien Maurice Dirac, 1902年8月8日 - 1984年10月20日)はイギリスのブリストル生まれの理論物理学者。量子力学及び量子電磁気学の基礎づけについて多くの貢献をした。1933年にエルヴィン・シュレーディンガーと共にノーベル物理学賞を受賞している。 彼はケンブリッジ大学のルーカス教授職を務め、最後の14年間をフロリダ州立大学の教授として過ごした。.

新しい!!: 物理学者の一覧とポール・ディラック · 続きを見る »

ポール・エーレンフェスト

ポール・エーレンフェスト(パウル・エーレンフェスト)(Paul Ehrenfest、1880年1月18日 - 1933年9月25日)はオーストリア出身のオランダの物理学者。数学者。.

新しい!!: 物理学者の一覧とポール・エーレンフェスト · 続きを見る »

ポアソン比

ポアソン比(ポアソンひ、英語:Poisson's ratio、Poisson coefficient)とは、物体に弾性限界内で応力を加えたとき、応力に直角方向に発生するひずみと応力方向に沿って発生するひずみの比のことである。ヤング率などと同じく弾性限界内では材料固有の定数と見なされる。 名称はフランスの物理学者シメオン・ドニ・ポアソンに由来する。.

新しい!!: 物理学者の一覧とポアソン比 · 続きを見る »

ポアソン方程式

ポアソン方程式(ポアソンほうていしき、Poisson's equation)は、2階の楕円型偏微分方程式。方程式の名はフランスの数学者・物理学者シメオン・ドニ・ポアソンに因む。.

新しい!!: 物理学者の一覧とポアソン方程式 · 続きを見る »

メーグナード・サーハー

Meghnad Saha. メーグナード・サーハー(मेघनाद साहा,Meghnad Saha、1893年10月6日 - 1956年2月16日)は、インドの物理学者である。サーハーの電離公式をみちびいた。 現在のバングラデシュのダッカの近郊に商人の息子として生れた。医者の家に住み込んで働きながら学校にかよった。1909年ダッカ大学に入学。後の物理学者サティエンドラ・ボースと成績を競い合った。その後カルカッタのプレジデンシー・カレッジ(Presidency College)でジャガディッシュ・チャンドラ・ボースなどの指導をうけた。1920年から2年間ヨーロッパに留学し、1923年から1938年までイラーハーバード大学(Allahabad University)の教授、その後カルカッタ大学(University of Calcutta)の教授になった。 1919年にサーハーの電離公式を提出した。 Category:インドの物理学者 Category:バングラデシュの物理学者 Category:コルカタ大学の教員 Category:イラーハーバード大学の教員 Category:ダッカ出身の人物 Category:1893年生 Category:1956年没.

新しい!!: 物理学者の一覧とメーグナード・サーハー · 続きを見る »

メーザー

メーザー()とは、誘導放出によってマイクロ波を増幅したりコヒーレントなマイクロ波を発生させたりできる装置のこと。(誘導放出によるマイクロ波増幅)の略称である。メーザーはレーザー同様、非常に指向性・単波長性が高い。指向性の高さから、先端科学用ピンポイント加熱装置などに用いられることがある。また、分子構造の解析にも利用される。メーザーはマイクロ波用電子管やマイクロ波用半導体素子よりもはるかに低雑音である。.

新しい!!: 物理学者の一覧とメーザー · 続きを見る »

モット絶縁体

モット絶縁体 (Mott-insulator) とは、バンド理論では金属的と予想されるにもかかわらず、電子間斥力の効果(電子相関効果)によって実現している絶縁体状態のことである。 バンド理論によれば、単位胞あたりの電子数が奇数の場合は、バンドは部分的にしか占有されないため、必ず金属的になるはずである。しかし実際には単位胞あたりの電子数が奇数となる化合物の中にも金属的な電気伝導を示さず、絶縁体となるものが存在する。これらの絶縁体の基底状態が電子相関に起因するものであることを指摘したのがモットとパイエルスである。モットが指摘したこの転移は、絶縁相に関して磁性の状態は仮定されていないが、現実の「モット絶縁体」では反強磁性を示すなど磁性状態になる。.

新しい!!: 物理学者の一覧とモット絶縁体 · 続きを見る »

ヤングの実験

ヤングの実験(ヤングのじっけん)は、複スリットを用いた、光の干渉性を示す実験。1805年ころトーマス・ヤングが、光源からの光を平行な2つのスリットを通すと衝立上に干渉縞を生じることを示した。光の波動性を示す現象である。 なお、同様の二重スリットを使う実験であるが、今日「二重スリット実験」と呼ぶ場合はリンク先の記事のように、1個ずつ発生させた電子を利用して波動性にとどまらず、量子における粒子と波動の二重性を示す実験を指すこともある。 二つのスリットの光がスクリーンに投影されるとき、両方の光が当たる中央部分が明るくなるという左の図は直感的にわかりやすい。たとえば舞台に複数のスポットライトをあてるような場合には実際にこのようになる。しかし光の間隔が非常に小さい場合、スクリーンには図右下のように縞模様が映し出される。これは光が干渉という、波に特徴的な性質を持っているためである。.

新しい!!: 物理学者の一覧とヤングの実験 · 続きを見る »

ユリウス・ロベルト・フォン・マイヤー

ユリウス・ロベルト・フォン・マイヤー(Julius Robert von Mayer, 1814年11月25日 - 1878年3月20日)は、ドイツの物理学者。熱と仕事が相互に変換可能であること、エネルギー保存の法則を1842年5月31日に論文で発表した。比熱に関するマイヤーの関係式にも名前を残している。.

新しい!!: 物理学者の一覧とユリウス・ロベルト・フォン・マイヤー · 続きを見る »

ユージン・ウィグナー

ユージン・ポール・ウィグナー (Eugene Paul Wigner, Wigner Jenő Pál (ヴィグネル・イェネー・パール), 1902年11月17日 ブダペシュト - 1995年1月1日 プリンストン)は、ハンガリー出身の物理学者。ユダヤ系。「 原子核と素粒子の理論における対称性の発見」により1963年ノーベル物理学賞受賞。.

新しい!!: 物理学者の一覧とユージン・ウィグナー · 続きを見る »

ヨハネス・ファン・デル・ワールス

ヨハネス・ディーデリク・ファン・デル・ワールス(Johannes Diderik van der Waals, 1837年11月23日 - 1923年3月8日)は、オランダの物理学者。分子の大きさと分子間力を考慮した気体の状態方程式を発見し、1910年にオランダ人として3人目のノーベル物理学賞を受賞した。 ヨハネス・ファン・デル・ワールスの業績の重要さは以下の点にある。.

新しい!!: 物理学者の一覧とヨハネス・ファン・デル・ワールス · 続きを見る »

ヨハネス・ケプラー

ヨハネス・ケプラー(Johannes Kepler、1571年12月27日 - 1630年11月15日)はドイツの天文学者。天体の運行法則に関する「ケプラーの法則」を唱えたことでよく知られている。理論的に天体の運動を解明したという点において、天体物理学者の先駆的存在だといえる。一方で数学者、自然哲学者、占星術師という顔ももつ。欧州補給機(ATV)2号機、アメリカ航空宇宙局の宇宙望遠鏡の名前に彼の名が採用されている。.

新しい!!: 物理学者の一覧とヨハネス・ケプラー · 続きを見る »

ヨハン・ロシュミット

ヨハン・ヨーゼフ・ロシュミット(Johann Josef Loschmidt、1821年3月15日 カールスバート近郊プチルン Putschirn(現チェコ・ポチェルニ Počerny)- 1895年7月8日)は、オーストリアの化学者、物理学者である。1872年からウィーン大学で物理化学の教授を務めた。研究分野は熱力学、電気力学、光学、結晶におよぶ。 ロシュミットは、1856年気体分子の大きさを求めた。1861年ベンゼンの構造を有名なケクレに先駆けて発見した。 1865年にアボガドロ定数の計算を行ったので、ドイツ語圏の国では、現在もアボガドロ数をロシュミット数と呼ぶことがある。または0℃、1気圧の1cm3の体積に含まれる分子の数をロシュミット数(NL.

新しい!!: 物理学者の一覧とヨハン・ロシュミット · 続きを見る »

ヨハン・ヴィルヘルム・リッター

ヨハン・ヴィルヘルム・リッター(Johann Wilhelm Ritter, 1776年12月16日 - 1810年1月23日)は、ドイツの物理学者である。 現ポーランド領、シレジアのザーミッツ(Zamienice)に生まれる。薬剤師として働いた後、イェーナ大学に入学した。電気の実験に興味をもち、1804年から33歳で病死するまでミュンヘンのバイエルン科学アカデミーで働いた。 リッターは電気化学、電気物理の分野で多くの発見を行った。1799年に水の電気分解を行い、1800年に電気めっきの研究、1801年に熱電現象、1801年に筋肉の電流による収縮を調べた。1802年から1803年にかけて乾電池を組み立てた。 1800年にウィリアム・ハーシェルが赤外線を発見したのに刺激され、可視光の反対側にも見えない光があると考えて1801年に電気化学的方法で紫外線を発見した。同年にはヨーロッパを訪問していたハンス・クリスティアン・エルステッドと交流し、影響を与えている。 奇人であったというエピソードが残されている。電気による筋肉の収縮に実験は自らが実験台になった。論文の文体は難解で、多くの発見は認められなかった。 もともと病弱だったこともあり、1810年に貧困の中で亡くなった時には、妻と4人の子供が残された。 Category:ドイツの物理学者 Category:18世紀の学者 Category:19世紀の自然科学者 Category:プロイセンの人物 Category:バイエルン王国の人物 Category:シレジア・ドイツ人 Category:1776年生 Category:1810年没.

新しい!!: 物理学者の一覧とヨハン・ヴィルヘルム・リッター · 続きを見る »

ヨゼフ・フォン・フラウンホーファー

ヨゼフ・フォン・フラウンホーファー ヨゼフ・フォン・フラウンホーファー(Joseph von Fraunhofer 、1787年3月6日『天文アマチュアのための望遠鏡光学・屈折編』pp.1-54「世界史の中の屈折望遠鏡」。 - 1826年6月7日)は、ドイツの光学機器製作者、物理学者である。太陽光のスペクトルの中のフラウンホーファー線、光学分野のフラウンホーファー回折に名前を残している。ドイツの応用研究と技術移転の機関「フラウンホーファー研究機構」は彼の名前に由来する。.

新しい!!: 物理学者の一覧とヨゼフ・フォン・フラウンホーファー · 続きを見る »

ラマン効果

ラマン効果(ラマンこうか)またはラマン散乱は、物質に光を入射したとき、散乱された光の中に入射された光の波長と異なる波長の光が含まれる現象。1928年インドの物理学者チャンドラセカール・ラマンとK・S・クリシュナンが発見した。.

新しい!!: 物理学者の一覧とラマン効果 · 続きを見る »

ラルス・オンサーガー

ラルス・オンサーガー(Lars Onsager, 1903年11月27日 - 1976年10月5日)はノルウェーオスロ出身のアメリカで活動した物理学者である。オンザーガーあるいはオンセージャーとも表記される。不可逆過程の熱力学の研究により1968年にノーベル化学賞を受賞した。 ノルウェー工科大学卒業。チューリッヒ工科大学を経て、1928年ブラウン大学の教職員となった。1933年よりイェール大学の化学科の助教授、1940年には同大学準教授、1945年から1973年までイェール大学の教授を務めた。 1931年にオンサーガーの相反定理を発見し、熱力学第二法則の発展形である「不可逆過程の熱力学」を首尾一貫した理論体系に整備する道を拓いた。また1944年に2次元イジング模型の厳密解を導き、相転移現象の研究に一大転機を与えた。 1953年には、国際理論物理学会で来日した。.

新しい!!: 物理学者の一覧とラルス・オンサーガー · 続きを見る »

ラプラスの悪魔

ラプラスの悪魔(ラプラスのあくま、Laplace's demon)とは、主に近世・近代の物理学の分野で未来の決定性を論じる時に仮想された超越的存在の概念であり、フランスの数学者、ピエール=シモン・ラプラスによって提唱されたもののこと。ラプラスの魔物あるいはラプラスの魔とも呼ばれる。.

新しい!!: 物理学者の一覧とラプラスの悪魔 · 続きを見る »

ライマン系列

ライマン系列は、遷移の系列であり、電子の準位がn ≥ 2 から n.

新しい!!: 物理学者の一覧とライマン系列 · 続きを見る »

ラウラ・バッシ

ラウラ・バッシ(Laura Bassi, 1711年10月31日 - 1778年2月20日)はイタリアの女性物理学者、科学者。ヨーロッパの大学で初めて教授となった女性である。 ボローニャに、法律家の娘に生まれた。1731年にボローニャ大学の解剖学の教授に任命された。1738年に結婚し12人の子供を生んだが、ニュートン力学に関心を持ち、1776年に65歳で物理学の教授に復帰した。.

新しい!!: 物理学者の一覧とラウラ・バッシ · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 物理学者の一覧とラグランジュ力学 · 続きを見る »

ラジウム

ラジウム(radium)は、原子番号88の元素。元素記号は Ra。アルカリ土類金属の一つ。安定同位体は存在しない。天然には4種類の同位体が存在する。白色の金属で、比重はおよそ5-6、融点は700 、沸点は1140 。常温、常圧での安定な結晶構造は体心立方構造 (BCC)。反応性は強く、水と激しく反応し、酸に易溶。空気中で簡単に酸化され暗所で青白く光る。原子価は2価。化学的性質などはバリウムに似る。炎色反応は洋紅色。 ラジウムがアルファ崩壊してラドンになる。ラジウムの持つ放射能を元にキュリー(記号 Ci)という単位が定義され、かつては放射能の単位として用いられていた。現在、放射能の単位はベクレル(記号 Bq)を使用することになっており、1 Ciは3.7 × 1010 Bqに相当する。なお、ラジウム224、226、228は WHO の下部機関 IARC より発癌性があると (Type1) 勧告されている。 ラジウムそのものの崩壊ではアルファ線しか放出されないが、その後の娘核種の崩壊でベータ線やガンマ線なども放出される。.

新しい!!: 物理学者の一覧とラジウム · 続きを見る »

リチャード・E・テイラー

リチャード・エドワード・テイラー(Richard Edward Taylor, 1929年11月2日 - 2018年2月22日)は、カナダ生まれのアメリカ合衆国で活躍した物理学者である。1990年、ヘンリー・ケンドール 、ジェローム・アイザック・フリードマンとノーベル物理学賞を受賞した。 カナダのアルバータ州に生まれた。アルバータ大学で学んだ後、スタンフォード大学で学位を得た。1958年にフランスに渡り、加速器の研究に加わり、1961年、アメリカに戻ってスタンフォード線形加速器センター(SLAC)などで加速器を使った研究に加わった。ノーベル物理学賞を受賞した功績はスタンフォード線型加速器センターの電子-陽子衝突実験で、陽子の内部構造を確認し、クォーク模型を実証したものである。.

新しい!!: 物理学者の一覧とリチャード・E・テイラー · 続きを見る »

リチャード・P・ファインマン

リチャード・フィリップス・ファインマン(Richard Phillips Feynman, 1918年5月11日 - 1988年2月15日)は、アメリカ合衆国出身の物理学者である。.

新しい!!: 物理学者の一覧とリチャード・P・ファインマン · 続きを見る »

リーゼ・マイトナー

リーゼ・マイトナー(Lise Meitner、1878年11月7日 - 1968年10月27日) はオーストリアの物理学者である。放射線、核物理学の研究を行った。.

新しい!!: 物理学者の一覧とリーゼ・マイトナー · 続きを見る »

リカルド・ジャコーニ

リカルド・ジャコーニ(Ricardo Giacconi、1931年10月6日 - )はアメリカ合衆国で活躍した宇宙物理学者である。X線天文学のパイオニアの一人である。2002年、X線天体の発見の功績によりノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とリカルド・ジャコーニ · 続きを見る »

ルネ・ブロンロ

ルネ・ブロンロ(Prosper-René Blondlot、1849年7月3日 - 1930年11月24日)は、フランスの物理学者。ブロンドロとも表記される。新しい放射線「N線」を発見したと発表したが、後にN線は実在しないことがわかり、科学史上に名を残した。 1849年、フランス北東部のナンシーに産まれた。父はの医学部(毒物学)の教授であった。1881年にソルボンヌで物理学の学位を取得すると、翌年、ナンシー大学の教授となった。導体中の電磁波の速度の研究などの業績によって優れた実験物理学者として知られるようになり、フランス科学アカデミーから3度の賞を受けている(3度目の受賞は、後述のN線発見の業績に対して与えられたものである)。1894年にはヘルムホルツの後任としてフランス科学アカデミーの通信会員に選出された。 1903年、ブロンロは新しい放射線「N線」を発見したと報告し、物理学界に大きな反響を呼んだ。しかし追試の失敗が相次ぎ、N線の存在が疑問視されるようになった。1904年、ブロンロの実験を調査したアメリカの物理学者ロバート・ウィリアム・ウッドによって、N線とは結果を都合良く解釈した実験者が存在すると思い込んでいただけで、現実には何も存在していないと結論づけられた。 ブロンロは1906年までN線の存在を主張し続けたが、1910年にナンシー大学を退職し、1930年に死去した。 後にN線の出来事は、実験者の願望が実験結果の解釈に影響を与えてしまう危険性を示す例として語られるようになった。.

新しい!!: 物理学者の一覧とルネ・ブロンロ · 続きを見る »

ルネ・デカルト

ルネ・デカルト(René Descartes、1596年3月31日 - 1650年2月11日)は、フランス生まれの哲学者、数学者。合理主義哲学の祖であり、近世哲学の祖として知られる。.

新しい!!: 物理学者の一覧とルネ・デカルト · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

新しい!!: 物理学者の一覧とルートヴィッヒ・ボルツマン · 続きを見る »

ルートヴィヒ・プラントル

ルートヴィヒ・プラントル ルートヴィヒ・プラントル(Ludwig Prandtl 、1875年2月4日 - 1953年8月15日)はドイツの物理学者。空気力学の方面で業績を上げた。境界層、薄翼の理論、揚力線理論を研究した。無次元量のプラントル数の命名者である。 ミュンヘン近郊のフライジンクに生れた。父親も工学の教授である。1894年ミュンヘン大学に入学し固体物理を学んで、機械設計者になった。流体機械の設計から流体力学の分野に加わるようになった。 1901年ハノーファー工科大学(現ゴットフリート・ヴィルヘルム・ライプニッツ大学ハノーファー)の教授になった。1904年に境界層に関する論文を執筆した。ゲッティンゲン大学に移り、航空流体工学の先端研究機関とした。1925年にカイザー・ヴィルヘルム・流体力学研究所(Kaiser-Wilhelm-Institut für Strömungsforschung)を創立した。 フレデリック・ランチェスターと3次元翼の理論(ランチェスター=プラントル理論または揚力線理論)を1918年から1919年に発表した。キャンバーをもつ薄翼の理論も研究した。翼端効果の重要性を示した。それまで考慮されなかった翼端渦が抗力を引き起こすことを示した。 1908年にテオドル・マイヤー(Theodor Meyer )と共に、超音速衝撃波の理論を初めて示した。超音速風洞の構造も考案した。 その他にハーマン・グロワート(''Hermann Glauert'' 、英、1892年 - 1934年)とともにプラントル=グロワートの法則に名前を残している。.

新しい!!: 物理学者の一覧とルートヴィヒ・プラントル · 続きを見る »

ルドルフ・パイエルス

ルドルフ・エルンスト・パイエルス(Rudolf Ernst Peierls、1907年6月5日 - 1995年9月19日)は、ドイツ生まれのイギリスの物理学者。王立協会フェロー。 一次元電子-格子系が、構造不安定性を持つことを指摘した(パイエルス不安定性、パイエルス転移)。.

新しい!!: 物理学者の一覧とルドルフ・パイエルス · 続きを見る »

ルドルフ・クラウジウス

ルドルフ・ユリウス・エマヌエル・クラウジウス(Rudolf Julius Emmanuel Clausius, 1822年1月2日 - 1888年8月24日)は、ドイツの物理学者。熱力学第一法則・第二法則の定式化、エントロピーの概念の導入など、熱力学の重要な基礎を築いた。.

新しい!!: 物理学者の一覧とルドルフ・クラウジウス · 続きを見る »

ルイ・ド・ブロイ

ルイ・ド・ブロイこと、第7代ブロイ公爵ルイ=ヴィクトル・ピエール・レーモン(Louis-Victor Pierre Raymond, 7e duc de Broglie 、1892年8月15日 - 1987年3月19日)は、フランスの理論物理学者。 彼が博士論文で仮説として提唱したド・ブロイ波(物質波)は、当時こそ孤立していたが、後にシュレディンガーによる波動方程式として結実し、量子力学の礎となった。.

新しい!!: 物理学者の一覧とルイ・ド・ブロイ · 続きを見る »

ルイージ・ガルヴァーニ

ルイージ・ガルヴァーニ(Luigi Galvani、1737年9月9日 - 1798年12月4日)はイタリアのボローニャ出身の医師、物理学者である。ガルバーニとも表記する。1771年、電気火花を当てると死んだカエルの筋肉がけいれんすることを発見。これが生体電気研究の端緒となり、今日の神経系の電気パターンや信号の研究に繋がっている。.

新しい!!: 物理学者の一覧とルイージ・ガルヴァーニ · 続きを見る »

ルイス・ウォルター・アルヴァレズ

ルイス・ウォルター・アルヴァレズ(Luis Walter Alvarez, 1911年6月13日・サンフランシスコ - 1988年9月1日)はアメリカの物理学者、ノーベル物理学賞受賞者である。専門分野以外で恐竜の隕石衝突による絶滅説を提出したことでも有名である。線形加速器の形式の一つ「アルバレ型リニアック」にも名前を残している。 祖父はスペイン出身の医学者、。.

新しい!!: 物理学者の一覧とルイス・ウォルター・アルヴァレズ · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: 物理学者の一覧とレーザー · 続きを見る »

レーザー冷却

レーザー冷却(レーザーれいきゃく)とは、レーザー光を用いて、気体分子の温度を絶対零度近くまで冷却する方法のこと。おもに、単原子分子、もしくは単原子イオンに用いられる。.

新しい!!: 物理学者の一覧とレーザー冷却 · 続きを見る »

レフ・ランダウ

レフ・ダヴィドヴィッチ・ランダウ(、1908年1月22日 - 1968年4月1日)はロシアの理論物理学者。絶対零度近くでのヘリウムの理論的研究によってノーベル物理学賞を授与された。エフゲニー・リフシッツとの共著である『理論物理学教程』は、多くの言語に訳され、世界的にも標準的な教科書としてよく知られている。.

新しい!!: 物理学者の一覧とレフ・ランダウ · 続きを見る »

レオポルド・ノビーリ

レオポルド・ノビーリ ノビーリの検流計 レオポルド・ノビーリ(Leopoldo Nobili、1784年 - 1835年8月5日)は19世紀始めのイタリアの物理学者、発明家。熱力学や電気化学の研究のための様々な装置を発明し、イタリアにおける電磁気学研究の先駆者の一人とされる。 ガルファニャーナのTrassilico(現在のトスカーナ州ガッリカーノ)に生れた。モデナの士官学校を卒業して技術将校になり、ナポレオン1世の1812年ロシア戦役に参加した "Mille Anni di Scienza in Italia" ガリレオ博物館(イタリア語) museo galileo Biographies (英語)。 その後は物理学の研究、特に電気現象の研究に専念するようになり、1825年には無定位検流計を発明し、初期の電磁誘導装置なども設計した。また、1850年に赤外線などの研究を行ったマセドニオ・メローニ(1798-1854)と共同で熱電対や電流計を使った研究を行った。 1832年、レオポルド2世 (トスカーナ大公)にフィレンツェに呼ばれ、王立物理学・自然史博物館(Regio Museo di Fisica e Storia Naturale/現:スペーコラ美術館)の物理学教授に就任し、当時のイタリアの科学界を指導者であるヴィンチェンツォ・アンティノーリ(w:Vincenzo Antinori、1792 - 1865)らと共に物理学を教えた。.

新しい!!: 物理学者の一覧とレオポルド・ノビーリ · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 物理学者の一覧とレオンハルト・オイラー · 続きを見る »

レオン・フーコー

フーコーの墓(モンマルトル墓地) フーコーと共同研究を行ったアルマン・フィゾー フーコーの振り子が描く軌道(左上の画像はフーコー) ジャン・ベルナール・レオン・フーコー(フランス語:Jean Bernard Léon Foucault、1819年9月18日 - 1868年2月11日)は、フランス王国パリ出身の物理学者。 1851年に地球の自転を証明する際に用いられる「フーコーの振り子」の実験を行ったことで名高い。 また、1855年にはアルミニウムなどの金属板を強い磁界内で動かしたり、金属板の近傍の磁界を急激に変化させた際に、電磁誘導効果により金属内で生じる渦状の誘導電流である「渦電流(フーコー電流とも)」を発見した。 また、ジャイロスコープの発明者とされるが、実際は1817年にドイツの天文学者が発明した。なお、フーコーが1851年に発明した「フーコーの振り子」をフーコー自身が「ジャイロスコープ」と呼称したため、「ジャイロスコープ」が一般に広まった。詰まるところ、1852年にフーコーが発明したのは「ジャイロスコープ」と言う「名称」である。 1855年にイギリス王立協会からコプリ・メダルが授与され、時のフランス皇帝ナポレオン3世からはレジオンドヌール勲章のオフィシエが与えられた。.

新しい!!: 物理学者の一覧とレオン・フーコー · 続きを見る »

レオン・クーパー

レオン・ニール・クーパー(Leon Neil Cooper、1930年2月28日 - )は、アメリカの物理学者、ノーベル賞受賞者。.

新しい!!: 物理学者の一覧とレオン・クーパー · 続きを見る »

ロバート・ミリカン

バート・アンドリューズ・ミリカン(Robert Andrews Millikan, 1868年3月22日 - 1953年12月19日)はアメリカ合衆国の物理学者である。1923年、電気素量の計測と光電効果の研究によりノーベル物理学賞を受賞した。アメリカ合衆国において大衆的な人気を得た物理学者、当時のアメリカの物理学界での権威となった実験物理学者である。 カリフォルニア工科大学の創立に加わり、同校が合衆国において有数の名門校となる基礎を築いた。.

新しい!!: 物理学者の一覧とロバート・ミリカン · 続きを見る »

ロバート・ボイル

バート・ボイル(Sir Robert Boyle、1627年1月25日 - 1691年12月31日)は、アイルランド・出身の貴族、自然哲学者、化学者、物理学者、発明家。神学に関する著書もある。ロンドン王立協会フェロー。ボイルの法則で知られている。彼の研究は錬金術の伝統を根幹としているが、近代化学の祖とされることが多い。特に著書『懐疑的化学者』 (The Sceptical Chymist) は化学という分野の基礎を築いたとされている。.

新しい!!: 物理学者の一覧とロバート・ボイル · 続きを見る »

ロバート・フック

バート・フック(Robert Hooke、1635年7月28日 - 1703年3月3日)は、イギリスの自然哲学者、建築家、博物学者。王立協会フェロー。実験と理論の両面を通じて科学革命で重要な役割を演じた。.

新しい!!: 物理学者の一覧とロバート・フック · 続きを見る »

ロバート・ウィリアム・ウッド

バート・ウィリアム・ウッド ロバート・ウィリアム・ウッド(Robert Williams Wood、1868年5月2日 - 1955年8月11日)は、アメリカ合衆国の物理学者。 マサチューセッツ州生まれ。ハーバード大学、シカゴ大学などで化学を学んだが、1894年にベルリン大学に留学した時、専門を物理学に変えた。1901年からジョンズ・ホプキンス大学の教授に就任。 1901年頃、紫外線だけを透過するフィルターを開発し、このフィルターを使って紫外線に関する研究を進めた。1904年にはナトリウム蒸気の可視・紫外領域の分散を観測している。また天文学の分野でも月の紫外線写真を撮り、月面に紫外線の強い領域を見つけるなど、紫外線の研究に貢献した。医療分野で用いられる紫外線ランプは、ウッドの名前に因んでウッド灯と呼ばれることがある。 この他、N線の発見を巡る騒動に際し、ルネ・ブロンロの実験に立ち会い、N線の発見が幻であることを結論づけている。また低融点合金であるウッドメタルの発明者でもある。.

新しい!!: 物理学者の一覧とロバート・ウィリアム・ウッド · 続きを見る »

ロバート・オッペンハイマー

ュリアス・ロバート・オッペンハイマー(Julius Robert Oppenheimer, 1904年4月22日 - 1967年2月18日)は、ユダヤ系アメリカ人の物理学者である。 理論物理学の広範な領域にわたって国際的な業績をあげたが、第二次世界大戦当時ロスアラモス国立研究所の所長としてマンハッタン計画を主導。卓抜なリーダーシップで原子爆弾開発プロジェクトの指導者的役割を果たしたため「原爆の父」として知られた。.

新しい!!: 物理学者の一覧とロバート・オッペンハイマー · 続きを見る »

ロバート・B・ラフリン

バート・ベッツ・ラフリン(Robert Betts Laughlin、1950年11月1日 - )はアメリカ合衆国カリフォルニア州バイサリア出身の理論物理学者。 1998年、分数量子ホール効果の理論的説明によりダニエル・ツーイ、ホルスト・ルートヴィヒ・シュテルマーとともにノーベル物理学賞受賞。.

新しい!!: 物理学者の一覧とロバート・B・ラフリン · 続きを見る »

ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

新しい!!: 物理学者の一覧とローレンツ変換 · 続きを見る »

ロータル・マイヤー

ユリウス・ロータル・マイヤー(Julius Lothar Meyer、1830年8月19日 - 1895年4月11日) は、ドイツの化学者・医師。元素の周期表の作成をメンデレーエフとほぼ同時に行った。 スイスのチューリッヒで薬学を学び、その後ドイツ語圏のいろいろな大学で研究し、最初は呼吸の生理学的研究を行い、1857年に血液中のヘモグロビンが酸素と結合することを発見した。 1864年、マイヤーは28の元素を原子価の値によって6つのグループに分けた初期の周期表を発表した。当時原子量の測定値は不正確であったので、原子量順に並べることは、まだ有効ではなかった。 1869年、メンデレーエフは当時知られていたすべての元素を修正された原子量の順にならべ、いくつかの未発見の元素も予測した周期表を発表した。数ヶ月後メンデレーエフとはまったく独立に、マイヤーは1864年の周期表を改良、拡張した周期表を発表した。マイヤーの原子量の順に図示された周期表は、メンデレーエフの周期表が化学者たちの信頼をえることを支援することになった。 1868年からカールスルーエ大学理工学部、1876年からテュービンゲン大学で化学の教授を務めた。 category:ドイツの化学者 Category:19世紀の自然科学者 Category:ドイツの医師 Category:エバーハルト・カール大学テュービンゲンの教員 Category:カールスルーエ大学の教員 Category:1830年生 Category:1895年没.

新しい!!: 物理学者の一覧とロータル・マイヤー · 続きを見る »

ロイ・グラウバー

イ・ジェイ・グラウバー(Roy Jay Glauber、1925年9月1日 - )は、アメリカの物理学者。.

新しい!!: 物理学者の一覧とロイ・グラウバー · 続きを見る »

ロシュミット数

ュミット数(Loschmidt's constant (number), 記号:, )は、、1気圧の単位体積の理想気体に含まれる分子数である。 に含まれる分子数を表すアボガドロ定数 を、理想気体のモル体積 で除して求めることができ、その値は、(正確には )、1気圧(正確には )において、 である(2014年CODATA推奨値。括弧内は標準不確かさ)。 気体中の分子数は1865年にヨハン・ロシュミットにより気体の熱伝導を用いてこの形で求められた。しかし、科学分野の発展と共に、定義が明確なアボガドロ定数の方がより基本的な定数として採用されている。 物理学では、 の気体よりも単位体積中の気体の分子数を問題とする場合があり、ロシュミット数も用いられている。 特にドイツ語圏においては、かつてアボガドロ定数のことをロシュミット数と称していたことがある。.

新しい!!: 物理学者の一覧とロシュミット数 · 続きを見る »

ワインバーグ=サラム理論

ワインバー.

新しい!!: 物理学者の一覧とワインバーグ=サラム理論 · 続きを見る »

ヴァルター・ハイトラー

ヴァルター・ハイトラー(Walter Heinrich Heitler, 1904年1月2日 - 1981年11月15日)はドイツの物理学者。ユダヤ系。 カールスルーエに生まれ、ベルリン大学およびミュンヘン大学で学び、アルノルト・ゾンマーフェルトの教えを受け、ミュンヘン、ベルリン、チューリッヒ、ゲッティンゲンで研究を行った。 1927年フリッツ・ロンドンと水素分子の結合力に関するハイトラー-ロンドンの方法(原子価構造理論)を発表した。この理論はその後ジョン・スレーターとライナス・ポーリングらによって原子価結合法(valence bond, VB 法)へと発展する。 1929年にゲッティンゲン大学講師となり、ナチス政権に反対して渡英し、1941年から1949年の間アイルランドのダブリンで研究し1949年チューリッヒ大学の教授となった。 ハンス・ベーテと輻射に関するベーテ=ハイトラーの公式など宇宙線の分野にも業績を残した。.

新しい!!: 物理学者の一覧とヴァルター・ハイトラー · 続きを見る »

ヴィルヘルム・レントゲン

ヴィルヘルム・コンラート・レントゲン(、1845年3月27日 – 1923年2月10日)は、ドイツの物理学者。1895年にX線の発見を報告し、この功績により、1901年、第1回ノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とヴィルヘルム・レントゲン · 続きを見る »

ヴィルヘルム・ヴィーン

ヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン(独: Wilhelm Carl Werner Otto Fritz Franz Wien、1864年1月13日 - 1928年8月30日)は、ドイツの物理学者。英語風にウィルヘルム・ウィーンと表記されることもある。熱力学、特に黒体放射に関する研究で知られる。ヴィーンが発見したヴィーンの変位則やヴィーンの放射法則はマックス・プランクの量子論に直接結びつくもので、後にマックス・フォン・ラウエをして「ヴィーンの不滅の栄光は我々を量子力学の玄関口に導いた」と言わしめた。 1911年、「熱放射の諸法則に関する発見」によりノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とヴィルヘルム・ヴィーン · 続きを見る »

ヴィルヘルム・ヒットルフ

ヴィルヘルム・ヒットルフ ヴィルヘルム・ヒットルフ(Johann Wilhelm Hittorf, 1824年3月27日 - 1914年11月28日)はドイツの物理学者、化学者である。 ボンに生まれる。ボン大学で自然科学・数学を学んで1846年に学位を得、1847年からは教授になった。1852年から1889年の間ミュンスター大学の教授になり、1879年から研究所の所長になった。初期は無機化学の研究を行った。 1853年から1859年の間は電解液中のイオンの移動速度の研究をおこなった。イオンの移動速度が異なることを見出し輸率の概念を導入した。 1859年ユリウス・プリュカー、ハインリッヒ・ガイスラーと真空放電管を作って、陰極線管の研究を行った。ミュンスターにて没。 Category:ドイツの物理学者 Category:ドイツの化学者 Category:ヴェストファーレン・ヴィルヘルム大学の教員 Category:1824年生 Category:1914年没.

新しい!!: 物理学者の一覧とヴィルヘルム・ヒットルフ · 続きを見る »

ヴィタリー・ギンツブルク

ヴィタリー・ラザレヴィチ・ギンツブルク(Vitaly Lazarevich Ginzburg (Виталий Лазаревич Гинзбург) 、1916年10月4日 - 2009年11月8日)は、ロシアの物理学者。モスクワ生まれ。1938年にモスクワ大学を卒業。1940年からP.N.Lebedev Physical Institute of the Russian Academy of Sciencesに所属。 超伝導現象の基礎理論としてのGL理論(ギンツブルグ-ランダウ理論)(1950)を始めとして、プラズマ中の電磁波伝播、宇宙線の起源の研究などで知られる。.

新しい!!: 物理学者の一覧とヴィタリー・ギンツブルク · 続きを見る »

ヴェルナー・ハイゼンベルク

ヴェルナー・カール・ハイゼンベルク(Werner Karl Heisenberg, 1901年12月5日 - 1976年2月1日)は、ドイツの理論物理学者。行列力学と不確定性原理によって量子力学に絶大な貢献をした。.

新しい!!: 物理学者の一覧とヴェルナー・ハイゼンベルク · 続きを見る »

ヴォルフガング・パウリ

ヴォルフガング・エルンスト・パウリ(Wolfgang Ernst Pauli, 1900年4月25日 - 1958年12月15日)はオーストリア生まれのスイスの物理学者。スピンの理論や、現代化学の基礎となっているパウリの排他律の発見などの業績で知られる。 アインシュタインの推薦により、1945年に「1925年に行われた排他律、またはパウリの原理と呼ばれる新たな自然法則の発見を通じた重要な貢献」に対してノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とヴォルフガング・パウリ · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: 物理学者の一覧とボルツマン定数 · 続きを見る »

ボルタ電池

銅と亜鉛を用いたボルタ電池の仕組み 宇田川榕菴の「舎密開宗」より、ボルタ電池の解説 ボルタ電池(ボルタでんち)とは、イタリアの物理学者、ボルタが考えた起電力0.76Vの一次電池であり、最初のガルバニ電池である。1794年に発明されたボルタ電堆を改良したもので、1800年に発明された。.

新しい!!: 物理学者の一覧とボルタ電池 · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: 物理学者の一覧とボース粒子 · 続きを見る »

ボイルの法則

ボイルの法則(Boyle's lawアトキンス『物理科学』 pp.18-19)とは、一定の温度の下での気体の体積が圧力に逆比例することを主張する法則である。1662年にロバート・ボイルにより示された。 この法則は、充分に圧力が低い領域において成り立つ近似法則である。 温度 、圧力 の平衡状態にある理想気体の体積 は あるいは と表される。一定の温度の下では体積と圧力の積が一定となる。 すなわち、温度が同一な二つの状態1、2について が成り立つ。 理想気体に対しては全ての圧力の領域で逆比例関係が成り立つが、実在気体では圧力が高い領域ではこの関係から外れる。 しかし、充分に圧力が低い領域において近似的に成り立つ。これは極限を用いて と表される。 実在気体におけるボイルの法則からのずれを圧力 の冪級数で と書いたとき、一次の補正項が となる温度はボイル温度と呼ばれる。 ボイル温度においては、より高い圧力の領域までボイルの法則が適用できる。 理想気体ではその分子自身の大きさや分子間力がないものとして考えているが、実在気体ではそれらの影響が完全には無視できないからである。またボイルの法則では、気体は温度一定で圧力を上げればいくらでも体積が小さくなることを示しているが、実際にはそのようなことはありえない。実際の気体ではある程度の圧力を超えると気体は凝縮あるいは昇華することで、液体や固体になってしまい、もはや気体の性質を持たないからである。.

新しい!!: 物理学者の一覧とボイルの法則 · 続きを見る »

ボイル=シャルルの法則

ボイル=シャルルの法則(ボイルシャルルのほうそく、combined gas law)は、理想気体の体積と圧力、温度に関係する法則。シャルルの法則、ボイルの法則、ゲイ=リュサックの法則を組み合わせたものである。この法則の公式的な発見者はおらず、すでに発見されていた法則を融合させたものである。これらの法則は、気体の圧力、体積、絶対温度のうち任意の2変数が、その他の変数を定数として置いた場合、互いに比例あるいは反比例することを示している。ボイル=シャールの法則ともいう。 シャルルの法則は、圧力一定の条件下では体積と絶対温度が比例することを示すものである。ボイルの法則は、温度一定の条件下では圧力と体積が反比例することを示している。そして、ゲイ=リュサックの法則は、体積が一定の場合には絶対温度と圧力が比例するというものである。 ボイル=シャルルの法則はこれらの変数の相互依存関係を簡潔に示している。一言でいえば、 これを変形して、状態量を全て左辺に移すと、 ここで、 である。 従って、この式の左辺は気体の状態に依存しない定数となる。 2つの異なる環境にある同じ物質を比較した場合、この法則は以下のように書ける。 アボガドロの法則をボイル=シャルルの法則に導入することにより、理想気体の状態方程式を導くことが可能となり、さらには拡張されて「ボイル=シャルルの法則」そのものとされた。 ここで、n.

新しい!!: 物理学者の一覧とボイル=シャルルの法則 · 続きを見る »

トマス・ヤング

トマス・ヤング(Thomas Young, 1773年6月13日 - 1829年5月10日)は、イギリスの物理学者。 14歳の頃から語学に才能をみせた。 1792年にロンドンで医学の勉強をし、1794年にエディンバラからゲッティンゲンへ移って、1796年に医学の学位を得た。1800年にロンドンで医師を開業する。 1794年、王立協会のフェローに選出される。1801年に王立研究所の自然学の教授になり、医学の面では乱視や色の知覚などの研究をした(ヤング=ヘルムホルツの三色説)。また視覚の研究から光学の研究にむかい、光の干渉現象を再発見して(ヤングの実験)光の波動説を主張した。 弾性体力学の基本定数ヤング率に名前を残している。ほかにエネルギー (energy) という用語を最初に用い、その概念を導入した。 音楽では、鍵盤楽器の調律法のひとつであるヤング音律(ヴァロッティ=ヤング音律とも呼ばれる)を1799年に考案し、翌年発表した。これはウェル・テンペラメントの中でも調性の性格がよく表れ、かつ不協和音が最も少ない調律法であり、理想的な音律として評価する専門家もいる。現在でもヴィオラ・ダ・ガンバのフレッティングが容易なためヴァロッティ音律とならんでバロック・アンサンブルで多用されている。 またロゼッタ・ストーンなどのエジプトのヒエログリフの解読を試みたことでも知られる。.

新しい!!: 物理学者の一覧とトマス・ヤング · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

新しい!!: 物理学者の一覧とトランジスタ · 続きを見る »

トーマス・ゼーベック

トーマス・ヨハン・ゼーベック(Thomas Johann Seebeck, 1770年4月9日 - 1831年12月10日)は、ドイツの物理学者、医師。1821年にゼーベック効果を発見した。.

新しい!!: 物理学者の一覧とトーマス・ゼーベック · 続きを見る »

トビアス・マイヤー

トビアス・マイヤー(Johann Tobias Mayer、1723年2月17日-1762年2月20日)は、18世紀ドイツの地理学者、天文学者、物理学者、数学者である。 1746年からニュルンベルクのホーマン地図局で仕事を始めた。1751年にゲッティンゲンのゲオルク・アウグスト・アカデミーで教授の地位を得た。ホーマン地図局で正確なドイツの地図を作った。月の見え方から地上の緯度・経度をもとめるために自作の望遠鏡で正確な月の地図と、月・太陽の距離、運行を示す月・太陽表を作成した。.

新しい!!: 物理学者の一覧とトビアス・マイヤー · 続きを見る »

ヘルマン・フォン・ヘルムホルツ

ヘルマン・ルートヴィヒ・フェルディナント・フォン・ヘルムホルツ(Hermann Ludwig Ferdinand von Helmholtz, 1821年8月31日 - 1894年9月8日)はドイツ出身の生理学者、物理学者。.

新しい!!: 物理学者の一覧とヘルマン・フォン・ヘルムホルツ · 続きを見る »

ヘンリー・モーズリー (物理学者)

ヘンリー・グウィン・ジェフリーズ・モーズリー(Henry Gwyn Jeffreys Moseley, 1887年11月23日 - 1915年8月10日)は、イギリスの物理学者である。元素の特性X線の波長との原子核の電荷(原子番号)の関係を見出した。この発見によって原子番号の物理的意味が明らかになり、周期表の未発見の元素を予測するなどが可能となった。.

新しい!!: 物理学者の一覧とヘンリー・モーズリー (物理学者) · 続きを見る »

ヘンリー・キャヴェンディッシュ

ヘンリー・キャヴェンディッシュ(Henry Cavendish, 1731年10月10日 – 1810年2月24日)は、イギリスの化学者・物理学者である。貴族の家に生まれ育ち、ケンブリッジ大学で学んだ。寡黙で人間嫌いな性格であったことが知られている。遺産による豊富な資金を背景に研究に打ち込み、多くの成果を残した。 金属と強酸の反応によって水素が発生することを見出した。電気火花を使った水素と酸素の反応により水が生成することを発見し、水が化合物であることを示した。この結果をフロギストン説に基づいて解釈している。さらに水素と窒素の電気火花による反応で硝酸が得られ、空気中からこれらの方法で酸素と窒素を取り除くと、のちにアルゴンと呼ばれる物質が容器内に残ることを示した。 彼の死後には、生前に発表されたもののほかに、未公開の実験記録がたくさん見つかっている。その中には、ジョン・ドルトンやジャック・シャルルによっても研究された気体の蒸気圧や熱膨張に関するものや、クーロンの法則およびオームの法則といった電気に関するものが含まれる。これらの結果はのちに同様の実験をした化学者にも高く評価された。(ただしこれらは、未公開であったがゆえに、科学界への影響はほとんどなかった。「もし生前に公開されていたら」と、ひどく惜しまれた。) ハンフリー・デービーはキャヴェンディッシュの死に際し、彼をアイザック・ニュートンに比して評価した。19世紀には彼の遺稿や実験結果が出版され、彼の名を冠したキャヴェンディッシュ研究所が設立されている。.

新しい!!: 物理学者の一覧とヘンリー・キャヴェンディッシュ · 続きを見る »

ヘンドリック・ローレンツ

ヘンドリック・アントーン・ローレンツ(Hendrik Antoon Lorentz、1853年7月18日 - 1928年2月4日)は、オランダの物理学者。ゼーマン効果の発見とその理論的解釈により、ピーター・ゼーマンとともに1902年のノーベル物理学賞を受賞した。ローレンツ力、ローレンツ変換などに名を残し、特に後者はアルベルト・アインシュタインが時空間を記述するのに利用した。.

新しい!!: 物理学者の一覧とヘンドリック・ローレンツ · 続きを見る »

ヘーラルト・トホーフト

ヘーラルト・トホーフト(Gerardus ("Gerard") 't Hooft 、1946年7月5日 - )は、オランダの理論物理学者。1999年、電弱相互作用の量子構造の解明によりノーベル物理学賞をマルティヌス・フェルトマンと受賞した。 デン・ヘルダー出身。大おじにノーベル物理学受賞者のフリッツ・ゼルニケ、おじに理論物理学者のニコラス・ファン・カンペンがいる。 1971年、当時ユトレヒト大学のフェルトマンの研究室の大学院生であったトホーフトは、ゲージ理論によって弱い力と電磁気力を統一しようとする試みに残されていた課題を、フェルトマンから与えられて1年あまりで解決した。量子色力学、超ひも理論の発展させる重要な業績となった。 弟子にダイクラーフ・ヴァッファ理論のロベルト・ダイクラーフがいる。 彼にちなんで小惑星9491に「トホーフト」という名が与えられたが、「Thooft」とスペルミスをされて登録されてしまった。.

新しい!!: 物理学者の一覧とヘーラルト・トホーフト · 続きを見る »

ブライアン・ジョゼフソン

ブライアン・D・ジョゼフソン(Brian David Josephson, 1940年1月4日 - )は、イギリスの物理学者。王立協会フェロー。ジョゼフソン効果と呼ばれることになる現象を予測した研究で1973年のノーベル物理学賞を受賞。 2007年末現在、ケンブリッジ大学名誉教授として、キャベンディッシュ研究所の凝縮系物質理論 (TCM) 部門において、Mind-Matter Unification Project(精神-物質統合プロジェクト)を指揮している。トリニティ・カレッジのフェローでもある。.

新しい!!: 物理学者の一覧とブライアン・ジョゼフソン · 続きを見る »

ブラウン管

ラー受像管の断面図1.電子銃2.電子ビーム3.集束コイル(焦点調整)4.偏向コイル5.陽極端子6.シャドーマスク7.色蛍光体8.色蛍光体を内側から見た拡大図 ブラウン管(ブラウンかん)は、ドイツのカール・フェルディナント・ブラウンが発明した図像を表示する陰極線管を指す、日本語における通称である。 ブラウンによる発明は陰極線管自体の発明でもあり、陰極線管を総称してブラウン管と言うこともあり、逆に受像管をCRT(Cathode Ray Tube)と言ったりする。しかし、たとえばマジックアイも陰極線管の一種であるが、基本的にブラウン管の一種には含めない。.

新しい!!: 物理学者の一覧とブラウン管 · 続きを見る »

ブラウン運動

ブラウン運動(ブラウンうんどう、Brownian motion)とは、液体のような溶媒中媒質としては気体、固体もあり得る。に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し、論文「植物の花粉に含まれている微粒子について」で発表した。 この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質の分子の不規則な衝突によって引き起こされているという論文が発表された。この論文により当時不確かだった原子および分子の存在が、実験的に証明出来る可能性が示された。後にこれは実験的に検証され、原子や分子が確かに実在することが確認された。同じころ、グラスゴーの物理学者が1905年にアインシュタインと同じ式に到達し、ポーランドの物理学者も1906年に彼自身によるブラウン運動の理論を発表した。 数学のモデルとしては、フランス人のルイ・バシュリエは、株価変動の確率モデルとして1900年パリ大学に「投機の理論」と題する博士論文を提出した。今に言う、ランダムウォークのモデルで、ブラウン運動がそうである、という重要な論文であるが、当時のフランスの有力数学者たちに理解されず、出版は大幅に遅れた。 ブラウン運動と言う言葉はかなり広い意味で使用されることもあり、類似した現象として、電気回路における熱雑音(ランジュバン方程式)や、希薄な気体中に置かれた、微小な鏡の不規則な振動(気体分子による)などもブラウン運動の範疇として説明される。.

新しい!!: 物理学者の一覧とブラウン運動 · 続きを見る »

ブレーズ・パスカル

ブレーズ・パスカル(Blaise Pascal、1623年6月19日 - 1662年8月19日)は、フランスの哲学者、自然哲学者、物理学者、思想家、数学者、キリスト教神学者である。 早熟の天才で、その才能は多分野に及んだ。ただし、短命であり、三十代で逝去している。死後『パンセ』として出版されることになる遺稿を自身の目標としていた書物にまとめることもかなわなかった。 「人間は考える葦である」などの多数の名文句やパスカルの賭けなどの多数の有名な思弁がある遺稿集『パンセ』は有名である。その他、パスカルの三角形、パスカルの原理、パスカルの定理などの発見で知られる。ポール・ロワヤル学派に属し、ジャンセニスムを代表する著作家の一人でもある。 かつてフランスで発行されていた500フラン紙幣に肖像が使用されていた。.

新しい!!: 物理学者の一覧とブレーズ・パスカル · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 物理学者の一覧とプランク定数 · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 物理学者の一覧とプラズマ · 続きを見る »

パリティ対称性の破れ

パリティ対称性の破れ(パリティたいしょうせいのやぶれ、Parity violation)とは、空間反転した(鏡に映した)ときに物理法則が同じにならないこと、または、その様な状態を言う。弱い相互作用が関与する物理現象で起こる。 P対称性の破れ、あるいは、パリティ非保存とも。.

新しい!!: 物理学者の一覧とパリティ対称性の破れ · 続きを見る »

パーヴェル・チェレンコフ

パーヴェル・アレクセーエヴィチ・チェレンコフ(Павел Алексеевич Черенков, 1904年7月15日(ユリウス暦)/7月28日(グレゴリオ暦) - 1990年1月6日)は、ソ連の物理学者。「チェレンコフ効果の発見とその解釈」により、1958年のノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とパーヴェル・チェレンコフ · 続きを見る »

パーシー・ブリッジマン

パーシー・ウィリアムズ・ブリッジマン(Percy Williams Bridgman、1882年4月21日 - 1961年8月20日)はアメリカの物理学者である。高圧の研究で、1946年ノーベル物理学賞を受賞した。 マサチューセッツ州ケンブリッジに生まれた。1900年にハーバード大学に入り、物理を学んだ。1910年から教官を務め、1919年教授になった。1905年から高圧下の物質の性質の研究を始め、高圧装置の改良を行った。当時の装置が300MPaの圧力しか発生できなかったのに対して10GPa以上の高圧を出すことのできる装置を発明した。液体自体の圧力を用いてシールする方法も開発し、ブリッジマン・シールと呼ばれる。 開発した高圧装置を使って、高圧下の物質の電気抵抗などを研究した。また単結晶を成長させる方法をタンマンと別に開発しブリッジマン法と呼ばれる。科学哲学の分野で、「操作主義」と呼ばれる科学観の提唱者としても知られる。世界平和に関してラッセル=アインシュタイン宣言に署名した11人の科学者の1人である。 「高圧物理学の礎を築いた功績」に敬意を表して、2014年にケイ酸塩ペロブスカイト((Mg,Fe)SiO-3)は、ブリッジマナイト(bridgmanite)と命名された。.

新しい!!: 物理学者の一覧とパーシー・ブリッジマン · 続きを見る »

パウリの排他原理

パウリの排他原理(パウリのはいたげんり、Pauli exclusion principle)とは、2 つ以上のフェルミ粒子は同一の量子状態を占めることはできない、というものであり、1925年にヴォルフガング・パウリが提出したフェルミ粒子に関する仮定であるW.

新しい!!: 物理学者の一覧とパウリの排他原理 · 続きを見る »

パウル・ペーター・エバルト

パウル・ペーター・エバルト(Paul Peter Ewald, 1888年1月23日 - 1985年8月22日)はドイツ生まれの結晶学者、物理学者。X線回折法のパイオニアで、X線回折法におけるエバルト球に名前を残している。姓はエヴァルトとも表記される。義理の息子はハンス・ベーテ。 ベルリンに生れた。ミュンヘン工科大学 でアーノルト・ゾンマーフェルトに学んだ。1921年にミュンスター大学に移り、リヒャルト・グロッカー (Richard Glocker) とX線の研究を行った。1932年からシュトゥットガルト大学の講師になった。1933年、ナチス支配下のドイツからアメリカに逃れた。 1978年マックス・プランク・メダル、1979年グレゴリー・アミノフ賞を受賞した。国際結晶学会 (IUCr) のエバルト賞は彼の業績により設立された。ニューヨークで没した。 category:ドイツの物理学者 Category:シュトゥットガルト大学の教員 Category:ベルリン出身の人物 Category:1888年生 Category:1985年没.

新しい!!: 物理学者の一覧とパウル・ペーター・エバルト · 続きを見る »

パウル・シェラー

パウル・シェラー パウル・シェラー(Paul Scherrer、1890年2月3日 - 1969年9月25日)は、スイスの物理学者。 チューリッヒ工科大学で物理と数学を学び、その後ケーニヒスベルク大学、ゲッティンゲン大学で研究した。 ゲッティンゲン大学でピーター・デバイとX線を使った結晶構造の解析法(デバイ-シェラー法)を開発した。 1918年にゲッティンゲン大学の講師となり、1920年からチューリッヒ工科大学の教授になった。1920年代の後半から原子核物理学に研究分野を移しスイスのサイクロトロン建設を指導した。ジュネーブ近郊の欧州原子核研究機構(CERN)の設立にも貢献した。 シェラーの功績を記念してスイスの基礎科学の研究施設はパウル・シェラー研究所(PSI)と名付けられている。.

新しい!!: 物理学者の一覧とパウル・シェラー · 続きを見る »

パスカルの原理

流体のはいった容器の一点に力を及ぼすと容器表面のすべての単位面積の面素に、垂直で同じ大きさの内部の力(接触力)が発生する。この図では重力の影響は無視している。 パスカルの原理(パスカルのげんり、英語:Pascal's principle)は、ブレーズ・パスカルによる「密閉容器中の流体は、その容器の形に関係なく、ある一点に受けた単位面積当りの圧力ここでの「圧力」は容器に垂直で圧縮する向きの「力」という意味であり、本来の「圧力」(単位面積当たりの力の法線成分)ではない。をそのままの強さで、流体の他のすべての部分に伝える。」パスカル「液体の平衡及び空気の質量の測定についての論述」の紹介 http://www.kanazawa-it.ac.jp/dawn/166301.htmlという流体静力学における基本原理である。.

新しい!!: 物理学者の一覧とパスカルの原理 · 続きを見る »

パスクアル・ヨルダン

ルンスト・パスクアル・ヨルダン(Ernst Pascual Jordan、1902年10月18日 - 1980年7月31日)は、ドイツの物理学者。姓はジョルダンとも表記される。量子力学に数学的基礎を与えた物理学者の一人である。で知られる。.

新しい!!: 物理学者の一覧とパスクアル・ヨルダン · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 物理学者の一覧とビッグバン · 続きを見る »

ピーター・マンスフィールド

ピーター・マンスフィールド(Sir Peter Mansfield、1933年10月9日 - 2017年2月8日)は、イギリスの物理学者、王立協会フェロー。核磁気共鳴画像化法に関する発見により、2003年のノーベル生理学・医学賞をポール・ラウターバーと共に受賞した。 ロンドン生まれ。1959年にロンドン大学のクイーン・メアリー校を卒業し、理学士号を取得。1962年に博士号を取得した。1964年以降、彼はノッティンガム大学の物理学部で働いている。.

新しい!!: 物理学者の一覧とピーター・マンスフィールド · 続きを見る »

ピーター・デバイ

ピーター・デバイ(Peter Joseph William Debye, 1884年3月24日 - 1966年11月2日)は、オランダ・マーストリヒト出身の物理学者・化学者で、1936年のノーベル化学賞受賞者である。.

新しい!!: 物理学者の一覧とピーター・デバイ · 続きを見る »

ピーター・ゼーマン

ピーター・ゼーマン(Pieter Zeeman, 1865年5月25日 - 1943年10月9日)は、オランダの物理学者。1902年に、ゼーマン効果の発見によりノーベル物理学賞をローレンツとともに受賞した。.

新しい!!: 物理学者の一覧とピーター・ゼーマン · 続きを見る »

ピエール・キュリー

ピエール・キュリー(Pierre Curie, 1859年5月15日 - 1906年4月19日)は、フランスの物理学者。結晶学、圧電効果、放射能といった分野の先駆的研究で知られている。1903年、妻マリ・キュリー(旧名マリア・スクウォドフスカ)やアンリ・ベクレルと共にノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とピエール・キュリー · 続きを見る »

ピエール=シモン・ラプラス

ピエール=シモン・ラプラス(Pierre-Simon Laplace, 1749年3月23日 - 1827年3月5日)は、フランスの数学者、物理学者、天文学者。「天体力学概論」(traité intitulé Mécanique Céleste)と「確率論の解析理論」という名著を残した。 1789年にロンドン王立協会フェローに選出された。.

新しい!!: 物理学者の一覧とピエール=シモン・ラプラス · 続きを見る »

テオドール・ヘンシュ

テオドール・ヴォルフガング・ヘンシュ(Theodor Wolfgang Hänsch, 1941年10月30日 - )は、ドイツの物理学者。マックス・プランク研究所の量子光学部門所長、ミュンヘン大学教授。 「光周波数コム(櫛)技術などのレーザーを用いた精密な分光法の発展への貢献」により、2005年のノーベル物理学賞をジョン・ホールとともに受賞した。.

新しい!!: 物理学者の一覧とテオドール・ヘンシュ · 続きを見る »

デバイ模型

デバイ模型(デバイもけい、Debye model)とは熱力学と固体物理学において、固体におけるフォノンの比熱(熱容量)への寄与を推定する手法である。1912年にピーター・デバイにより考え出された。デバイ模型では、原子の熱による格子振動を箱の中のフォノンとして扱う。一方、先に発表されていたアインシュタイン模型では、固体を相互作用のない量子的な調和振動子の集まりとして取り扱う。 デバイ模型は低温における比熱が温度の三乗 に比例することを正しく予言する。また、アインシュタイン模型同様、比熱の高温におけるデュロン=プティの法則に従う振る舞いも正しく説明することができる。しかし、格子振動を単純化して扱っているため、中間的な温度における正確性には弱点がある。 デバイ模型についての厳密な取り扱いについては、を参照。.

新しい!!: 物理学者の一覧とデバイ模型 · 続きを見る »

ディラックの海

対論的量子力学において、ディラックの海(ディラックのうみ、Dirac sea)とは、真空状態が負のエネルギーを持つ電子によって完全に占められている状態であるというモデル。 ディラック方程式の解が負のエネルギー状態を持つことによって生じる問題を回避すべく、英国の物理学者ポール・ディラックが空孔理論の中で提唱した。ディラックは、電子が満たす相対論的な量子力学の基礎方程式として、ディラック方程式を導いたが、この方程式は負のエネルギーの解を持つ。 この負のエネルギーに下限はなく、電子はよりエネルギーが低い状態に落ち込んでいくため、安定な状態をとりえない。すなわち、エネルギーの基底状態となる安定な真空状態が存在しないことになる。こうした問題を解決すべく、ディラックは真空状態はすべての負のエネルギー状態が電子によって、埋め尽くされた状態とするディラックの海の概念を提唱した。パウリの排他律によれば、既に占有されている負のエネルギー状態に電子が入ることはできず、すべての負のエネルギー状態が埋まっているディラックの海では、より低いエネルギー状態に落ち込むことはない。 但し、こうした説明が可能となるのは、パウリの排他律を満たすフェルミ粒子についてだけであり、ボーズ粒子には適用できないという問題がある。その後、空孔理論が抱える問題は現代的な場の量子論の形成により解決されたため、ディラックの海の概念は不要となった。.

新しい!!: 物理学者の一覧とディラックの海 · 続きを見る »

ディラック方程式

ディラック方程式(ディラックほうていしき)はフェルミ粒子を記述するディラック場が従う基礎方程式である。ポール・ディラックにより相対論的量子力学として導入され、場の量子論に受け継がれている。.

新しい!!: 物理学者の一覧とディラック方程式 · 続きを見る »

フランチェスコ・マリア・グリマルディ

フランチェスコ・マリア・グリマルディ(Francesco Maria Grimaldi、1618年4月2日 - 1663年12月28日)はイタリアの数学者、物理学者。イエズス会の司祭でありボローニャ大学の教授である。 1640年から1650年まで、 リッチョーリとともに働いた。落体の自由落下の研究を行い、落下距離が時間の2乗に比例することを見出したほか、1644年から1656年にリッチョーリと子午線弧長の測量を行った。 天文学の分野では、月理学に基づく正確な月面図を作成し、これはリッチョーリによって出版された。 光の回折について正確な観察を行った。特に回折現象を発見し、このことから光の現象と他の流体の現象との類似性を議論した。diffraction(回折)と言う用語は彼によって生み出された。後に回折現象は光の波動説の証拠とされ、またニュートンによって研究された。.

新しい!!: 物理学者の一覧とフランチェスコ・マリア・グリマルディ · 続きを見る »

フランクレポート

フランクレポート (Franck Report) は1945年6月11日にシカゴ大学に設けられた7人の科学者による委員会が、原子エネルギー、特に原子爆弾の社会的、政治的影響を検討して大統領の諮問委員会に提出した報告書である。 報告書では、戦後の核管理体制実現の重要性とともに、日本に対する原子爆弾の無警告での使用に反対していたが、提議は拒絶された。 正式なタイトルは『政治的・社会的問題に関する委員会報告』(Report of the Committee on Political and Social Problems) であるが、委員会の委員長ジェイムス・フランクの名をとって、フランクレポートもしくはフランク報告と呼ばれている。.

新しい!!: 物理学者の一覧とフランクレポート · 続きを見る »

フランク・ウィルチェック

フランク・ウィルチェック(Frank Wilczek、1951年5月15日 - )は、ポーランド、イタリア系のアメリカ合衆国の物理学者。ニューヨーク州出身。シカゴ大学、プリンストン大学で学ぶ。プリンストン大を経て1980年よりカリフォルニア大学サンタバーバラ校教授、2000年よりマサチューセッツ工科大学教授を歴任。 2004年デイビッド・グロス 、H. デビッド・ポリツァー とともに「強い相互作用の理論における漸近的自由性の発見」の功績によりノーベル物理学賞を受賞した。 1973年にプリンストン大学で, デイビッド・グロスとともに漸近的自由性を発見した。素粒子物理学における漸近的自由性とは、素粒子間の「強い相互作用」は、近距離ないし高エネルギー下では相互作用が弱くなるという性質で、陽子や中性子の構成要素とされるクォークが単独で観測できないことなどを説明する量子色力学の理論である。H・デイヴィッド・ポリツァーの論文とウィルチェックらの論文がPhysical Review Lettersの同じ号に掲載され、公式には、3人が同時に漸近自由性を発見したことになった。.

新しい!!: 物理学者の一覧とフランク・ウィルチェック · 続きを見る »

フランク=ヘルツの実験

実験装置 フランク=ヘルツの実験(-じっけん)は原子のとりうるエネルギーが離散的であるということを示し、量子論を検証した実験である。1914年、ジェイムス・フランクとグスタフ・ヘルツによって行われた。.

新しい!!: 物理学者の一覧とフランク=ヘルツの実験 · 続きを見る »

フランコ・ラゼッティ

フランコ・ラゼッティ(Franco Dino Rasetti, 1901年8月10日 - 2001年12月5日)はイタリアの物理学者である。 エンリコ・フェルミとともに核分裂の研究に業績をあげた科学者である。戦後は物理の研究のほかに古生物の研究もおこなった。 ペルージャに生れた。1930年ローマ大学の教授になった。優れた実験物理学者で、同い年のフェルミととも、核分裂の研究をすすめた。1939年のイタリアの人種法により、ユダヤ人が公職につけなくなったため、エンリコ・フェルミ、エミリオ・セグレ、ブルーノ・ポンテコルボ、エットーレ・マヨラナら「ラガッツィ・ディ・ヴィア・パニスペルナ」の仲間たちと同じくイタリアを離れた。カナダを経て1947年アメリカに移住しジョンズ・ホプキンス大学の教授となった。1952年アメリカ市民権を得た。その信条から原子爆弾の研究には加わることはなかった。.

新しい!!: 物理学者の一覧とフランコ・ラゼッティ · 続きを見る »

フランシウム

フランシウム(francium)は原子番号87の元素。元素記号は Fr。アルカリ金属元素の一つ(最も原子番号が大きい)で、典型元素である。又、フランシウムの単体金属をもいう。 223Fr はアスタチンと同じくウランやトリウム鉱石において生成と崩壊を絶えず繰り返すため、その量は非常に少なく、フランシウムはアスタチンについで地殻含有量が少ない元素である。地球の地殻ではわずかに20-30 gほどではあるが 223Fr が常に存在しており、他の同位体は全て人工的に作られたものである。最も多いものでは、研究所において300,000以上の原子が作られた。以前にはエカ・セシウムもしくはアクチニウムK実際には最も安定な同位体元素 223Fr に対してと呼ばれていた。 安定同位体は存在せず、最も半減期が長いフランシウム223でも22分しかないため、化学的、物理的性質は良く分かっていないが、原子価は+1価である事が確認されていて、化学的性質はセシウムに類似すると思われている。アクチニウム227の1.2%がα崩壊して、フランシウム223となることが分かっている。また、フランシウムはアスタチン、ラジウムおよびラドンへと崩壊する、非常に放射性の強い金属である。 フランシウムは合成でなく自然において発見された最後の元素であるテクネチウムのような合成された元素が後に自然において発見されることはあった。.

新しい!!: 物理学者の一覧とフランシウム · 続きを見る »

フラウンホーファー線

フラウンホーファー線(フラウンホーファーせん)は、一連のスペクトルで、ドイツの物理学者ヨゼフ・フォン・フラウンホーファーの名前に由来する。太陽光の可視光スペクトルのなかに暗線として観測された。 1802年、イギリスのウイリアム・ウォラストンが、太陽光のスペクトルのなかにいくつかの暗線の存在を報告した。1814年にフラウンホーファーは、ウォーラストンとは別に、暗線を発見し、系統的な研究を行い、570を超える暗線について波長を計測した。主要な線にAからKの記号をつけ、弱い線については別の記号をつけた。 グスタフ・キルヒホフとロベルト・ブンゼンによって、それぞれの線が、太陽の上層に存在するいろいろな元素や地球の大気中の酸素などによって吸収されたスペクトルであることが示された。 他の恒星のドップラー効果によるフラウンホーファー線の波長のズレを調べることで、その恒星と太陽系との相対速度を知ることができる。 下表に主なフラウンホーファー線の記号と波長を示す。 C-、 F-、 G'-、 h- 線は水素のバルマー系列 である。 D3線は光球の光に見られる吸収線(暗線)ではなく、彩層の光に見られるヘリウムの発光線(輝線)であり、1868年8月18日の皆既日食のときロッキヤーによって発見された。.

新しい!!: 物理学者の一覧とフラウンホーファー線 · 続きを見る »

フリードリッヒ・パッシェン

フリードリッヒ・パッシェン フリードリッヒ・パッシェン(Louis Carl Heinrich Friedrich Paschen、1865年1月22日・シュヴェリーン - 1947年2月25日・ポツダム)はドイツの物理学者。1901年からテュービンゲン大学の教授を務めた。.

新しい!!: 物理学者の一覧とフリードリッヒ・パッシェン · 続きを見る »

フリッツ・ゼルニケ

フリッツ・ゼルニケ(Frederik ('Fritz') Zernike 、1888年7月16日 – 1966年3月10日)はオランダの物理学者である。アムステルダム生まれ。1953年位相差顕微鏡の発明でノーベル物理学賞を受賞した。 アムステルダム大学で学び、1913年フローニンゲン大学(State University of Groningen)の助手になり、1920年から1958年まで同大学の教授である。1930年に反射回折格子を使った実験で光の位相位置が観測できることを発見しそれを応用した位相差顕微鏡を1936年に完成した。位相差顕微鏡は屈折率の部分的な違いを観察でき透明な試料、生きたままの微生物や医学の分野に多くつかわれるようになった。 その他の業績として、レンズの収差に関するゼルニケの多項式などがある。 1952年ランフォード・メダル、1953年ノーベル物理学賞を受賞した。 Category:オランダの物理学者 Category:ノーベル物理学賞受賞者 Category:オランダのノーベル賞受賞者 Category:王立協会外国人会員 Category:フローニンゲン大学の教員 Category:アムステルダム出身の人物 Category:1888年生 Category:1963年没.

新しい!!: 物理学者の一覧とフリッツ・ゼルニケ · 続きを見る »

フレネルレンズ

平凸レンズ(上)を厚みが一定のフレネルレンズ(下)となるように分割した場合の断面図 フレネルレンズ( )は、通常のレンズを同心円状の領域に分割し厚みを減らしたレンズであり、のこぎり状の断面を持つ。分割数を多くすればするほど薄くなるため、材料を減らし軽量にできる一方、同心円状の線が入ってしまう欠点や、回折の影響による結像性能の悪化が顕著になる。そのため、薄型化が特に有利な用途や、回折の影響を無視できる照明用などに用いられることが多い。 フランスの物理学者オーギュスタン・ジャン・フレネルによって発明された。.

新しい!!: 物理学者の一覧とフレネルレンズ · 続きを見る »

フレッド・ホイル

フレッド・ホイル(Sir Fred Hoyle, 1915年6月24日 - 2001年8月20日)は、イギリスウェスト・ヨークシャー州ブラッドフォード出身の天文学者、SF小説作家。 元素合成の理論の発展に大きな貢献をした。現在の天文学の主流に反する数々の理論を提唱したことでも知られる。SF作家としても有名で、息子であるジェフリー・ホイルとの共著も多い。研究生活の大半をケンブリッジ大学天文学研究所で過ごし、同研究所所長を長年に渡って務めた。.

新しい!!: 物理学者の一覧とフレッド・ホイル · 続きを見る »

フレデリック・ジョリオ=キュリー

ャン・フレデリック・ジョリオ=キュリー(Jean Frédéric Joliot-Curie、1900年3月19日・- 1958年8月14日)は、フランスの原子物理学者。妻はイレーヌ・ジョリオ=キュリー。義母はマリ・キュリー、義父はピエール・キュリー。 1925年、ラジウム研究所でマリ・キュリーの助手となり、そこで彼女の娘であるイレーヌと知り合った。2人は翌1926年に結婚したが、その際、姓を2人の旧姓を組み合わせた「ジョリオ=キュリー」とした。 1934年に妻イレーヌと共に、アルミニウムへアルファ線を照射することによって世界初の人工放射性同位元素である30Pの合成に成功し、それにより1935年に夫婦でノーベル化学賞を受賞した。 第二次世界大戦時はレジスタンス運動に参加し、戦後はフランス国立科学研究センター総裁に就任すると共にフランス原子力庁長官となり、コレージュ・ド・フランスの教授も務めた。1947年には、フランス初の原子炉「ゾエ」の開発に成功。1956年にイレーヌが亡くなると、彼女のパリ大学教授の職も兼任した。 パグウォッシュ会議の設立にも尽力し、創設メンバーの一人でもある。1951年から1958年にかけて世界平和評議会の初代議長を務めた。フランス共産党の党員でもあった。 日本初の女性物理学者湯浅年子が、師事していたことがある。 長女のエレーヌ・ランジュヴァン=ジョリオ(1927年-)は物理学者に、長男のピエール・ジョリオ(1932年-)は生物学者になった。 1958年に白血病で死去。妻イレーヌの死から2年後のことだった。.

新しい!!: 物理学者の一覧とフレデリック・ジョリオ=キュリー · 続きを見る »

フレデリック・サムナー・ブラケット

フレデリック・サムナー・ブラケット(Frederick Sumner Brackett, 1896年8月1日 - 1972年)は、アメリカ合衆国の物理学者。専門は分光学。出生地はカリフォルニア州クレアモント。1922年から1927年までカリフォルニア大学バークレー校で教鞭を執り、1936年からアメリカ国立衛生研究所で生物物理学部門の部長を務めた。 1922年に水素原子の線スペクトルの遠赤外線領域を表す、ブラケット系列を発見した。ブラケットという月のクレーターも、彼の名前に由来している。 Category:アメリカ合衆国の物理学者 Category:カリフォルニア大学バークレー校の教員 Category:アメリカ国立衛生研究所の人物 Category:ロサンゼルス郡出身の人物 Category:1896年生 Category:1972年没.

新しい!!: 物理学者の一覧とフレデリック・サムナー・ブラケット · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: 物理学者の一覧とフーリエ変換 · 続きを見る »

フーコーの振り子

フーコーの振り子(フーコーのふりこ、フランス語:Pendule de Foucault)は、長い振り子(通常10m以上)の底に質量の大きいおもりをつけたもので、地球が自転していることの証明に使用される。レオン・フーコーが1851年1月8日にパリのパンテオンで公開実験を行い、地球の自転を証明した。.

新しい!!: 物理学者の一覧とフーコーの振り子 · 続きを見る »

フックの法則

フックの法則(フックのほうそく、Hooke's law)は、力学や物理学における構成則の一種で、ばねの伸びと弾性限度以下の荷重は正比例するという近似的な法則である。弾性の法則(だんせいのほうそく)とも呼ばれる。フックの法則が近似として成り立つ物質を線形弾性体またはフック弾性体 (Hookean elastic material) と呼ぶ。 フックの法則は17世紀のイギリスの物理学者、ロバート・フックが提唱したものであり、彼の名を取ってフックの法則と名づけられた。フックは1676年にラテン語のアナグラムでこの法則を記述し、1678年にアナグラムの答えが、即ち であると発表した。フックの法則に従う系では、荷重は伸びに正比例し と表される。ここで.

新しい!!: 物理学者の一覧とフックの法則 · 続きを見る »

ファラデーの電磁誘導の法則

ファラデーの電磁誘導の法則(ファラデーのでんじゆうどうのほうそく、Faraday's law of induction)とは、電磁誘導において、1つの回路に生じる誘導起電力の大きさはその回路を貫く磁界の変化の割合に比例するというもの。ファラデーの誘導法則ともよばれる。また、ファラデーの電気分解の法則との混同のおそれのない場合は、単にファラデーの法則と呼称されることもある。.

新しい!!: 物理学者の一覧とファラデーの電磁誘導の法則 · 続きを見る »

ファラデーの電気分解の法則

ファラデーの電気分解の法則(ファラデーのでんきぶんかいのほうそく、Faraday's laws of electrolysis)とは、1833年にマイケル・ファラデーが発見した、電解質溶液中の電気分解に関する法則である。第一法則と第二法則がある。電気分解は電子の授受によって引き起こされる現象であるから、電解を行ったとき、各電極で発生または析出する物質の量は、電子の授受に関係したイオンの価数および、電解に使われた電気量、つまり、電子の物質量に関係しているはずである。電子の存在が明らかでなかった1833年、ファラデー(イギリス)は、電気分解における物質の変化量と電気量(通じた電流の強さと時間の積)との間に、以下の関係が成り立つことを実験的に見いだした。これをファラデーの電気分解の法則という。.

新しい!!: 物理学者の一覧とファラデーの電気分解の法則 · 続きを見る »

ファンデルワールス力

ファンデルワールス力(ファンデルワールスりょく、van der Waals force)は、原子、イオン、分子間(場合によっては、同一分子の中の異なる原子団の間)に働く引力または反発力の中で、次に挙げる物理的起源をもつ相互作用のものを総称する。.

新しい!!: 物理学者の一覧とファンデルワールス力 · 続きを見る »

ファインマン・ダイアグラム

電子・陽電子と光子との相互作用を表したファインマン・ダイアグラム。 電子と電子の散乱のファインマン・ダイアグラム。仮想的な光子を交換して相互作用する。 ファインマンダイアグラムは、場の量子論において摂動展開の各項を図に示したものである。それぞれのダイアグラムは素粒子をはじめとする実際の粒子の反応過程を表現している。 ノーベル物理学賞受賞者で量子電磁力学の創始者の一人であるリチャード・P・ファインマンによって提唱されたファインマンルールに基づいて計算することによって素粒子の振る舞いを記述できる。.

新しい!!: 物理学者の一覧とファインマン・ダイアグラム · 続きを見る »

フィリップ・レーナルト

フィリップ・エドゥアルト・アントン・フォン・レーナルト(Philipp Eduard Anton von Lenard, 1862年6月7日 – 1947年5月20日)はハンガリーのポジョニ 出身のドイツの物理学者である。ハンガリー名レーナールド・フュレプ・エデ・アンタル(Lénárd Fülöp Ede Antal)。陰極線の研究で1905年にノーベル物理学賞を受賞した。また、熱心な反ユダヤ主義者だったことでも知られている。.

新しい!!: 物理学者の一覧とフィリップ・レーナルト · 続きを見る »

フィリップ・アンダーソン

フィリップ・ウォーレン・アンダーソン(Philip Warren Anderson、1923年12月13日 - )は、アメリカの物理学者。プリンストン大学教授。.

新しい!!: 物理学者の一覧とフィリップ・アンダーソン · 続きを見る »

フィリップ・アベルソン

フィリップ・アベルソン フィリップ・ホーグ・アベルソン(Philip Hauge Abelson, 1913年4月27日 - 2004年8月1日) はアメリカの物理学者、後にサイエンス・ライターになった。1940年にエドウィン・マクミランとともにネプツニウムの発見者の一人となった。 タコマに生れた。ワシントン州立大学で物理を学んだ後、カリフォルニア大学バークレー校で核物理学の学位を得た。原子物理の分野でルイ・アルヴァレなどと共同研究をおこなった。 第2次世界大戦中は海軍技術研究所で働いた。マンハッタン計画自体には公式には参加していないがアベルソンの開発した拡散分離法は原子爆弾の開発にとって重要な技術となった。 戦後も原子力動力の艦船の研究を行いアメリカ初の原子力潜水艦「ノーチラス」の開発に貢献した。1951年から, カーネギー地球物理学研究所に移った。1962年から米国科学振興協会(American Association for the Advancement of Science:AAAS)の発行する雑誌「サイエンス」の編集を行った。サイエンスの編集作業を長く携わったことの貢献により、有機鉱物のアーベルソン石の由来となる。 category:アメリカ合衆国の物理学者 Category:化学元素発見者 Category:アメリカ国家科学賞受賞者 Category:カーネギー研究所の人物 Category:ワシントン州の人物 Category:1913年生 Category:2004年没.

新しい!!: 物理学者の一覧とフィリップ・アベルソン · 続きを見る »

フェルディナント・ブラウン

1900年9月24日、無線実験局にて カール・フェルディナント・ブラウン(Karl Ferdinand Braun、1850年6月6日‐1918年4月20日)は、ドイツの物理学者、発明家。電位計やオシログラフ、そしてブラウン管の発明など電磁気学および無線通信の分野に多大な業績を残した。1909年には、ノーベル物理学賞をグリエルモ・マルコーニと共に受賞している。.

新しい!!: 物理学者の一覧とフェルディナント・ブラウン · 続きを見る »

ドミトリ・メンデレーエフ

ドミトリ・イヴァーノヴィチ・メンデレーエフ( ドミートリイー・イヴァーナヴィチ・ミンジリェーイフ;、1834年1月27日(グレゴリオ暦2月8日) -1907年1月20日(グレゴリオ暦2月2日))はロシアの化学者であり、元素の周期律表を作成し、それまでに発見されていた元素を並べ周期的に性質を同じくした元素が現れることを確認し、発見されていなかった数々の元素の存在を予言したことで知られており、メンデレビウムと元素名にも彼の名が残っている。 また、「石油の無機起源説」の提唱者としても近年再評価されている。.

新しい!!: 物理学者の一覧とドミトリ・メンデレーエフ · 続きを見る »

ド・ブロイ波

ド・ブロイ波(ド・ブロイは、de Broglie wave)は、1924年にルイ・ド・ブロイが提唱した粒子性と波動性を結びつける考え方である。ド・ブローイ波、物質波ともいう。 質量mの粒子が速さv(運動量 mv.

新しい!!: 物理学者の一覧とド・ブロイ波 · 続きを見る »

ドップラー効果

ドップラー効果(ドップラーこうか、Doppler effect)またはドップラーシフト(Doppler shift)とは、波(音波や電磁波など)の発生源(音源・光源など)と観測者との相対的な速度の存在によって、波の周波数が異なって観測される現象をいう。.

新しい!!: 物理学者の一覧とドップラー効果 · 続きを見る »

ドニ・パパン

ドゥニー・パパン(Denis Papin、1647年8月22日 - 1712年頃)はフランスの物理学者、発明家である。圧力調理器(「スティーム・ダイジェスタ」)の発明者、蒸気機関の原理の開発者として知られている。 ロンドン王立協会フェロー にもなった。.

新しい!!: 物理学者の一覧とドニ・パパン · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 物理学者の一覧とニュートン力学 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

新しい!!: 物理学者の一覧とニールス・ボーア · 続きを見る »

ニコラ・レオナール・サディ・カルノー

ニコラ・レオナール・サディ・カルノー(, 1796年6月1日 パリ - 1832年8月24日 パリ)は、フランスの軍人、物理学者、技術者で、仮想熱機関「カルノーサイクル」の研究により熱力学第二法則の原型を導いたことで知られる。.

新しい!!: 物理学者の一覧とニコラ・レオナール・サディ・カルノー · 続きを見る »

ニコラス・ブルームバーゲン

ニコラス・ブルームバーゲン(Nicolaas Bloembergen, 1920年3月11日 - 2017年9月5日)は、アメリカ合衆国の物理学者。1981年、アーサー・ショーロー (Arthur Leonard Schawlow) とともにレーザー分光学への貢献でノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とニコラス・ブルームバーゲン · 続きを見る »

ニコラス・ケンマー

ニコラス・ケンマー ニコラス・ケンマー(Nicholas Kemmer、1911年7月12日 - 1998年10月21日)はロシア生まれで、スイス、イギリスで活躍した理論物理学者である。パイオンとアイソスピンなどの理論に貢献した。 サンクトペテルブルクに生れた。1922年に両親はドイツに亡命した。ゲッティンゲン大学を卒業した。1932年から1936年までチューリッヒ大学でヴォルフガング・パウリのもとで学び、その後イギリスのインペリアル・カレッジに移った。第二次世界大戦中は戦時研究でケンブリッジ、カナダなどで研究し、1946年からケンブリッジ大学の教授になった。1953年から1979年までエディンバラ大学の数理物理の教授を務めた。.

新しい!!: 物理学者の一覧とニコラス・ケンマー · 続きを見る »

ホーミ・J・バーバー

ホーミ・ジャハーンギール・バーバー(Homi Jehangir Bhabha、1909年10月30日 – 1966年1月24日)はインドの物理学者。インドの原子力開発に大きな貢献をした。 ムンバイ生まれ。裕福なパールシー(ペルシャ系インド人)のゾロアスター教徒であり、インドの2大財閥のひとつのタタ財閥一族を親類に持つ。ケンブリッジ大学で機械工学を学び、ポール・ディラックに影響を受け理論物理学に進んだ。1935年、ケンブリッジ大学で学位を得た。宇宙線シャワーの分野で功績をあげた。1939年インドに戻り、バンガロールのインド理科大学院でチャンドラセカール・ラマンのもとで働いた。1945年、ムンバイに叔父のJ・R・D・タタの援助を受けて、Institute of Fundamental Research を設立し所長となった。戦後、ジャワハルラール・ネルー首相の知己を得て、インドの核エネルギー開発のリーダーとなり、多くのインドの核物理学者を育成し、国際的な活動を行った。 1966年ヨーロッパへ向かう航空機の事故(インド航空101便墜落事故)で死亡した。 バーバー原子力研究所(BARC:w:Bhabha Atomic Research Center)はバーバーの功績を記念して名づけられた。.

新しい!!: 物理学者の一覧とホーミ・J・バーバー · 続きを見る »

ホーキング放射

ホーキング放射(ホーキングほうしゃ、Hawking radiation)またはホーキング輻射(ふくしゃ)とは、スティーヴン・ホーキングが存在を提唱・指摘した、ブラックホールからの熱的な放射のことである。 「ブラックホールは熱的な特性を持つだろう」と予言したヤコブ・ベッケンシュタインの名前を取って、ベッケンシュタイン・ホーキング輻射()と呼ぶこともある。.

新しい!!: 物理学者の一覧とホーキング放射 · 続きを見る »

ホイヘンス=フレネルの原理

ホイヘンス=フレネルの原理(ホイヘンス=フレネルのげんり、Huygens–Fresnel principle)、または単にホイヘンスの原理(ホイヘンスのげんり、Huygens' principle)は波動の伝播問題(遠方場の極限や近傍場の回折や)を解析する手法である。ホイヘンス=フレネルの原理によると、前進波の波面の各点が二次波とよばれる新しい波の波源となり、全体としての前進波は(既に伝播した媒質から生じる)全ての二次波を重ね合わせたものとなる。この波の伝播の考え方は回折のような様々な波動現象の理解を助ける。 例えば、2つの部屋が開いた出入口のみで繋がっており、一方の離れた部屋の角で音が鳴ったとする。するともう一方の部屋にいる人には出入口の所で音が鳴ったように聞こえる。2つ目の部屋のみを考えると、出入口の地点での振動する空気は音源である。障害物の端を通る光にも同じことがいえるが、可視光は波長が短いために観測が難しい。 ホイヘンス=フレネルの原理は1678年にオランダの物理学者クリスティアーン・ホイヘンスが元となるホイヘンスの原理を発見し、1690年に著書"Traite de la lumiere"に記した。オリジナルのホイヘンスの原理では後進波が存在しないことを説明できなかったが、フランスの物理学者オーギュスタン・ジャン・フレネルが1836年に修正を加えてこの問題点を解決した。その後1882年にグスタフ・キルヒホフがヘルムホルツ方程式を基礎としたフレネル=キルヒホフの回折理論にて理論的な説明を与えた。.

新しい!!: 物理学者の一覧とホイヘンス=フレネルの原理 · 続きを見る »

ダランベールのパラドックス

ダランベールのパラドックス(D'Alembert's paradox)とは、静止している理想流体(粘性が0である流体)中に物体を等速直線運動させたときに、物体には抵抗力が働かないという、一見直感に反する事実(パラドックス)のこと。1743年のダランベールの力学に関する著書に記されており、1768年まで考察が洗練されていった。.

新しい!!: 物理学者の一覧とダランベールのパラドックス · 続きを見る »

ダニエル・ベルヌーイ

ダニエル・ベルヌーイ(Daniel Bernoulli, 1700年2月8日 - 1782年3月17日)は、スイスの数学者・物理学者。.

新しい!!: 物理学者の一覧とダニエル・ベルヌーイ · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

新しい!!: 物理学者の一覧とダイオード · 続きを見る »

ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

新しい!!: 物理学者の一覧とベルヌーイの定理 · 続きを見る »

ベン・ロイ・モッテルソン

ベン・ロイ・モッテルソン(Ben Roy Mottelson、1926年7月9日 -)は、アメリカ出身の理論物理学者。1971年にデンマークに帰化した。.

新しい!!: 物理学者の一覧とベン・ロイ・モッテルソン · 続きを見る »

ベンジャミン・フランクリン

ベンジャミン・フランクリン(Benjamin Franklin, グレゴリオ暦1706年1月17日<ユリウス暦1705年1月6日> - 1790年4月17日)は、アメリカ合衆国の政治家、外交官、著述家、物理学者、気象学者。印刷業で成功を収めた後、政界に進出しアメリカ独立に多大な貢献をした。また、凧を用いた実験で、雷が電気であることを明らかにしたことでも知られているただ、フランクリンが実際に凧の実験を行ったのかを疑問視する専門家もいる。なお、この実験を提案したのはフランクリンだが、初めて成功したのは1752年5月、フランスのトマ・ダリバード(:en:Thomas-François Dalibard)らである。ダリバードらはフランクリンの提案に従って、嵐の雲が通過するときに鉄の棒(避雷針)から火花を抽出した。フランクリンが凧を用いて同様の実験を行ったのは同年の6月、または6月から10月までの期間である。(アルベルト・マルチネス「科学神話の虚実」)。現在の米100ドル紙幣に肖像が描かれている他、ハーフダラー銀貨にも1963年まで彼の肖像が使われていた。 勤勉性、探究心の強さ、合理主義、社会活動への参加という18世紀における近代的人間像を象徴する人物。己を含めて権力の集中を嫌った人間性は、個人崇拝を敬遠するアメリカの国民性を超え、アメリカ合衆国建国の父の一人として讃えられる。『フランクリン自伝』はアメリカのロング・ベストセラーの一つである。.

新しい!!: 物理学者の一覧とベンジャミン・フランクリン · 続きを見る »

ベンゼン

ベンゼン (benzene) は分子式 C6H6、分子量 78.11 の最も単純な芳香族炭化水素である。原油に含まれており、石油化学における基礎的化合物の一つである。分野によっては慣用としてドイツ語 (Benzol:ベンツォール) 風にベンゾールと呼ぶことがある。ベンジン(benzine)とはまったく別の物質であるが、英語では同音異綴語である。.

新しい!!: 物理学者の一覧とベンゼン · 続きを見る »

分子間力

分子間力(ぶんしかんりょく、intermolecular force)は、分子同士や高分子内の離れた部分の間に働く電磁気学的な力である。力の強い順に並べると、次のようになる。.

新しい!!: 物理学者の一覧と分子間力 · 続きを見る »

嵯峨根遼吉

嵯峨根 遼吉(さがね りょうきち、1905年11月27日 - 1969年4月16日)は、日本の物理学者。専門は実験物理学。東京府(現・東京都)出身。.

新しい!!: 物理学者の一覧と嵯峨根遼吉 · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: 物理学者の一覧と周波数 · 続きを見る »

周期律

周期律(しゅうきりつ、periodic law)は、元素を原子番号順に配列すると元素の物理的、化学的性質が一定の周期性で変化することである。これにより元素がSブロック元素、Pブロック元素、Dブロック元素、Fブロック元素、Gブロック元素…に分類される。また、周期律に従い元素を配列した表が周期表である。.

新しい!!: 物理学者の一覧と周期律 · 続きを見る »

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、それぞれが持つ物理的または化学的性質が似たもの同士が並ぶように決められた規則(周期律)に従って配列した表である。日本では1980年頃までは「周期律表」と表記されている場合も有った。.

新しい!!: 物理学者の一覧と周期表 · 続きを見る »

アルマン・フィゾー

フィゾー アルマン・イッポリート・ルイ・フィゾー(Armand Hippolyte Louis Fizeau, 1819年9月23日 - 1896年9月18日)は、フランスの物理学者。地上で初めて光速度を測定したことを始め、光学における業績がある。.

新しい!!: 物理学者の一覧とアルマン・フィゾー · 続きを見る »

アルバート・マイケルソン

アルバート・エイブラハム・マイケルソン(Albert Abraham Michelson, 1852年12月19日 - 1931年5月9日)は、アメリカの物理学者。アメリカ海軍士官。光速度やエーテルについての研究を行った。1907年、光学に関する研究によってノーベル物理学賞を受賞した。これは科学部門における、アメリカ人初の受賞でもある。.

新しい!!: 物理学者の一覧とアルバート・マイケルソン · 続きを見る »

アルフレート・ヴェーゲナー

『大陸と海洋の起源』第4版(1929年)より アルフレート・ロータル・ヴェーゲナー(Alfred Lothar Wegener、1880年11月1日 - 1930年11月2日もしくは3日)は、大陸移動説を提唱したドイツの気象学者。現在でいう地球物理学者である。1908年からマールブルク大学で教鞭を執り、1924年にオーストリアのグラーツ大学の教授に就任した。義父(妻の父親)は「ケッペンの気候区分」で有名なロシア出身のドイツ人気象学者ウラジミール・ペーター・ケッペン。日本では英語読みでアルフレッド・ウェゲナーとも表記される。.

新しい!!: 物理学者の一覧とアルフレート・ヴェーゲナー · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とアルベルト・アインシュタイン · 続きを見る »

アルキメデス

アルキメデス(Archimedes、Ἀρχιμήδης、紀元前287年? - 紀元前212年)は、古代ギリシアの数学者、物理学者、技術者、発明家、天文学者。古典古代における第一級の科学者という評価を得ている。.

新しい!!: 物理学者の一覧とアルキメデス · 続きを見る »

アルキメデスの原理

アルキメデスの原理(アルキメデスのげんり)は、アルキメデスが発見した物理学の法則。「流体中の物体は、その物体が押しのけている流体の重さ(重量)と同じ大きさで上向きの浮力を受ける」というものである。.

新しい!!: 物理学者の一覧とアルキメデスの原理 · 続きを見る »

アレッサンドロ・ボルタ

アレッサンドロ・ジュゼッペ・アントニオ・アナスタージオ・ヴォルタ伯爵(Il Conte Alessandro Giuseppe Antonio Anastasio Volta、1745年2月18日 - 1827年3月5日)は、イタリアGiuliano Pancaldi, "Volta: Science and culture in the age of enlightenment", Princeton University Press, 2003.

新しい!!: 物理学者の一覧とアレッサンドロ・ボルタ · 続きを見る »

アレクセイ・アブリコソフ

アレクセイ・アレクセーエヴィチ・アブリコソフ(Алексей Алексеевич Абрикосов (Alexei Alexeevich Abrikosov) 、1928年6月25日 - 2017年3月29日)は、ロシアの物理学者。モスクワ生まれ。1948年にモスクワ大学を卒業。1948年から1965年までロシア科学アカデミーに勤務。 2003年、「超伝導と超流動の理論に関する先駆的貢献」によりノーベル物理学賞を受賞。2017年、カリフォルニア州パロアルトで死去。.

新しい!!: 物理学者の一覧とアレクセイ・アブリコソフ · 続きを見る »

アレクサンドル・プロホロフ

アレクサンドル・ミハイロヴィチ・プロホロフ(ロシア語:Алекса́ндр Миха́йлович Про́хоров;ラテン文字転写の例:Aleksandr Mikhailovich Prokhorov, Alexander Prochorow, Aleksandr Michájlovič Próchorov、1916年7月11日2002年1月8日)はオーストラリア生まれのソビエト連邦およびロシア連邦の物理学者である。.

新しい!!: 物理学者の一覧とアレクサンドル・プロホロフ · 続きを見る »

アレクサンドル・フリードマン

アレクサンドル・フリードマン アレクサンドル・アレクサンドロヴィチ・フリードマン(Alexander Alexandrovich Friedmann, Александр Александрович Фридман, 1888年6月16日 - 1925年9月16日)はソ連の宇宙物理学者、数学者、気象学者。1922年に一般相対性理論の場の方程式に従う膨張宇宙のモデルをフリードマン方程式の解として定式化したことで知られる。彼のモデルは彼の死後、1929年にエドウィン・ハッブルの観測によって宇宙膨張が発見されたことで高く評価されることとなった。 アレクサンドル・フリードマンは1888年にロシアのサンクトペテルブルクで、音楽家の父とピアノ教師の母の間に生まれた。祖父の代にキリスト教に改宗したユダヤ人の家系。サンクトペテルブルク大学に入学して数学を専攻し、卒業後はパブロフ高層気象観測所で気象学を学んだ。 フリードマンは生涯のほとんどをレニングラード(現在のサンクトペテルブルク)で過ごした。第一次世界大戦ではロシア軍の航空兵に志願し、爆撃手として戦争に参加した。大戦末期には航空隊を指揮するようになり、軍で弾道計算なども行なっていた。ロシア革命の後、ペルミ大学の力学の教授となった。1920年にサンクトペテルブルクの科学アカデミーに戻り、量子力学や相対性理論など、当時最先端の物理学を研究した。またレニングラード大学で教鞭をとった。当時の学生にジョージ・ガモフがいる。 1925年に37歳で没した。公式の記録では死因は腸チフスとされているが、ガモフの談話では、気象観測気球を揚げている際に風邪をひいたのが元で肺炎を起こして死亡したと言われている。 1924年1月7日にブリュッセル科学アカデミーによって出版されたフリードマンの論文 (『負の定数曲率を持つ宇宙の可能性について』)において彼は、正、ゼロ、負の曲率を持つ3つの宇宙モデル(フリードマンモデル)を取り扱った。同時期にアメリカのロバートソンとイギリスのウォーカーがそれぞれ独立に、アインシュタイン方程式の時空の計量を解析して同様の結果を得ていた。今日では3人の名前をまとめてフリードマン・ロバートソン・ウォーカー計量と呼ぶのが一般的である。.

新しい!!: 物理学者の一覧とアレクサンドル・フリードマン · 続きを見る »

アンペールの法則

アンペールの法則(アンペールのほうそく; Ampère's circuital law)は電流とそのまわりにできる磁場との関係をあらわす法則である。1820年にフランスの物理学者アンドレ=マリ・アンペール(André-Marie Ampère)が発見した。.

新しい!!: 物理学者の一覧とアンペールの法則 · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: 物理学者の一覧とアンペア · 続きを見る »

アンリ・ナビエ

クロード・ルイ・マリー・アンリ・ナヴィエ(Claude Louis Marie Henri Navier、1785年2月10日- 1836年8月21日)は、フランスの数学者、物理学者。流体力学における基礎方程式、ナビエ-ストークス方程式に名前を残している。 ナヴィエは国立土木学校(École des Ponts et Chaussées)の機械工学の教授を務め、後にエコール・ポリテクニークの教授を務めた。1826年に材料力学の教科書を出版している。ガリレオ・ガリレイの梁の強度に関する論文の間違いを訂正している。 1822年に、粘性流体の運動方程式に関する論文をフランス科学アカデミーに提出した。1845年にジョージ・ガブリエル・ストークスが一般式を導いたのでナビエ-ストークスの式と呼ばれる。 Category:フランスの物理学者 Category:フランスの数学者 Category:19世紀の自然科学者 Category:数値解析研究者 Category:流体力学 850210 -850210 Category:水理学に関する人物 Category:国立土木学校の教員 Category:エコール・ポリテクニークの教員 Category:ディジョン出身の人物 Category:国立土木学校 Category:1785年生 Category:1836年没 Category:数学に関する記事.

新しい!!: 物理学者の一覧とアンリ・ナビエ · 続きを見る »

アンリ・ベクレル

アントワーヌ・アンリ・ベクレル(Antoine Henri Becquerel, 1852年12月15日 - 1908年8月25日)は フランスの物理学者・化学者。放射線の発見者であり、この功績により1903年ノーベル物理学賞を受賞した。パリ生まれ。息子のも物理学者・化学者である。 蛍光や光化学の研究者アレクサンドル・エドモン・ベクレルの息子、科学者アントワーヌ・セザール・ベクレルの孫で、研究者の道に進んだ。エコール・ポリテクニークで自然科学を、国立土木学校で工学を学んだ。 1903年、ノーベル物理学賞をピエール・キュリー、マリ・キュリーと共に受賞した。 1908年、ブルターニュのにて55歳で急死。マリ・キュリー同様、放射線障害が原因だと考えられる。 放射能のSI単位のベクレル(Bq)はアンリ・ベクレルにちなんでいる。.

新しい!!: 物理学者の一覧とアンリ・ベクレル · 続きを見る »

アントワーヌ・セザール・ベクレル

アントワーヌ・セザール・ベクレル(Antoine César Becquerel、1788年3月7日 - 1878年1月18日)は、フランスの科学者。電気化学、発光現象の研究のパイオニアである。アレクサンドル・エドモン・ベクレルの父、アンリ・ベクレルの祖父である。 のシャティオン・シュル・ロワン(後のロワレ県の)に生まれた。エコール・ポリテクニークを出た後、1808年にフランスとスペイン間の半島戦争で工兵将校を務めた。1814年、軍を退役して科学研究の世界に入った。 初期の研究は鉱物学であったが、後に電気の分野、特に電気化学に貢献した。1819年、圧電現象を発見した。1825年、電気抵抗の正確な計測のために差動電流計を発明した。1829年、ダニエル電池の発明をうけて、定電流の電池を発明した。同年、息子のアレクサンドル・ベクレルと共に導電性液体に浸漬した電極に光電的な効果を発見した。 硫黄の精製、生化学の分野、気象の研究もおこなった。著書に.

新しい!!: 物理学者の一覧とアントワーヌ・セザール・ベクレル · 続きを見る »

アントニオ・パチノッティ

アントニオ・パチノッティ(Antonio Pacinotti、1841年6月7日 - 1912年5月22日) はイタリアの物理学者、直流発電機の発明者である。 ピサ大学の物理学の教授である。直流発電機の発明者として知られる。1865年に発表したIl Nuovo Cimentoの論文のなかで発表した。リング状の電機子のまわりに導線をまく構造を考案し、これは従来のものよりも安定した直流がえられた。この装置は電動機としても用いることができることも見出した。 1862年のスウィフト・タットル彗星(109P/Swift-Tuttle)の発見者のひとりである。 Category:イタリアの物理学者 Category:ピサ大学の教員 Category:ピサ出身の人物 Category:1841年生 Category:1912年没.

新しい!!: 物理学者の一覧とアントニオ・パチノッティ · 続きを見る »

アンデルス・オングストローム

アンデルス・オングストローム(Anders Jonas Ångström 、1814年8月13日-1874年6月21日)はスウェーデンの天文学者、物理学者である。分光学に基礎を築いた一人である。長さの単位オングストローム(1オングストローム.

新しい!!: 物理学者の一覧とアンデルス・オングストローム · 続きを見る »

アンドレイ・サハロフ

アンドレイ・ドミートリエヴィチ・サハロフ(Андре́й Дми́триевич Са́харов、1921年5月21日 - 1989年12月14日) は、ソビエト連邦の理論物理学者・政治家。物理学博士。.

新しい!!: 物理学者の一覧とアンドレイ・サハロフ · 続きを見る »

アンドレ=マリ・アンペール

アンドレ=マリ・アンペール(André-Marie Ampère, 1775年1月20日 - 1836年6月10日)は、フランスの物理学者、数学者。電磁気学の創始者の一人。アンペールの法則を発見した。電流のSI単位の アンペアはアンペールの名にちなんでいる。.

新しい!!: 物理学者の一覧とアンドレ=マリ・アンペール · 続きを見る »

アンダーソン局在

アンダーソン局在(Anderson localization)は、物質中のポテンシャルが無秩序な場合に、電子の波動関数が空間的に局在する現象のこと。.

新しい!!: 物理学者の一覧とアンダーソン局在 · 続きを見る »

アーネスト・ラザフォード

初代ネルソンのラザフォード男爵アーネスト・ラザフォード(Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, 1871年8月30日 - 1937年10月19日)は、ニュージーランド出身、イギリスで活躍した物理学者、化学者。 マイケル・ファラデーと並び称される実験物理学の大家である。α線とβ線の発見、ラザフォード散乱による原子核の発見、原子核の人工変換などの業績により「原子物理学の父」と呼ばれる。 1908年にノーベル化学賞を受賞。ラザフォード指導の下、チャドウィックが中性子を発見、コッククロフトとウォルトンが加速器を使った元素変換の研究、エドワード・アップルトンが電離層の研究でノーベル賞を受賞している。後にラザホージウムと元素名にも彼は名を残している。.

新しい!!: 物理学者の一覧とアーネスト・ラザフォード · 続きを見る »

アーネスト・ウォルトン

アーネスト・ウォルトン(Ernest Thomas Sinton Walton, 1903年10月6日 - 1995年6月25日)はアイルランド生まれの物理学者である。 1951年ジョン・コッククロフトと加速荷電粒子による原子核変換の研究における功績によりノーベル物理学賞を受賞した。 1932年直流高電圧により加速した陽子をリチウムの原子核に衝突させて、原子核を壊すことに成功した。 アイルランド南東部のダンガーバンに生まれた。ベルファストのメソディスト・カレッジを卒業し、ケンブリッジ大学のトリニティ・カレッジを1927年に卒業した。 その後1934年までキャベンディッシュ研究所にて、アーネスト・ラザフォードの下で研究した。1932年コックロフトと加速した陽子をリチウムなどの軽元素の原子核に衝突させて、ヘリウムの原子核に変換させることに成功した。最初の人工原子核反応である。 1934年にダブリン大学のトリニティ・カレッジに戻り、1946年にErasmus Smith教授職についた。.

新しい!!: 物理学者の一覧とアーネスト・ウォルトン · 続きを見る »

アーヴィング・ラングミュア

アーヴィング・ラングミュア(Irving Langmuir, 1881年1月31日 - 1957年8月16日)は、アメリカ合衆国の化学者、物理学者である。1932年に表面科学の分野への貢献でノーベル化学賞を受賞した。 コロンビア大学を卒業後、ゲッティンゲン大学で、ヴァルター・ネルンストのもとで化学を学び、1909年からゼネラル・エレクトリックの研究所で研究を始め1950年まで在籍した。また、「事実でない事柄についての科学」を病的科学として定義したことでも知られている。.

新しい!!: 物理学者の一覧とアーヴィング・ラングミュア · 続きを見る »

アッベ数

アッベ数(Abbe's number)または逆分散率は、透明体の色分散(屈折率の波長による変化)を評価する指標である。ドイツの物理研究者エルンスト・アッベ(Ernst Abbe, 1840年 - 1905年)の名前からきている。.

新しい!!: 物理学者の一覧とアッベ数 · 続きを見る »

アブドゥッサラーム

アブドゥッサラーム(, Abdus Salam、1926年1月29日 - 1996年11月21日)は、パキスタンの物理学者である。スティーヴン・ワインバーグやシェルドン・グラショウとともにワインバーグ・サラム理論を完成させ、これにより1979年のノーベル物理学賞を受賞し、イスラム教徒では初のノーベル科学賞受賞者となった。.

新しい!!: 物理学者の一覧とアブドゥッサラーム · 続きを見る »

アイザック・ニュートン

ウールスソープの生家 サー・アイザック・ニュートン(Sir Isaac Newton、ユリウス暦:1642年12月25日 - 1727年3月20日、グレゴリオ暦:1643年1月4日 - 1727年3月31日ニュートンの生きていた時代のヨーロッパでは主に、グレゴリオ暦が使われ始めていたが、当時のイングランドおよびヨーロッパの北部、東部ではユリウス暦が使われていた。イングランドでの誕生日は1642年のクリスマスになるが、同じ日がグレゴリオ暦では1643年1月4日となる。二つの暦での日付の差は、ニュートンが死んだときには11日にも及んでいた。さらに1752年にイギリスがグレゴリオ暦に移行した際には、3月25日を新年開始の日とした。)は、イングランドの自然哲学者、数学者、物理学者、天文学者。 主な業績としてニュートン力学の確立や微積分法の発見がある。1717年に造幣局長としてニュートン比価および兌換率を定めた。ナポレオン戦争による兌換停止を経て、1821年5月イングランド銀行はニュートン兌換率により兌換を再開した。.

新しい!!: 物理学者の一覧とアイザック・ニュートン · 続きを見る »

アウグスト・リーギ

アウグスト・リーギ アウグスト・リーギ(Augusto Righi、1850年8月27日- 1920年6月8日)はイタリアの電磁気学分野の実験物理学者である。1890年代に無線通信の実用化を行ったマルコーニに技術的な助言を与えたことでも知られている。 ボローニャに生まれた。ボローニャ大学で学位を得て、ボローニャ工科大学、パレルモ大学、パドヴァ大学、ボローニャ大学などで物理を教えた。電磁気学を研究し、磁性材料の磁気ヒステリシス現象などを発見した。1880年代のハインリヒ・ヘルツの電磁波の発見をうけて、より精密な実験を行った。当時近隣に住んでいたマルコーニに対して助言を与えた。晩年は相対性理論の実験的研究もおこなった。 Category:イタリアの物理学者 Category:王立協会外国人会員 Category:ボローニャ大学の教員 Category:パレルモ大学の教員 Category:パドヴァ大学の教員 Category:ボローニャ出身の人物 Category:1850年生 Category:1920年没.

新しい!!: 物理学者の一覧とアウグスト・リーギ · 続きを見る »

イリヤ・プリゴジン

イリヤ・プリゴジン(Ilya Prigogine, 1917年1月25日 - 2003年5月28日)は、ロシア出身のベルギーの化学者・物理学者。非平衡熱力学の研究で知られ、散逸構造の理論で1977年のノーベル化学賞を受賞した。統計物理学でも大きな足跡を残し、「エントロピー生成極小原理」はよく知られている。.

新しい!!: 物理学者の一覧とイリヤ・プリゴジン · 続きを見る »

イリヤ・フランク

イリヤ・ミハイロヴィチ・フランク(Илья Михайлович Франк、1908年10月10日(ユリウス暦)/10月23日(グレゴリオ暦) ペテルブルク - 1990年6月22日 モスクワ)は、ソ連の物理学者。 1958年、チェレンコフ効果の解明によって、パーヴェル・チェレンコフ、イゴール・タムと共にノーベル物理学賞を受賞した。 フランクは1930年にモスクワ大学を卒業した。1934年にチェレンコフが高速で運動する荷電粒子が水中で光を放射することを発見すると、フランクとタムはその現象を理論的に説明した。それは粒子が透明な媒質中をその媒質での光速度より早い速度で運動する時に起こるというものだった。 この発見は高速の素粒子の検出と計測のための新しい手法の開発につながり、原子核物理学の発達に寄与した。 フランクの功績は他にチェレンコフおよびタムとの電子放射の研究などがある。フランクはまたガンマ線と中性子線の研究を専門とした。彼は1944年にはモスクワ大学物理学部の部長となり、1946年にはロシア科学アカデミーの会員となっている。.

新しい!!: 物理学者の一覧とイリヤ・フランク · 続きを見る »

イレーヌ・ジョリオ=キュリー

イレーヌ・ジョリオ=キュリー(Irene Joliot-Curie、1897年9月12日 - 1956年3月17日)は、フランスの原子物理学者。父はピエール・キュリー、母はマリー・キュリー。妹はエーヴ・キュリー。 (左から)ピエール、イレーヌ、マリー パリに生まれ、パリ大学でポロニウムのアルファ線に関する研究で学位を取得。1926年、母マリーの助手だったフレデリック・ジョリオと結婚。1934年に30Pを合成し、1935年、「人工放射性元素の研究」で、夫フレデリックと共にノーベル化学賞を受賞した。.

新しい!!: 物理学者の一覧とイレーヌ・ジョリオ=キュリー · 続きを見る »

ウィラード・ギブズ

ョサイア・ウィラード・ギブズ ジョサイア・ウィラード・ギブズ(Josiah Willard Gibbs, 1839年2月11日 - 1903年4月28日)はアメリカコネチカット州ニューヘイブン出身の数学者・物理学者・物理化学者で、エール大学(イェール大学)教授。 熱力学分野で熱力学ポテンシャル、化学ポテンシャル概念を導入し、相平衡理論の確立、相律の発見など、今日の化学熱力学の基礎を築いた。統計力学の確立にも大きく貢献した。ギブズ自由エネルギーやギブズ-デュエムの式、ギブズ-ヘルムホルツの式等にその名を残している。 ベクトル解析の創始者の一人として数学にも寄与している。 ギブズの科学者としての経歴は、4つの時期に分けられる。1879年まで、ギブズは、熱力学理論を研究した。1880年から1884年までは、ベクトル解析分野の研究を行った。1882年から1889年までは、光学と光理論の研究をした。1889年以降は、統計力学の教科書作成に関わった。なお、彼の功績を称えて、小惑星(2937)ギブズが彼の名を取り命名されている。.

新しい!!: 物理学者の一覧とウィラード・ギブズ · 続きを見る »

ウィリアム・ローワン・ハミルトン

ウィリアム・ローワン・ハミルトン(William Rowan Hamilton、1805年8月4日 - 1865年9月2日)は、アイルランド・ダブリン生まれのイギリスの数学者、物理学者。四元数と呼ばれる高次複素数を発見したことで知られる。また、イングランドの数学者アーサー・ケイリーに与えた影響は大きい。.

新しい!!: 物理学者の一覧とウィリアム・ローワン・ハミルトン · 続きを見る »

ウィリアム・トムソン

初代ケルヴィン男爵ウィリアム・トムソン(William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE、1824年6月26日 - 1907年12月17日)は、アイルランド生まれのイギリスの物理学者。爵位に由来するケルヴィン卿(Lord Kelvin)の名で知られる。特にカルノーの理論を発展させた絶対温度の導入、クラウジウスと独立に行われた熱力学第二法則(トムソンの原理)の発見、ジュールと共同で行われたジュール=トムソン効果の発見などといった業績がある。これらの貢献によって、クラウジウス、ランキンらと共に古典的な熱力学の開拓者の一人と見られている。このほか電磁気学や流体力学などをはじめ古典物理学のほとんどの分野に600を超える論文を発表した。また、電磁誘導や磁気力を表すためにベクトルを使い始めた人物でもある。.

新しい!!: 物理学者の一覧とウィリアム・トムソン · 続きを見る »

ウィリアム・ヘンリー・フォックス・タルボット

ウィリアム・ヘンリー・フォックス・タルボット、19世紀半ばの肖像、撮影者 Ivan Szabo (1822-1858) ウィリアム・ヘンリー・フォックス・タルボット(William Henry Fox Talbot、1800年2月11日 - 1877年9月17日)は写真技術の先駆者の一人で、カロタイプと呼ばれる初期の写真を発明した人物。政治家、考古学者、語源学者でもあった。イギリス人。姓は、トルボットとも表記する。 1831年に王立協会のフェローに選出されている。.

新しい!!: 物理学者の一覧とウィリアム・ヘンリー・フォックス・タルボット · 続きを見る »

ウィリアム・クルックス

ー・ウィリアム・クルックス(Sir William Crookes, 1832年6月17日 - )は、イギリスの化学者、物理学者である。タリウムの発見、陰極線の研究に業績を残している。.

新しい!!: 物理学者の一覧とウィリアム・クルックス · 続きを見る »

ウィリアム・ショックレー

ウィリアム・ブラッドフォード・ショックレー・ジュニア(William Bradford Shockley Jr.、1910年2月13日 - 1989年8月12日)は、アメリカの物理学者、発明家。ジョン・バーディーン、ウォルター・ブラッテンと共にトランジスタを発明し、3人で1956年のノーベル物理学賞を受賞。 ショックレーは1950年代から1960年代にかけてトランジスタの商業化を試み、そのために電子工学関連の技術革新が育まれ、カリフォルニアに「シリコンバレー」が生まれる出発点となった。晩年にはスタンフォード大学の教授となり、優生学の熱心な支持者となった。.

新しい!!: 物理学者の一覧とウィリアム・ショックレー · 続きを見る »

ウィーンの変位則

各温度における黒体輻射のエネルギー密度の波長ごとのスペクトル ヴィーンの変位則(ウィーンのへんいそく、Wien's displacement law)とは、黒体からの輻射のピークの波長が温度に反比例するという法則である。ヴィルヘルム・ヴィーンによって発見された。ヴィーンはドイツの物理学者であるため「ヴィーン」が正しい名称となるが、慣習的に英語読みのウィーンの変位則とよばれることも多い。 ここで は黒体の温度(K)、 はピーク波長(m)、 は比例定数でありその値は である。CGS単位系では は約 0.29 cm·K である。.

新しい!!: 物理学者の一覧とウィーンの変位則 · 続きを見る »

ウィークボソン

ウィークボソン (weak boson) は素粒子物理学において、弱い相互作用を媒介する素粒子である。弱ボソンとも言う。 ウィークボソンはスピン1のベクトルボソンで、WボソンとZボソンの二種類が存在する。Wボソンは陽子の約80倍、Zボソンは約90倍と他の素粒子に比べて大きな質量をもち、ごく短時間のうちに別の粒子に崩壊してしまうという特徴を持つ。 Wボソンは電荷 ±1 (W+,W−)をもち、両者は互いに反粒子の関係にある。 Zボソンは電荷 0 で、反粒子は自分自身である。 1968年に理論で存在が予言され、1983年に欧州合同原子核研究所にてその存在が確認された。.

新しい!!: 物理学者の一覧とウィークボソン · 続きを見る »

ウィグナー結晶

ウィグナー結晶(Wigner crystal)とは、電子ガスが取るとされる結晶状態。1934年にこれを予想したユージン・ウィグナーにちなんで名付けられている。 非常に低密度な領域では、電子は互いにクーロン斥力を及ぼし合っているにも関わらず結晶化することが予想されている。実際に、非常に低温(0.1 K程度以下)の液体ヘリウム表面上に形成された2次元電子系はウィグナー結晶(三角格子を形成)となっていることが観測されている。.

新しい!!: 物理学者の一覧とウィグナー結晶 · 続きを見る »

ウォルター・ブラッテン

ウォルター・ブラッテン(Walter Houser Brattain, 1902年2月10日 - 1987年10月13日)はアメリカの物理学者。トランジスタの発明でウィリアム・ショックレー、ジョン・バーディーンとともに、1956年ノーベル物理学賞を受賞した。 父親は中国で理科の教師をしておりアモイに生れたが、1903年家族はアメリカに帰り、ワシントン州の牧場に育った。オレゴン大学からミネソタ大学で学んだ。卒業後アメリカ規格局に就職したが1929年にベル研究所に移った。1948年ショックレーらとトランジスタの開発に成功し、ノーベル物理学賞を受賞した。1967年ベル研究所を退職し、ワシントン・カレッジに移り1972年までその仕事を続けた。.

新しい!!: 物理学者の一覧とウォルター・ブラッテン · 続きを見る »

エミリオ・セグレ

ミリオ・ジノ・セグレ(Emilio Gino Segrè 、1905年2月1日 - 1989年4月22日)は、イタリア生まれのアメリカの物理学者。1959年に「反陽子の発見」に対してノーベル物理学賞を受賞した。写真家としても活動し、現代科学の歴史を記録した多くの写真を残した。.

新しい!!: 物理学者の一覧とエミリオ・セグレ · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 物理学者の一覧とエネルギー · 続きを見る »

エネルギー保存の法則

ネルギー保存の法則(エネルギーほぞんのほうそく、law of the conservation of energy)とは、「孤立系のエネルギーの総量は変化しない」という物理学における保存則の一つである。しばしばエネルギー保存則とも呼ばれる。 任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。たとえば、取り得る状態がすべて分かっているとして、全部で つの状態があったとき、それらの状態のエネルギーを と表す。エネルギー保存の法則が成り立つことは、それらの差について、 が成り立っていることをいう。 時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。 エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 と呼ばれ、熱力学の基本的な法則となっている。 熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。一方でニュートン力学や量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。.

新しい!!: 物理学者の一覧とエネルギー保存の法則 · 続きを見る »

エルンスト・マッハ

ルンスト・ヴァルトフリート・ヨーゼフ・ヴェンツェル・マッハ(、 1838年2月18日 - 1916年2月19日)は、オーストリアの物理学者、科学史家、哲学者。 オーストリア帝国モラヴィア州ヒルリッツ Chirlitz(現チェコのモラヴィア、フルリツェ Chrlice)出身のモラヴィア・ドイツ人である。.

新しい!!: 物理学者の一覧とエルンスト・マッハ · 続きを見る »

エルンスト・ルスカ

ルンスト・ルスカ(Ernst August Friedrich Ruska、1906年12月25日 - 1988年5月27日)はドイツの物理学者。1986年電子顕微鏡の基礎研究と開発の業績でノーベル物理学賞を受賞した。 ハイデルベルクで生まれた。ミュンヘン工科大学を卒業した後、ベルリン工科大学に進み、マックス・クノールと1931年電子顕微鏡を製作した。 1937年から1955年までジーメンス・ハルスケ社で働き、その後1972年までフリッツ・ハーバー研究所の所長となった。またベルリン自由大学、ベルリン工科大学の教授を歴任した。1986年ノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とエルンスト・ルスカ · 続きを見る »

エルンスト・アッベ

ルンスト・カール・アッベ(Ernst Karl Abbe、1840年1月23日 アイゼナハ - 1905年1月14日 イェーナ)はドイツの天文学者、数学者、物理学者、実業家である。.

新しい!!: 物理学者の一覧とエルンスト・アッベ · 続きを見る »

エルンスト・シュテュッケルベルク

ルンスト・カール・ゲアラハ・シュテュッケルベルク(Ernst Carl Gerlach Stueckelberg, 1905年2月1日 - 1984年9月4日)は、スイスの理論物理学者。姓はしばしばStückelbergと綴られる。バーゼル大学に提出された学位論文付属の履歴書にはJohann Melchior Ernst Karl Gerlach Stückelberg-von Breidenbachと記載されているが、後に本人が綴りを変更した。 湯川秀樹の発表した核力に関する理論に到達していながらノーベル賞を逃したと言われる物理学者でもある。 1927年バーゼル大学で学位を取得、チューリッヒ大学でグレゴール・ウェンチェルのもとでコンラッド・ブロイラー(Konrad Bleuler)と講師となった。 1935年、湯川秀樹よりも前に、核力をベクトル・ボゾンの交換力で説明する論文を書いたが、パウリに批判されて発表できなかったという話が残っている。 1942年陽電子についての仮説を提案した。 1943年量子電磁力学における無限大の生じる問題に繰り込み(Renormalization)を使う論文をかいたが論文誌にリジェクトされた。 1976年マックス・プランク・メダルを受賞した。.

新しい!!: 物理学者の一覧とエルンスト・シュテュッケルベルク · 続きを見る »

エルヴィン・シュレーディンガー

ルヴィーン・ルードルフ・ヨーゼフ・アレクサンダー・シュレーディンガー(オーストリア語: Erwin Rudolf Josef Alexander Schrödinger、1887年8月12日 - 1961年1月4日)は、オーストリア出身の理論物理学者。 1926年に波動形式の量子力学である「波動力学」を提唱。次いで量子力学の基本方程式であるシュレーディンガー方程式や、1935年にはシュレーディンガーの猫を提唱するなど、量子力学の発展を築き上げたことで名高い。 1933年にイギリスの理論物理学者ポール・ディラックと共に「新形式の原子理論の発見」の業績によりノーベル物理学賞を受賞。1937年にはマックス・プランク・メダルが授与された。 1983年から1997年まで発行されていた1000オーストリア・シリング紙幣に肖像が使用されていた。.

新しい!!: 物理学者の一覧とエルヴィン・シュレーディンガー · 続きを見る »

エワルド球

ワルドの作図法 エワルド球とは、結晶による波動(X線、電子線、中性子)の回折を、逆格子空間上で幾何学的に理解するために導入された図形のこと。.

新しい!!: 物理学者の一覧とエワルド球 · 続きを見る »

エンリコ・フェルミ

ンリコ・フェルミ(Enrico Fermi、1901年9月29日 – 1954年11月28日)は、イタリア、ローマ出身の物理学者。統計力学、核物理学および量子力学の分野で顕著な業績を残しており、中性子による元素の人工転換の実験をして、多くの放射性同位元素を作り1938年のノーベル物理学賞を受賞している。フェルミに由来する用語は数多く、フェルミ推定のような方法論やフェルミのパラドックスといった問題、フェルミ粒子のような粒子の分類やフェルミウムといった元素名にその名を残している。他にも物理学の用語にフェルミに因むものが多く存在する。実験家と理論家との2つの顔を持ち、双方において世界最高レベルの業績を残した、史上稀に見る物理学者であった 。.

新しい!!: 物理学者の一覧とエンリコ・フェルミ · 続きを見る »

エヴァンジェリスタ・トリチェリ

ヴァンジェリスタ・トリチェリ(Evangelista Torricelli、グレゴリオ暦1608年10月15日 - グレゴリオ暦1647年10月25日)は、イタリアの物理学者。ガリレオ・ガリレイの弟子。 ファエンツァに生まれ、ローマに出て最初は数学者ベネデット・カステリの秘書をした。1641年からはガリレイの弟子となり、ガリレイの死まで研究をともにした。その後はトスカーナ大公フェルディナンド2世に数学者・哲学者として招かれて、ピサ大学の数学の教授に任命された。1647年、腸チフスのため39歳の若さで没した。.

新しい!!: 物理学者の一覧とエヴァンジェリスタ・トリチェリ · 続きを見る »

エットーレ・マヨラナ

ットレ・マヨラナ(Ettore Majorana、1906年8月5日 - 1938年に行方不明)はイタリアの物理学者である。エンリコ・フェルミのチームで活躍した。1938年行方不明となった。 シチリア島のカターニアに生まれた。数学的な才能にあふれ、ローマ大学のフェルミのチームで活躍した。1933年に核力の理論として中性子と陽子の交換力を考え、これはマヨラナ力と呼ばれる。1937年に中性粒子(粒子と反粒子が同じ)の理論を作り、中性粒子はマヨラナ粒子と呼ばれる。 イタリアで人種法が制定され、フェルミらが公職から追放された1938年ナポリからパレルモへ移動する船のなかで行方不明となった。自殺説、外国による誘拐説、亡命説などがあり、イタリアの作家レオナルド・シャーシャ が"La scomparsa di Majorana (マヨラナの失踪)"(1975)という著書であつかった。.

新しい!!: 物理学者の一覧とエットーレ・マヨラナ · 続きを見る »

エトヴェシュ・ロラーンド

トヴェシュ・ロラーンド(Eötvös Loránd, 1848年7月27日 - 1919年4月8日)はハンガリーの物理学者である。正式には、ヴァーシャーロシュナメーニ男爵エトヴェシュ・ロラーンド(Vásárosnaményi báró Eötvös Loránd)。日本では姓をエートヴェシュ、エトベシュ、エトベスと表記したり、名をローランドと表記しているのも見掛けるが、これはハンガリー人の氏名を英語やドイツ語風に発音した誤読である。 重力質量と慣性質量の等価性を示したエトヴェシュの実験で知られる。1890年重力偏差計を発明した。移動体上で重力測定すると、みかけの重力加速度が静止時と異なる現象はエトヴェシュ効果(エトベス効果)と呼ばれる。気泡に働く浮力と表面張力の比である無次元量のエトヴェシュ数(エトヴェス数)も、エトヴェシュの名に因んでいる。現存する大学の中ではハンガリーで最も古い国立ブダペスト大学(旧王立ハンガリー・パーズマニュ・ペーテル大学)は1950年9月15日にエトヴェシュを記念してエトヴェシュ・ロラーンド大学 (Eötvös Loránd Tudományegyetem) と改名された。 詩人で、自由主義的な政治家、エトヴェシュ・ヨージェフの息子に生まれた。 ハイデルベルク大学などで学んだ後、ブダペスト大学の教授となり、さらにハンガリーの教育大臣となって半世紀にわたってハンガリーの学術を指導した。 2015年、エトヴェシュが残した研究論文がユネスコ記憶遺産に登録された。.

新しい!!: 物理学者の一覧とエトヴェシュ・ロラーンド · 続きを見る »

エティエンヌ・ルイ・マリュス

エティエンヌ=ルイ・マリュス(Etienne-Louis Malus 、1775年7月23日 - 1812年2月24日)はフランスの軍人、技術者、物理学者、数学者である。反射光の偏光についてのマリュスの法則を発見した。 マリュスはパリに生まれ、長じてナポレオンのエジプト遠征に加わった。1810年にフランス科学アカデミーのメンバーになった。 彼の数学的業績は光、幾何光学に関するもので、クリスティアーン・ホイヘンスの光の理論を証明する実験を行った。光の偏光に関する発見は1809年に発表され、結晶中の複屈折に関する理論を1810年に発表した。 マリュスの業績でもっとも知られた マリュスの法則は入射光の前におかれた偏光板による光の強度を与えるもので、 ここで θは入射光に対する偏光板の角度である。 Category:フランスの数学者 Category:フランスの物理学者 Category:フランスの軍人 Category:軍事技術者 750723 -750723 Category:パリ出身の人物 Category:1775年生 Category:1812年没 Category:数学に関する記事.

新しい!!: 物理学者の一覧とエティエンヌ・ルイ・マリュス · 続きを見る »

エフゲニー・リフシッツ

エフゲニー・ミハイロヴィッチ・リフシッツ(ロシア語:Евгений Михайлович Лифшиц、ラテン文字転写:Evgeny Mikhailovich Lifshitz、1915年2月21日 - 1985年10月29日)は宇宙物理学を専門とする、ソビエト連邦の理論物理学者。 ランダウ、ピタエフスキーとの共著による一連の教科書「理論物理学教程」は、理論物理学を志す学生への手引きとして、あるいは超えるべき壁として今日でも広く知られ、読まれている。 Category:ロシアの物理学者 Category:ソビエト連邦の物理学者 Category:ソビエト連邦科学アカデミー正会員 Category:王立協会外国人会員 Category:モスクワ物理工科大学の教員 Category:労働赤旗勲章受章者 Category:人民友好勲章受章者 Category:レーニン賞受賞者 Category:スターリン賞受賞者 Category:ハリコフ県出身の人物 Category:ハルキウ出身の人物 Category:1915年生 Category:1985年没.

新しい!!: 物理学者の一覧とエフゲニー・リフシッツ · 続きを見る »

エドモンド・ハレー

ドモンド・ハレー(Edmond Halley, 1656年10月29日 - 1742年1月14日)は、イギリスの天文学者、地球物理学者、数学者、気象学者、物理学者。ハレー彗星の軌道計算を初め、多くの科学的業績で知られる。.

新しい!!: 物理学者の一覧とエドモンド・ハレー · 続きを見る »

エドワード・ミルズ・パーセル

ドワード・ミルズ・パーセル(Edward Mills Purcell, 1912年8月30日 – 1997年3月7日)は、アメリカ人の物理学者で、1946年に液体中、固体中での核磁気共鳴を単独で発見した功績により、1952年度のノーベル物理学賞を受賞した。核磁気共鳴は純物質や化合物の分子の構造を調べるのに広く用いられている。彼はまたLife at Low Reynolds Number(低レイノルズ数における生命)という有名な講演を行った生物学者としても知られている。.

新しい!!: 物理学者の一覧とエドワード・ミルズ・パーセル · 続きを見る »

エドワード・モーリー

エドワード・モーリー エドワード・ウィリアムズ・モーリー(Edward Williams Morley、1838年1月29日 - 1923年2月24日)は、アメリカの物理学者。マイケルソンとマイケルソン・モーリーの実験を行った。 1838年にニュージャージー州のニューアークに生れた。1860年ウィリアム・カレッジを卒業した。1869年から1906年の間ウェスタン・リザーブ・カレッジ(現在のケース・ウェスタン・リザーブ大学)で化学の教授になった。 1887年にマイケルソン・モーレーの実験を行った。マイケルソンとモーリーはエーテルのドリフトを検出できず、光速度不変の原理を導くことになった。モーリーはさらにデイトン・ミラー(en)と1902年から1906年までさらにエーテル・ドリフトの実験(モーリー=ミラーの実験)を行った。(ミラーはさらに実験をつづけて予想値の1/3程度のドリフトを見つけたとしたが測定誤差と評価された。) モーリーはその他大気の酸素成分の研究、熱拡散、磁場中の光速の研究をおこなった。 1907年王立協会よりデービーメダルを、1917年アメリカ化学会よりウィラード・ギブズ賞を受賞。 category:アメリカ合衆国の物理学者 Category:ケース・ウェスタン・リザーブ大学の教員 Category:ニューアーク出身の人物 Category:1838年生 Category:1923年没.

新しい!!: 物理学者の一覧とエドワード・モーリー · 続きを見る »

エドワード・テラー

ドワード・テラー(Edward Teller、 もとのハンガリー名ではテッレル・エデ(Teller Ede)、 1908年1月15日 - 2003年9月9日)は、ハンガリー生まれでアメリカ合衆国に亡命したユダヤ人理論物理学者である。アメリカ合衆国の「水爆の父」として知られる。ローレンス・リバモア国立研究所は彼の提案によって設立された。 本来の専門分野では、原子核物理学、分子物理学などで多くの業績があり、代表的なものにヤーン・テラー効果やBETの吸着等温式がある。.

新しい!!: 物理学者の一覧とエドワード・テラー · 続きを見る »

オレステ・ピッチョーニ

オレステ・ピッチョーニ(Oreste Piccioni, 1915年10月24日 - 2002年4月13日)はイタリアの物理学者。 素粒子分野の実験物理学者として、反陽子を発見などに貢献した。 シエーナに生まれた。1930年代にローマ大学でエンリコ・フェルミのもとで学び、1938年に学位を得た。フェルミらがイタリアを去った後もイタリアに残り、第2次大戦中もマルチェロ・コンベルシやエットーレ・パンチーニらと高校の地下実験室で研究を続けた。イタリアが降伏すると、ドイツ占領地から逃れようとしたが、拘束されしばらく収容所にいれられた。 1946年にアメリカに移り、マサチューセッツ工科大学で研究し、その後ブルックヘーブン国立研究所で働き、加速器の性能たかめるために功績があった。エミリオ・セグレとオーウェン・チェンバレンの反陽子の発見に重要な寄与をしたが、ピッキオーニは1959年のノーベル物理学賞の受賞者には加われなかった。 1960年、カリフォルニア大学サンディエゴ校に素粒子実験グループをつくり、1986年の引退までその分野で活動した。1999年イタリア科学アカデミーからマテウチ・メダルを受賞した。 Category:イタリアの物理学者 Category:カリフォルニア大学サンディエゴ校の教員 Category:ブルックヘブン国立研究所の人物 Category:シエーナ出身の人物 Category:1915年生 Category:2002年没.

新しい!!: 物理学者の一覧とオレステ・ピッチョーニ · 続きを見る »

オングストローム

ングストローム()は、長さの単位である。原子や分子の大きさ、可視光の波長など、非常に小さな長さを表すのに用いられる。 1Åは10−10m.

新しい!!: 物理学者の一覧とオングストローム · 続きを見る »

オーギュスタン・ジャン・フレネル

ーギュスタン・ジャン・フレネル オーギュスタン・ジャン・フレネル(Augustin Jean Fresnel、1788年5月10日 - 1827年7月14日)は、フランスの物理学者、土木技術者。トマス・ヤングとは独立に光の波動説を唱え、光の回折や複屈折現象など、光学に関する理論的研究を行った。また、フレネルレンズを発明するなど、実用的な研究にも業績をのこした。 フレネルは、1788年にノルマンディーので誕生した。父は建築家であった。子供時代は8歳になっても読み書きが出来なかった。16歳でエコール・ポリテクニークに入学。そこで卓越した才能を示した。2年後、国立土木学校(Ecole Nationale des Ponts et Chaussees)に入学。卒業後、ヴァンデ県、ドローム県、イル=エ=ヴィレーヌ県の技師を歴任し、道路建設などに携わった。彼は仕事の合間に光学に関する実験などを行った。 1815年、失脚していたナポレオン・ボナパルトがエルバ島を脱出して、フランス本土に上陸した。フレネルは国王ルイ18世のために戦おうとしたが、このために技師としての職を失い、警察によって軟禁状態におかれてしまった。 失職したことによりフレネルは自由な時間を得、光学の実験に没頭することができた。この時期に、光の波動性によって回折現象が説明できることを示した(「フレネル回折」を参照)。ナポレオンの百日天下が終わり、ルイ18世が再び即位すると、彼も復職しパリにて技師としての仕事を再開した。 その後も、仕事の傍ら光学の研究を行った。クリスティアーン・ホイヘンスやトマス・ヤングらによる、従来の「光の波動説」では光は音波と同様、縦波であると考えられていた。フレネルは、偏光の振る舞いから、光の波動説を実証し、かつその振動方向は進行方向に対して垂直な横波であるという結論を得た。この結果は1818年に論文として発表された。フレネルの光学理論は、複屈折現象などを上手く説明できることが明らかになり、広く受け入れられる様になった。また同年、地球のような運動する物体の光行差についての研究を行った。この研究はマイケルソン・モーリーの実験の基礎を与えるものであり、さらには特殊相対性理論につながるものであった。 その後、フランソワ・アラゴと共に光学理論をまとめあげ、1823年、「反射が偏光に与える諸変形の法則に関する論文」として発表した。この功績により同年、フランス科学アカデミーの会員に選ばれた。さらに1824年にはロンドン王立協会からランフォード・メダルを受賞し、翌年に王立協会の外国人会員に選ばれた。 フレネルは実用的な研究にも業績をのこした。灯台を開発する際、それまでは1枚の巨大なレンズが作られていたが、薄い複数枚のレンズを組み合わせて同様の性能のレンズを開発した。このレンズは現在でもフレネルレンズと呼ばれている。 フレネルは病弱であり、絶えず病気に悩まされ続けた。1827年、結核により39歳で死亡。.

新しい!!: 物理学者の一覧とオーギュスタン・ジャン・フレネル · 続きを見る »

オットー・ハーン

ットー・ハーン(Otto Hahn, 1879年3月8日 - 1968年7月28日)はドイツの化学者・物理学者。主に放射線の研究を行い、原子核分裂を発見。1944年にノーベル化学賞を受賞。 1946年まで最後の会長を務め、1948年から1960年までマックス・プランク協会会長を務めた。.

新しい!!: 物理学者の一覧とオットー・ハーン · 続きを見る »

オスカル・クライン

ル・クライン オスカル・クライン(Oskar Klein, 1894年9月15日 - 1977年2月5日)は スウェーデンの理論物理学者である。仁科芳雄と散乱に関するクライン=仁科の式を導いたことなどで知られる。 スウェーデンのストックホルム県ダンデリードに、ストックホルムのラビを務めるゴットリーブ・クラインの息子として生れた。ノーベル研究所でスヴァンテ・アレニウスに学んだ。その後ジャン・ペランに学んだが、第1次大戦の勃発により、兵役についた。 1917年から数年デンマークのコペンハーゲンにおいてニールス・ボーアのもとで研究し、1921年ストックホルム大学で博士号を取得した。1923年にアメリカミシガン州、アナーバーのミシガン大学で講師の職を得て、デンマーク人の妻ゲルダ・コッホとともに移り住んだ。1925年、クラインは再びコペンハーゲンに戻ると、オランダのライデンでポール・エーレンフェストとともに働き、1926年にルンド大学の講師になった。1930年には、かつてイヴァール・フレッドホルムが1927年に死去するまでその椅子にあったストックホルム大学の物理学教授職のオファーを受け、1961年に名誉教授として退任するまでその職を務めた。1959年、マックス・プランク・メダルを受章した。.

新しい!!: 物理学者の一覧とオスカル・クライン · 続きを見る »

カルマン渦

ルマン渦列のシミュレーション カルマン渦列(カルマンうずれつ、、カールマーン渦列、Kármán-féle örvénysor )またはカルマン渦(カルマンうず、、カールマーン渦、Kármán-féle örvény )は、流れのなかに障害物を置いたとき、または流体中で固体を動かしたときにその後方に交互にできる渦の列のことをいう。ハンガリー人の流体力学者カールマーン・トードル(セオドア・フォン・カルマン)(Kármán Tódor) にちなむ。.

新しい!!: 物理学者の一覧とカルマン渦 · 続きを見る »

カルノーサイクル

ルノーサイクル(Carnot cycle)は、温度の異なる2つの熱源の間で動作する可逆熱サイクルの一種である。ニコラ・レオナール・サディ・カルノーが熱機関の研究のために思考実験として 1824 年に導入したものである S. カルノー(広重徹訳)、『カルノー・熱機関の研究』、みすず書房(1973).

新しい!!: 物理学者の一覧とカルノーサイクル · 続きを見る »

カルロ・マテウッチ

ルロ・マテウッチ カルロ・マテウッチ(Carlo Matteucci, 1811年6月21日- 1868年6月25日)はイタリアの物理学者、神経生理学者である。.

新しい!!: 物理学者の一覧とカルロ・マテウッチ · 続きを見る »

カルロ・ルビア

ルロ・ルビア(Carlo Rubbia、1934年3月31日 - )はイタリアの物理学者。1984年のノーベル物理学賞受賞者。.

新しい!!: 物理学者の一覧とカルロ・ルビア · 続きを見る »

カルツァ=クライン理論

ルツァ=クライン理論(カルツァ=クラインりろん、Kaluza-Klein theory、KK理論)は、重力と電磁気力を統一するために五次元以上の時空を仮定する理論である。理論物理学者のテオドール・カルツァが1921年に提唱し、1926年にオスカル・クラインが修正した。.

新しい!!: 物理学者の一覧とカルツァ=クライン理論 · 続きを見る »

カール・デイヴィッド・アンダーソン

ール・デイヴィッド・アンダーソン(Carl David Anderson、1905年9月3日-1991年1月11日)はアメリカの実験物理学者である。1936年に陽電子の発見でノーベル物理学賞を受賞した。 ニューヨークにスウェーデン移民の家の子供として生れる。カリフォルニア工科大学で物理と工学を学ぶ。1930年博士号取得。1939年から引退までカリフォルニア工科大学の教授の職にあった。.

新しい!!: 物理学者の一覧とカール・デイヴィッド・アンダーソン · 続きを見る »

カール・フリードリヒ・フォン・ヴァイツゼッカー

ール・フリードリヒ・フォン・ヴァイツゼッカー(1993年) カール・フリードリヒ・フォン・ヴァイツゼッカー(Carl Friedrich Freiherr von Weizsäcker, 1912年6月28日 - 2007年4月28日)はドイツの物理学者、哲学者である。ナチス・ドイツの外務次官になったエルンスト・フォン・ヴァイツゼッカーの息子で、戦後ドイツの大統領になったリヒャルト・フォン・ヴァイツゼッカーの兄である。 1929年から1933年まで、物理学、天文学、数学をベルリンやゲッティンゲン、ライプツィヒの各大学で、ハイゼンベルク、フント、ボーアらに学んだ。原子核の研究を行い、1935年にハンス・ベーテとは独立に原子核質量公式(ベーテ・ヴァイツゼッカーの公式)を発表した。1937年から1938年にかけて恒星のエネルギーの研究を行った。 第二次世界大戦中はカイザー・ヴィルヘルム研究所(のちのマックス・プランク研究所)の研究者でドイツの原子爆弾開発を行った。戦後はキリスト教の立場から平和運動を進める哲学者となった。1957年から1969年までハンブルク大学の哲学科で教授を務めた。 1963年ドイツ出版協会平和賞受賞。 2007年、バイエルン州シュタルンベルクにて死去。94歳だった。.

新しい!!: 物理学者の一覧とカール・フリードリヒ・フォン・ヴァイツゼッカー · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: 物理学者の一覧とカール・フリードリヒ・ガウス · 続きを見る »

ガリレオ・ガリレイ

リレオ・ガリレイ(Galileo Galilei、ユリウス暦1564年2月15日 - グレゴリオ暦1642年1月8日)は、イタリアの物理学者、天文学者、哲学者。 パドヴァ大学教授。その業績から天文学の父と称され、ロジャー・ベーコンとともに科学的手法の開拓者の一人としても知られている。1973年から1983年まで発行されていた2000イタリア・リレ(リラの複数形)紙幣にガリレオの肖像が採用されていた。.

新しい!!: 物理学者の一覧とガリレオ・ガリレイ · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: 物理学者の一覧とガンマ線 · 続きを見る »

ガブリエル・リップマン

ョナス・フェルディナンド・ガブリエル・リップマン (Jonas Ferdinand Gabriel Lippmann、1845年 8月16日 - 1921年 7月13日)は ルクセンブルク生まれのユダヤ人の物理学者、発明家。光の干渉現象に基づいた天然色写真の技法の開発により、ノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とガブリエル・リップマン · 続きを見る »

ガブリエル・ファーレンハイト

デン・ハーグにあるファーレンハイトの墓 ガブリエル・ダニエル・ファーレンハイト(Daniel Gabriel FahrenheitまたはGabriel Daniel Fahrenheit、1686年5月24日 - 1736年9月16日)は、ポーランド・リトアニア共和国、王冠領プロイセンのグダニスク(ドイツ語名ダンツィヒ)で生まれ主にオランダで活動したドイツ人技術者・物理学者。水と氷が共存する温度と健全な男性の体温を固定点とする温度である華氏(ファーレンハイト度)に名前を残している。華氏という表記は、ファーレンハイトの中国語における音訳「華倫海特」から来ている。また、比重瓶、浮き秤、温度計の改良を行った。 ファーレンハイトはそれまで一般的に使われていたアルコール類を使った液柱温度計の不正確さを、純度の高い水銀を使用する他、精密な製作技術で精度を高めた。また、ファーレンハイト自身の温度計を使って様々な液体の沸点を計測した。そして沸点が液体ごとに異なること、および大気圧によって変動することを発見した。.

新しい!!: 物理学者の一覧とガブリエル・ファーレンハイト · 続きを見る »

ガスパール=ギュスターヴ・コリオリ

パール=ギュスターヴ・コリオリ(Gaspard-Gustave Coriolis 1792年5月21日 - 1843年9月19日)は、 フランス生まれの物理学者・数学者・天文学者。回転座標系における慣性力の一種であるコリオリの力(転向力)を提唱した。力学における仕事・運動のエネルギーの概念を形成。1816年にエコール・ポリテクニークの講師となる。そこで摩擦や水力学の実験を行っていた。1829年にはエコール・サントラル・パリの教授となる。回転座標系における回転体の運動方程式を導いた論文を1831年に科学アカデミーに提出した。コリオリの力は彼の名にちなんで名づけられた。また、ナビエ・ストークス方程式から、コリオリ数と呼ばれる運動量補正係数を導出した。1836年には「一階線型常微分方程式を積分する機械装置」を設計したが、これは微分解析を機械化した最初の事例として知られる。51歳でパリにて死去。.

新しい!!: 物理学者の一覧とガスパール=ギュスターヴ・コリオリ · 続きを見る »

キャヴェンディッシュの実験

ャヴェンディッシュの実験(キャヴェンディッシュのじっけん、英語: Cavendish experiment)とは、イギリスの科学者であるヘンリー・キャヴェンディッシュによって1797年から1798年にかけて行われた、実験室内の質量間に働く万有引力の測定 と地球の比重の測定を目的とした実験である。なお、本実験は今日の重要な物理定数である万有引力定数と地球の質量の計測を目的としたものではなかった が、後年それらの値が本実験の測定値に基づいて高精度計算されたことはキャヴェンディッシュの直接的な功績ではないものの特筆すべき事項である。 この実験方法の原理 は1783年より少し前、天文学者ジョン・ミッチェルによって考案 されたものであり、キャヴェンディッシュの実験に使用されたねじり天秤装置 (en) は彼が作成したものである。しかし、1783年にミッチェルがその仕事を成し遂げることなく他界した後、ねじり天秤装置はフランシス・ウォラストン (Francis John Hyde Wollaston) を経てキャヴェンディッシュの手に渡った。キャヴェンディッシュはその装置をミッチェルの当初計画にできるだけ忠実に再組立てした。キャヴェンディッシュはその装置による一連の実験結果を1798年にロンドン王立協会発行の学術論文誌フィロソフィカル・トランザクションズで報告した。.

新しい!!: 物理学者の一覧とキャヴェンディッシュの実験 · 続きを見る »

キルヒホッフの法則

ルヒホッフの法則(キルヒホッフのほうそく).

新しい!!: 物理学者の一覧とキルヒホッフの法則 · 続きを見る »

ギヨーム・アモントン

ギヨーム・アモントン(Guillaume Amontons、1663年8月31日 - 1705年10月11日)は、フランスの技術者、物理学者。湿度計、気圧計、温度計などを製作した。気体の体積が温度によって変化するのを利用した温度計を製作したが、まだ温度目盛が確立されていない時代であったため、シャルルの法則(1787年)のような定量的な発見にはいたらなかった。 パリ生まれ。父親は弁護士であった。子供の頃に聴覚を失っている。大学には行かなかったが、天文力学、物理学、数学、絵画、建築などを学んだ。 また、彼の発表した摩擦力に関する法則はアモントンの法則と呼ばれる。 Category:17世紀の学者 Category:フランスの物理学者 Category:フランスの発明家 Category:フランス科学アカデミー会員 Category:パリ出身の人物 Category:聴覚障害を持つ人物 Category:1663年生 Category:1705年没.

新しい!!: 物理学者の一覧とギヨーム・アモントン · 続きを見る »

ギンツブルグ-ランダウ理論

ンツブルグ-ランダウ理論は、1950年にロシアで発表された超伝導を説明する現象論で、ランダウの相転移の理論と平均場理論を基にしている。Ψで表される秩序(オーダー)パラメータと呼ばれる超伝導の秩序の程度を表すパラメータを用いたのが特徴で、ベクトルポテンシャルAによるギンツブルグ-ランダウ方程式で表される。 この理論では、系のヘルムホルツの自由エネルギーについて、変分法によってその平衡状態を求めたとき、或る温度以下では電子対凝縮が起きた状態の方がエネルギーが低いことが示された。すなわち個々の電子として存在するよりも、もうひとつの電子と対を成す方がより安定である事を示した。この電子対は7年後に提唱されたBCS理論におけるクーパー対に相当する。またこの方程式から得られるパラメーターの比から第一種・第二種超伝導体の区別を与える。 この理論によって、それまでの現象論であるロンドン理論の不足が補われた。ギンツブルグは本業績により2003年ノーベル物理学賞を受賞。ミクロ理論は、J.

新しい!!: 物理学者の一覧とギンツブルグ-ランダウ理論 · 続きを見る »

クライン–ゴルドン方程式

ライン–ゴルドン方程式 (クライン–ゴルドンほうていしき、Klein–Gordon equation) は、スピン0の相対論的な自由粒子を表す場(クライン–ゴルドン場)が満たす方程式である。スウェーデン人物理学者オスカル・クラインとドイツ人物理学者ヴァルター・ゴルドンにちなんで名づけられた。.

新しい!!: 物理学者の一覧とクライン–ゴルドン方程式 · 続きを見る »

クライン=仁科の公式

ライン=仁科の公式(クライン=にしなのこうしき、)は、量子電磁力学の最低次での、束縛を受けていない自由電子による光散乱の散乱断面積を与える関係式である。可視光など低周波数領域ではトムソン散乱となり、X線やガンマ線などの高周波数領域ではコンプトン散乱となる。1929年にスウェーデンの物理学者であるオスカル・クラインと日本の物理学者である仁科芳雄の2氏により導かれた。これはディラック方程式を用いた量子電磁力学による初期の研究成果であり、相対論と量子論の効果を考慮する事で光散乱の精密な関係式が得られたものである。クライン=仁科の公式が導かれる以前にも、電子の発見者でもあるイギリスの物理学者のJ. J. トムソンによって、古典的な力学及び電磁気学であるニュートン力学と古典電磁気学に基づいた散乱断面積の式(トムソンの公式)が導かれていたが、散乱実験の結果はトムソンの公式では説明が不可能な程の大きなずれを有していた。これは、短波長領域では当時まだ知られていなかったコンプトン散乱がトムソン散乱に比して強くなる為であるが、1923年にアメリカの物理学者であるアーサー・コンプトンによってコンプトン効果による波長のずれを求める公式が示され、後にその公式を考慮に入れて散乱断面積を計算した結果、実験の結果と完全に一致する公式となるクライン=仁科の公式が導かれる事となった。 入射光子の波長を 、散乱光子の波長を とすると、散乱角 の方向への微分断面積は で与えられる。但し、 は微細構造定数、 は電子のコンプトン波長で、それぞれ真空の誘電率 と真空中の光速 や電気素量 及び電子の質量 とプランク定数 やディラック定数 を用いて と定義される物理定数である。コンプトン効果により、散乱光子の波長は入射光子の波長と散乱角によって決まり となる。 長波長領域 では、光子の波長の比が となり、微分断面積は となる。また、古典電子半径 を と定義してクライン=仁科の公式を表せば となってトムソンの公式が得られる。.

新しい!!: 物理学者の一覧とクライン=仁科の公式 · 続きを見る »

クラウジウス・クラペイロンの式

ラウジウス・クラペイロンの式(クラウジウス-クラペイロンのしき、Clausius–Clapeyron equation)とは、物質がある温度で気液平衡の状態にあるときの蒸気圧と、蒸発に伴う体積の変化、及び蒸発熱を関係付ける式である。ルドルフ・クラウジウスとエミール・クラペイロンに因んで名付けられた。 物質が熱力学温度 で気液平衡の状態にあるとき、蒸気圧を とし、蒸発に伴う体積変化を 、蒸発エンタルピー(蒸発熱)を とすると の関係が成り立つ。 なお、この関係式は気液平衡以外にも、液体と固体の共存状態や、より一般の二相共存状態にも用いることが出来る。その場合は転移点における示強性状態量 やそれに共役な示量性状態量の変化 及び転移エンタルピー などに置き換えれば良い。.

新しい!!: 物理学者の一覧とクラウジウス・クラペイロンの式 · 続きを見る »

クリントン・デイヴィソン

リントン・デイヴィソン(Clinton Joseph Davisson, 1881年10月22日 - 1958年2月1日)はアメリカ合衆国の物理学者である。1927年、レスター・ジャマー(Lester Halbert Germer, 1896年 - 1971年)と共に、ニッケル単結晶による電子線の回折を確認した。これはルイ・ド・ブロイの物質波の予測を確認したものである。1937年、別に電子線の回折実験に成功したジョージ・パジェット・トムソンとともにノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とクリントン・デイヴィソン · 続きを見る »

クリスチャン・ドップラー

ヨハン・クリスチアン・ドップラー(Johann Christian Doppler、1803年11月29日 - 1853年3月17日)は、オーストリアの物理学者、数学者、天文学者。 観測者と震動源との相対運動によって振動数が変化することを詳しく調べ、1842年、それをもとに数学的な関係式をつくった。いわゆる「ドップラー効果」である。 オランダ人の化学者・気象学者であるクリストフ・ボイス・バロットが、1845年、オランダのユトレヒトで、列車に乗ったトランペット奏者がGの音を吹き続け、それを絶対音感を持った音楽家が聞いて音程が変化する事で証明した。 プラハのプラハ工科大学(現チェコ工科大学)で教授をつとめる。ドップラー効果はこの時代の発見であり、チェコ工科大学には、彼の名を冠した基礎物理学研究所「ドップラー研究所」がある。1850年、ウィーン大学物理学研究所の所長に就任。教え子の一人に遺伝の法則で知られるメンデルがいる。 ドップラーの生家は、ザルツブルクの新市街、マカルト広場に面している。ちなみに、マカルト広場にはモーツァルトが1773年、旧市街の生家から移転した住居がある。.

新しい!!: 物理学者の一覧とクリスチャン・ドップラー · 続きを見る »

クリスティアーン・ホイヘンス

リスティアーン・ホイヘンス(Christiaan Huygens 、1629年『天文アマチュアのための望遠鏡光学・屈折編』pp.14-15「ハイゲンス兄弟の望遠鏡」。4月14日 - 1695年7月8日)() は、オランダの数学者、物理学者、天文学者。かつてオランダの25ギルダー紙幣にその肖像が描かれていた。.

新しい!!: 物理学者の一覧とクリスティアーン・ホイヘンス · 続きを見る »

クルックス管

ルックス管(クルックスかん、Crookes tube)とは初期の実験用真空放電管である。1869 - 1875年頃にイギリス人の物理学者ウィリアム・クルックスなどによって発明された。陰極線、すなわち真空中の電子線はクルックス管の中で初めて見出された。 前身であるガイスラー管と同じように、クルックス管は様々な形状のガラス容器の両端に金属電極(陰極と陽極)を取り付けたものである。ただし、ガイスラー管よりも高い真空度にまで排気されている。電極間に高電圧が印加されると、陰極からいわゆる陰極線がまっすぐ飛び出してくる。クルックスのほか、ヴィルヘルム・ヒットルフ、、、ハインリヒ・ヘルツ、フィリップ・レーナルトらはクルックス管を用いて陰極線の性質を研究した。陰極線に関する最大の知見は、その正体が負の電荷を持つ粒子の流れだというもので、J. J. トムソンの発見による。この粒子は後に「電子」("electron")と名付けられた。現在ではクルックス管は陰極線の演示用にしか用いられていない。 ヴィルヘルム・レントゲンは1895年にクルックス管から放射されるX線を発見した。実験用のクルックス管から発展した第一世代の冷陰極X線管は「クルックスのX線管」と呼ばれ、1920年ごろまで利用されていた。.

新しい!!: 物理学者の一覧とクルックス管 · 続きを見る »

クロード・コーエン=タヌージ

ード・コーエン=タヌージ(Claude Cohen-Tannoudji 、1933年4月1日 - )は、アルジェリア生まれのフランスの物理学者である。1997年にレーザー光を用いて原子を極低温に冷却および捕捉する技術(レーザー冷却法)の開発でスティーブン・チュー、ウィリアム・ダニエル・フィリップスとともにノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とクロード・コーエン=タヌージ · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 物理学者の一覧とクーロンの法則 · 続きを見る »

クヌート・オングストローム

クヌート・オングストローム(Knut Johan Ångström 、1857年1月12日-1910年3月4日)はスウェーデンの物理学者である。アンデルス・オングストロームの息子である。 ウプサラ大学、シュトラスブルク大学などで学び、1885年に新しくできたストックホルム大学の物理学の講師になった。1891年にウプサラ大学に戻り、1896年、物理学の教授になった。 太陽からの熱放射と地球大気による吸収の研究を行った。1893年に日照計の発明を行った。赤外線領域のスペクトルの研究を行った。 Category:スウェーデンの物理学者 Category:スウェーデン王立科学アカデミー会員 Category:ウプサラ大学の教員 Category:ストックホルム大学の教員 Category:1857年生 Category:1910年没.

新しい!!: 物理学者の一覧とクヌート・オングストローム · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: 物理学者の一覧とクォーク · 続きを見る »

グリエルモ・マルコーニ

リエルモ・マルコーニ(Guglielmo Marconi、1874年4月25日 - 1937年7月20日)は、無線電信の開発で知られるイタリアのボローニャ生まれの発明家。 1909年、無線通信の発展に貢献したとして、ブラウンとともにノーベル物理学賞を受賞した""。1916年より短波開拓に着手し、日中でも遠距離通信が可能な「昼間波」を発見。1924年、英国郵政庁より短波公衆回線の建設を請負い、「昼間波」と「ビームアンテナ」の二刀流で短波黄金時代を切り拓いた。1933年には世界初のUHF実用回線を完成させたほか"Pope to Open New Radio Unit Today: World's First Ultra Short Wave Plant Made by Marconi" The Washington Post Feb.11,1933 p14、UHF波が曲がることを発見している。.

新しい!!: 物理学者の一覧とグリエルモ・マルコーニ · 続きを見る »

グンナー・ノルドシュトルム

ンナー・ノルドシュトルム グンナー・ノルドシュトルム(Gunnar Nordström、1881年3月12日 - 1923年12月24日)は、フィンランドの理論物理学者。.

新しい!!: 物理学者の一覧とグンナー・ノルドシュトルム · 続きを見る »

グスタフ・ヘルツ

タフ・ルートヴィヒ・ヘルツ(Gustav Ludwig Hertz, 1887年7月22日 - 1975年10月30日)は、ドイツの物理学者。ニールス・ボーアの量子論の原子が離散的なエネルギーを持っていることを検証する実験(フランク=ヘルツの実験)を行った。ジェイムス・フランクと共に1925年ノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とグスタフ・ヘルツ · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: 物理学者の一覧とグスタフ・キルヒホフ · 続きを見る »

ケネス・ウィルソン

ネス・G・ウィルソン(Kenneth Geddes Wilson、1936年6月8日 - 2013年6月15日)は、アメリカ合衆国の物理学者。「相転移に関連した臨界現象に関する研究」により、1982年のノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とケネス・ウィルソン · 続きを見る »

ケプラーの法則

プラーの法則(ケプラーのほうそく)は、1619年にヨハネス・ケプラーによって発見された惑星の運動に関する法則である。.

新しい!!: 物理学者の一覧とケプラーの法則 · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 物理学者の一覧とゲージ理論 · 続きを見る »

コリオリの力

左回りに回転する円盤の中心から等速度運動をする玉(上図)は、円盤上からは進行方向に対し右向きの力で曲げられたように見える(下図)。 コリオリの力(コリオリのちから、)とは、回転座標系上で移動した際に移動方向と垂直な方向に移動速度に比例した大きさで受ける慣性力(見かけ上の力)の一種であり、コリオリ力、転向力(てんこうりょく)ともいう。1835年にフランスの科学者ガスパール=ギュスターヴ・コリオリが導いた。 回転座標系における慣性力には、他に、角速度変化に伴うオイラー力と回転の中心から外に向かって働く遠心力がある。.

新しい!!: 物理学者の一覧とコリオリの力 · 続きを見る »

シメオン・ドニ・ポアソン

メオン・ドニ・ポアソン(Siméon Denis Poisson、1781年6月21日 - 1840年4月25日)は、ポアソン分布・ポアソン方程式などで知られるフランスの数学者、地理学者、物理学者。.

新しい!!: 物理学者の一覧とシメオン・ドニ・ポアソン · 続きを見る »

シャルル・ド・クーロン

ャルル=オーギュスタン・ド・クーロン(Charles-Augustin de Coulomb、 1736年6月14日 - 1806年8月23日)はフランス・アングレーム出身の物理学者・土木技術者。彼が発明したねじり秤を用いて帯電した物体間に働く力を測定し、クーロンの法則を発見した。電荷の単位「クーロン」は彼の名にちなむ。.

新しい!!: 物理学者の一覧とシャルル・ド・クーロン · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 物理学者の一覧とシュレーディンガー方程式 · 続きを見る »

ジャン・ペラン

ャン・バティスト・ペラン(Jean Baptiste Perrin, 1870年9月30日 - 1942年4月17日)はフランスの物理学者。息子のフランシス・ペランも物理学者。物質が分子からできていることを実験的に証明した。1926年、ノーベル物理学賞を受賞した。 ノール県リールに生まれて、パリの高等師範学校で学んだ。パリ大学で物理学の講師となり、1910年から1930年まで高等師範学校の教授を務めた。 1890年代は陰極線の研究を行った。1901年には原子核のまわりを電子が回っているという、現在に連なる原子模型を最初に発表しているが、この当時は注目されなかった。1908年から、ブラウン運動に関する精密な実験を行い、分子理論を実証した。1913年著書『原子』を出版した。 1936年にレオン・ブルム内閣の科学研究担当国務次官になった。ドイツのフランス占領中はアメリカ合衆国へ逃れ、ニューヨークで没した。遺体は第二次世界大戦後の1948年に軽巡洋艦ジャンヌ・ダルクによってフランスへ移送され、パンテオンに埋葬された。 小惑星(8116)ジャン・ペランは彼にちなみ命名された。.

新しい!!: 物理学者の一覧とジャン・ペラン · 続きを見る »

ジャン・ル・ロン・ダランベール

ャン・ル・ロン・ダランベール(Jean Le Rond d'Alembert、1717年11月16日 - 1783年10月29日)は、18世紀フランスの哲学者、数学者、物理学者。ドゥニ・ディドロらと並び、百科全書派知識人の中心者。.

新しい!!: 物理学者の一覧とジャン・ル・ロン・ダランベール · 続きを見る »

ジャック・シャルル

ャック・アレクサンドル・セザール・シャルル(Jacques Alexandre César Charles, 1746年11月12日 - 1823年4月7日)はフランスの発明家、物理学者、数学者、気球乗り。1783年8月、ロベール兄弟と共に世界で初めて水素を詰めた(有人)気球での飛行に成功。同年12月には有人気球で高度約1,800フィート(550メートル)まで昇った。モンゴルフィエ兄弟の熱気球に対して、シャルルのガス気球は Charlière と呼ばれた。 シャルルの法則は気体を熱したときの膨張の仕方を示したもので、ジョセフ・ルイ・ゲイ=リュサックが1802年に定式化したが、ゲイ=リュサックは公表されていないジャック・シャルルの業績を参照してシャルルの法則と名付けた.

新しい!!: 物理学者の一覧とジャック・シャルル · 続きを見る »

ジュリアン・シュウィンガー

ュリアン・セイモア・シュウィンガー(Julian Seymour Schwinger, 1918年2月12日 - 1994年7月16日)はアメリカ合衆国の理論物理学者。繰り込み理論によって量子電磁力学を完成させた功績で朝永振一郎、リチャード・P・ファインマンとともに1965年のノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とジュリアン・シュウィンガー · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: 物理学者の一覧とジュール · 続きを見る »

ジュール・グレゴリー・チャーニー

ュール・グレゴリー・チャーニー(Jule Gregory Charney、1917年1月1日 - 1981年6月16日)は、アメリカ合衆国の気象学者・海洋学者。 ロシア移民の子としてサンフランシスコに生まれ、1938年にカリフォルニア大学数学物理学科を卒業。シカゴ大学・オスロ大学の研究員を経て、1948年プリンストン高等研究所の研究員に就任。数学者フォン・ノイマンの協力の下に、気象力学の基礎方程式をコンピュータを使って解く方法を発展させ、今日のいわゆる数値予報業務の基礎を作り上げた。1947年に発表した論文『傾圧不安定波の力学』と翌年発表した『大規模な大気運動のスケール・アナリシス』は、数値予報の基礎となり、49年には世界で初めて数値予報に成功している。1956年からはマサチューセッツ工科大学の気象学教授を務めた。 また、アメリカ海洋気象庁の地球流体研究所の創設、地球大気開発計画(GARP)など、大気物理学の発展にも尽くし、海洋学者としても湾流・赤道潜流の研究にすぐれた業績を残している。これらの業績によって第1回のWMO賞を受賞し、欧米の研究機関からも数多くの賞を受けている。日本の気象学者に与えた影響も大きい。.

新しい!!: 物理学者の一覧とジュール・グレゴリー・チャーニー · 続きを見る »

ジョン・バーディーン

ョン・バーディーン(John Bardeen, 1908年5月23日 - 1991年1月30日)はアメリカの物理学者。 1956年にウィリアム・ショックレー、ウォルター・ブラッテンとトランジスタの発明によって、さらに1972年にレオン・クーパー、ジョン・ロバート・シュリーファーと超伝導に関するいわゆるBCS理論でノーベル物理学賞を受賞しており、2017年現在、ノーベル物理学賞を2度受賞した唯一の人物である2013年現在、ノーベル賞を2度受賞した人物はバーディーンを含めて4名いるが、物理学賞を2度受賞したのは彼だけである。詳しくは国別のノーベル賞受賞者を参照のこと。。.

新しい!!: 物理学者の一覧とジョン・バーディーン · 続きを見る »

ジョン・ティンダル

ョン・ティンダル(John Tyndall、1820年8月2日 - 1893年12月4日)は、アイルランド出身の物理学者、登山家である。 物理学者として一般に知られる業績としては、チンダル現象を発見したことである。その他にも、赤外線放射(温室効果)、反磁性体、に関して突出した業績を残した。 登山家としてはアルプス山脈5番目の最高峰ヴァイスホルンの初登頂に成功した(1861年8月19日)。また、マッターホルンの初登頂を競い、1862年に山頂から標高230m下の肩にまで達した(エドワード・ウィンパーが1865年に初登頂した)。1868年にはマッターホルンの初縦走に成功している。なお、登山の元々の目的は物理学者としてアルプスの氷河を研究することであった。 1852年王立協会フェロー選出、同協会から1853年ロイヤル・メダル、1864年ランフォード・メダル受賞。.

新しい!!: 物理学者の一覧とジョン・ティンダル · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

新しい!!: 物理学者の一覧とジョン・ドルトン · 続きを見る »

ジョン・ホール (物理学者)

ョン・ルイス・ホール(John Lewis Hall、1934年8月21日 - )は、アメリカの物理学者。コロラド大学ボールダー校講師、アメリカ国立標準技術研究所 (NIST) 上級研究員。 「光周波数コム(櫛)技術などのレーザーを用いた精密な分光法の発展への貢献」により、2005年のノーベル物理学賞をテオドール・ヘンシュとともに受賞した。.

新しい!!: 物理学者の一覧とジョン・ホール (物理学者) · 続きを見る »

ジョン・ウィリアム・ストラット (第3代レイリー男爵)

3代レイリー男爵ジョン・ウィリアム・ストラット(Baron Rayleigh、1842年11月12日 - 1919年6月30日)は、イギリスの物理学者。レイリー卿(レーリー卿あるいはレーリ卿とも、Lord Rayleigh)としても知られる。光の散乱の研究から空が青くなる理由を示す(レイリー散乱)、地震の表面波(レイリー波)の発見、ラムゼーとの共同研究によるアルゴンの発見、熱放射を古典的に扱ったレイリー・ジーンズの法則の導出などを行った。このほかにも流体力学(レイリー数)や毛細管現象の研究など、古典物理学の広範な分野に業績がある。 「気体の密度に関する研究、およびこの研究により成されたアルゴンの発見」により、1904年の ノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とジョン・ウィリアム・ストラット (第3代レイリー男爵) · 続きを見る »

ジョン・クラーク・スレイター

ョン・クラーク・スレイター(John Clarke Slater, 1900年12月22日 - 1976年7月25日)は、アメリカイリノイ州オークパーク生まれの理論物理学者。ロチェスター大学やハーバード大学、ケンブリッジ大学で学ぶ。ハーバード大学助教授を経て、1930年にMIT(マサチューセッツ工科大学)教授となった。 電気、電子、化学など幅広い分野に足跡を残し、マグネトロンの定理など興味深い論文も発表しているが、業績としてもっとも知られているのは、素粒子の分野における研究である。とりわけ、彼の名を冠したスレイター行列式は、よく知られている。またバンド計算法のひとつで、マフィンティン・ポテンシャルを用いるAPW法(Augumented Plane Wave Method)も、1937年の彼の業績である。 1953年には、国際理論物理学会 東京&京都で来日した。1967年アーヴィング・ラングミュア賞、1970年アメリカ国家科学賞受賞。.

新しい!!: 物理学者の一覧とジョン・クラーク・スレイター · 続きを見る »

ジョン・コッククロフト

ー・ジョン・コッククロフト(Sir John Douglas Cockcroft、1897年5月27日 - 1967年9月18日)は、イギリスの物理学者である。原子核に陽子を衝突させることにより、核反応を初めて実現した。1951年アーネスト・ウォルトンとノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とジョン・コッククロフト · 続きを見る »

ジョン・タウンゼント (物理学者)

ョン・タウンゼント (物理学者) サー・ジョン・シーリー・エドワード・タウンゼント(Sir John Sealy Edward Townsend、1868年6月7日 - 1957年2月16日)はアイルランドの物理学者。気体の電気伝導、電離気体(プラズマ)研究の発展に大きく貢献した。.

新しい!!: 物理学者の一覧とジョン・タウンゼント (物理学者) · 続きを見る »

ジョージ・パジェット・トムソン

ョージ・パジェット・トムソン(George Paget Thomson、1892年5月3日 – 1975年9月10日)は、イギリスのケンブリッジ生まれの物理学者である。1937年電子の波動性の証明によってノーベル物理学賞を受賞した。父親もノーベル賞受賞者のジョゼフ・ジョン・トムソンである。.

新しい!!: 物理学者の一覧とジョージ・パジェット・トムソン · 続きを見る »

ジョージ・フィッツジェラルド

ョージ・フランシス・フィッツジェラルド( / 、1851年8月3日 – 1901年2月21日)は、アイルランド(当時イギリス領)の物理学者。.

新しい!!: 物理学者の一覧とジョージ・フィッツジェラルド · 続きを見る »

ジョージ・ウーレンベック

ーズミット。1928年頃の写真。 ジョージ・ウーレンベック(George Eugene Uhlenbeck、1900年12月6日 - 1988年10月31日)はアメリカ合衆国に移住したオランダの物理学者である。電子のスピンの発見者とされる。.

新しい!!: 物理学者の一覧とジョージ・ウーレンベック · 続きを見る »

ジョージ・ガモフ

ョージ・ガモフ(George Gamow, Джордж Гамов, Георгий Антонович Гамов, ゲオルギー・アントノヴィッチ・ガモフ, 1904年3月4日 - 1968年8月19日)は、ロシア帝国領オデッサ(現在はウクライナ領)生まれのアメリカの理論物理学者。アレクサンドル・フリードマンの弟子。.

新しい!!: 物理学者の一覧とジョージ・ガモフ · 続きを見る »

ジョージ・ガブリエル・ストークス

初代准男爵、サー・ジョージ・ガブリエル・ストークス(Sir George Gabriel Stokes, 1st Baronet, 1819年8月13日 - 1903年2月1日)は、アイルランドの数学者、物理学者である。 流体力学、光学、数学などの分野で重要な貢献をした。1851年に王立協会のフェローに選出され、1885年から1890年まで会長を務めた。1849年から死去する1903年まで、ルーカス教授職も務めている。.

新しい!!: 物理学者の一覧とジョージ・ガブリエル・ストークス · 続きを見る »

ジョセフ・ルイ・ゲイ=リュサック

ョセフ・ルイ・ゲイ=リュサック(ゲーリュサックなどとも、Joseph Louis Gay-Lussac、1778年12月6日 - 1850年5月9日)は、フランスの化学者 、物理学者である。気体の体積と温度の関係を示すシャルルの法則の発見者の一人である。アルコールと水の混合についても研究し、アルコール度数のことを「ゲイ=リュサック度数」と呼ぶ国も多い。弟子に有機化学の確立に貢献したユストゥス・フォン・リービッヒがいる。 なお、フランス語でのJoseph Louis Gay-Lussacの発音を日本語に音写すれば、「ジョゼフ・ルイ・ゲ=リュサック」が原音に最も近いといえるだろう。.

新しい!!: 物理学者の一覧とジョセフ・ルイ・ゲイ=リュサック · 続きを見る »

ジョセフソン効果

ョセフソン効果(ジョセフソンこうか、)は、弱く結合した2つの超伝導体の間に、超伝導電子対のトンネル効果によって超伝導電流が流れる現象である。1962年に、当時ケンブリッジ大学の大学院生だったブライアン・ジョセフソンによって理論的に導かれ、ベル研究所のアンダーソンとローウェルによって実験的に検証された。1973年、ブライアン・ジョセフソンは江崎玲於奈らと共にジョゼフソン効果の研究によりノーベル物理学賞を受賞した。波動関数の位相というミクロな量をマクロに観測できるという点で、超伝導の特徴を最も端的に示す現象と言うことができる。超伝導量子干渉計(SQUID)のようなジョセフソン効果による量子力学回路の重要な実用例もある。 弱結合の種類としては、トンネル接合、サブミクロンサイズのブリッジ、ポイントコンタクト等がある。また、トンネル障壁としては厚さ 程度の絶縁体、厚さ 程度の常伝導金属あるいは半導体等が使われる。弱結合を介して流れる超伝導電流をジョセフソン電流、ジョセフソン効果を示すトンネル接合をジョセフソン接合と呼ぶ。電子デバイスとして扱われる場合はジョセフソン素子と呼ばれる。.

新しい!!: 物理学者の一覧とジョセフソン効果 · 続きを見る »

ジョゼフ・ラーモア

ョゼフ・ラーモア(Joseph Larmor, 1857年7月11日 - 1942年5月19日)は、アイルランド出身の物理学者、数学者。 ベルファストのクィーンズ・カレッジとケンブリッジ大学で学び、1880年から1885年までクィーンズ・カレッジで教え、その後ケンブリッジの講師になる。1903年にストークスの後を継いでケンブリッジ大学数学教授(ルーカス講座主任教授)になる。 1892年王立協会フェロー選出。1900年の著書『エーテルと物質』が有名。新しい物理学の誕生する前の世代の物理学者としてとらえられることが多い。磁場中の電子の歳差運動(Larmor Precession)などに名を残している。 1911年から1922年まで選出の庶民院議員を務めた。.

新しい!!: 物理学者の一覧とジョゼフ・ラーモア · 続きを見る »

ジョゼフ・フーリエ

ャン・バティスト・ジョゼフ・フーリエ男爵(Jean Baptiste Joseph Fourier, Baron de、1768年3月21日 - 1830年5月16日)は、フランスの数学者・物理学者。 固体内での熱伝導に関する研究から熱伝導方程式(フーリエの方程式)を導き、これを解くためにフーリエ解析と呼ばれる理論を展開した。フーリエ解析は複雑な周期関数をより簡単に記述することができるため、音や光といった波動の研究に広く用いられ、現在調和解析という数学の一分野を形成している。 このほか、方程式論や方程式の数値解法の研究があるほか、次元解析の創始者と見なされることもある。また統計局に勤務した経験から、確率論や誤差論の研究も行った。.

新しい!!: 物理学者の一覧とジョゼフ・フーリエ · 続きを見る »

ジョゼフ・ジョン・トムソン

ー・ジョゼフ・ジョン・トムソン(Sir Joseph John Thomson, 1856年12月18日-1940年8月30日)は、イギリスの物理学者。しばしばJ.

新しい!!: 物理学者の一覧とジョゼフ・ジョン・トムソン · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 物理学者の一覧とジョゼフ=ルイ・ラグランジュ · 続きを見る »

ジェームズ・チャドウィック

ェームズ・チャドウィック(Sir James Chadwick, 1891年10月20日 - 1974年7月24日)は、イギリスの物理学者である。中性子の発見で1935年にノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とジェームズ・チャドウィック · 続きを見る »

ジェームズ・プレスコット・ジュール

ェームズ・プレスコット・ジュール(James Prescott Joule, 1818年12月24日 - 1889年10月11日)はイギリスの物理学者。生涯、大学などの研究職に就くことなく、家業の醸造業を営むかたわら研究を行った。ジュールの法則を発見し、熱の仕事当量の値を明らかにするなど、熱力学の発展に重要な寄与をした。熱量の単位ジュールに、その名をとどめる。.

新しい!!: 物理学者の一覧とジェームズ・プレスコット・ジュール · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: 物理学者の一覧とジェームズ・クラーク・マクスウェル · 続きを見る »

ジェイムス・フランク

ェイムズ・フランク(James Franck, 1882年8月26日 - 1964年5月21日)は、ドイツのユダヤ系物理学者。ナチス政権に反対してアメリカに逃れた。グスタフ・ヘルツと行ったフランク=ヘルツの実験や、核兵器の無警告での使用に反対したフランクレポートなどの業績を残した。1925年、ヘルツとともにノーベル物理学賞を受賞。.

新しい!!: 物理学者の一覧とジェイムス・フランク · 続きを見る »

ジェイムズ・デュワー

ー・ジェイムズ・デュワー(Sir James Dewar, 1842年9月20日 - 1923年3月27日)は、イギリスの化学者・物理学者。液体酸素が磁性を持つことの発見、水素の液化と固化の成功など低温物理学の分野で先駆的な研究を行った。また魔法瓶(デュワー瓶)や、コルダイト火薬(無煙火薬の一種)を発明した。.

新しい!!: 物理学者の一覧とジェイムズ・デュワー · 続きを見る »

スレイター行列式

レイター行列式(スレイターぎょうれつしき、Slater determinant)とは、フェルミ粒子からなる多粒子系の状態を記述する波動関数を表すときに使われる行列式である。この行列式は2つの電子(または他のフェルミ粒子)の交換に関して符号を変化させることによって反対称性の必要条件と、その結果としてパウリの排他原理を満たすMolecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P.W. Atkins, Oxford University Press, 1977, 。名称は1929年に波動関数の反対称性を保証する手段としてこの行列式を導入したジョン・クラーク・スレイターに因むが、この行列式の形式での波動関数はそれより3年前にハイゼンベルクとディラックの論文において最初に独立に登場していた。 量子論では複数の同種粒子は原理的に区別できない(エンタングルしている)。よって複数の同種粒子を含む系の状態ベクトルは一定の対称性を持つものに限られる。その対称性は、任意の2個の粒子を入れ替えることに対して、ボーズ粒子では対称性をもつ波動関数、フェルミ粒子では反対称性をもつ波動関数という、少し不自然にも見える形で現れる。この不自然さは、個々の粒子に別々の「位置」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。 スレイター行列式は、複数のフェルミ粒子系の波動関数が持っている反対称性と同じ性質を持っている。またスレイター行列式の線形結合も反対称性を満たす。よって多電子系などを表すときに、スレイター行列式は便利なのでよく用いられる。.

新しい!!: 物理学者の一覧とスレイター行列式 · 続きを見る »

スーパーカミオカンデ

ーパーカミオカンデ(Super-Kamiokande)とは、岐阜県飛騨市神岡町(旧吉城郡)旧神岡鉱山内に設置された、東京大学宇宙線研究所が運用する世界最大の水チェレンコフ宇宙素粒子観測装置である。 と略されることもある。.

新しい!!: 物理学者の一覧とスーパーカミオカンデ · 続きを見る »

ストークスの定理

トークスの定理(ストークスのていり、Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べるGeorge B. Arfken and Hans J. Weber (2005), chapter.1。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因むVictor J. Katz (1979)Victor J. Katz (2008), chapter.16。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。.

新しい!!: 物理学者の一覧とストークスの定理 · 続きを見る »

スブラマニアン・チャンドラセカール

ブラマニアン・チャンドラセカール(Subrahmanyan Chandrasekhar、(சுப்பிரமணியன் சந்திரசேகர்)、、1910年10月19日 - 1995年8月21日)は、インド生まれのアメリカの天体物理学者。シカゴ大学教授。王立協会フェロー。 1932年、白色矮星の質量に上限(チャンドラセカール質量)があることを理論的計算によって示し、恒星の終焉に関する「チャンドラセカール限界」を提唱した。.

新しい!!: 物理学者の一覧とスブラマニアン・チャンドラセカール · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 物理学者の一覧とスピン角運動量 · 続きを見る »

スティーヴン・ワインバーグ

ティーヴン・ワインバーグ(Steven Weinberg, 1933年5月3日 - )は、アメリカ合衆国出身の物理学者。アブドゥス・サラム、シェルドン・グラショーとともに、電磁気力と弱い力を統合するワインバーグ=サラム理論を完成させた。これによって、1979年にノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とスティーヴン・ワインバーグ · 続きを見る »

スティーヴン・ホーキング

ティーヴン・ウィリアム・ホーキング(Stephen William Hawking、1942年1月8日 - 2018年3月14日)は、イギリスの理論物理学者である。大英帝国勲章(CBE)受勲、FRS(王立協会フェロー)、FRA(ロイヤル・ソサエティ・オブ・アーツフェロー)。スティーブン・ホーキングとも。 一般相対性理論と関わる分野で理論的研究を前進させ、1963年にブラックホールの特異点定理を発表し世界的に名を知られた。1971年には「宇宙創成直後に小さなブラックホールが多数発生する」とする理論を提唱、1974年には「ブラックホールは素粒子を放出することによってその勢力を弱め、やがて爆発により消滅する」とする理論(ホーキング放射)を発表、量子宇宙論という分野を形作ることになった。現代宇宙論に多大な影響を与えた人物である。 また、一般人向けに現代の理論的宇宙論を平易に解説するサイエンス・ライターの才能も持ち合わせており、その著作群が各国で翻訳されており、これでも人々によく知られている(日本語版は『ホーキング、宇宙を語る』など)。 「車椅子の物理学者」としても知られる。1960年代、学生の頃に筋萎縮性側索硬化症(ALS)を発症したとされている。ALSは長い間、発症から5年程度で死に至る病であると考えられていたが、途中で進行が急に弱まり、発症から50年以上にわたり研究活動を続けた。晩年は意思伝達のために重度障害者用意思伝達装置を使っており、スピーチや会話ではコンピュータプログラムによる合成音声を利用していた。.

新しい!!: 物理学者の一覧とスティーヴン・ホーキング · 続きを見る »

センダスト

ンダスト(Sendust)は、鉄・ケイ素・アルミニウムからなる合金(Fe-Si-Al合金)である。.

新しい!!: 物理学者の一覧とセンダスト · 続きを見る »

セオドア・ライマン

セオドア・ライマン(Theodore Lyman、1874年11月23日 - 1954年10月11日)は、アメリカ合衆国の物理学者。専門は分光学。 ボストン出身。1897年にハーヴァード大学を卒業。ハーヴァードで物理学部の助手となり、1917年には教授となった。 水素原子の線スペクトルの紫外線領域を表すライマン系列は、彼の名前に由来している。また、月の南半球にあるライマンというクレーターも、彼の名前に由来している。 Category:アメリカ合衆国の物理学者 Category:ハーバード大学の教員 Category:ボストン出身の人物 Category:1874年生 Category:1954年没.

新しい!!: 物理学者の一覧とセオドア・ライマン · 続きを見る »

セオドア・フォン・カルマン

ドア・フォン・カルマン セオドア・フォン・カルマン(szőllőskislaki) Kármán Tódor 、(セッレーシュキシュラキ)カールマーン・トードル、Theodore von Kármán、1881年5月11日1963年5月6日)はハンガリーの航空工学者である。 航空工学の基礎を築き、銭学森など多くの後進を育てたその業績から「航空工学の父」とも称される。本名であるハンガリー語名はカールマーン・トードル(Kármán Tódor)。ジェット推進研究所 (JPL) 初代のディレクターで、のちに国際宇宙航行アカデミーの初代会長をつとめた。.

新しい!!: 物理学者の一覧とセオドア・フォン・カルマン · 続きを見る »

ゼーマン効果

ーマン効果(ゼーマンこうか、Zeeman effect)は原子から放出される電磁波のスペクトルにおいて、磁場が無いときには単一波長であったスペクトル線が、原子を磁場中においた場合には複数のスペクトル線に分裂する現象である。原子を電場中に置いた場合のスペクトル線の分裂はシュタルク効果という。.

新しい!!: 物理学者の一覧とゼーマン効果 · 続きを見る »

ゼーベック効果

ーベック効果(ゼーベックこうか、Seebeck effect)は物体の温度差が電圧に直接変換される現象で、熱電効果の一種。逆に電圧を温度差に変換するペルティエ効果もある。類似の現象としてトムソン効果やジュール熱がある。ゼーベック効果を利用して温度を測定することができる(→熱電対)。ゼーベック効果、ペルティエ効果、トムソン効果は可逆であるが、ジュール熱はそうではない。 ゼーベック効果は、1821年にエストニアの物理学者トーマス・ゼーベックによって偶然発見された。ゼーベックは金属棒の内部に温度勾配があるとき、両端間に電圧が発生することに気づいた。 また、2 種類の金属からなるループの接点に温度差を設けると、近くに置いた方位磁針の針が振れることも発見した。これは2種類の金属が温度差に対して異なる反応をしたため、ループに電流が流れ、磁場を発生させたためである。.

新しい!!: 物理学者の一覧とゼーベック効果 · 続きを見る »

ソール・パールマッター

ール・パールムッター(Saul Perlmutter, 1959年9月22日 - )はアメリカ合衆国の天体物理学者。ローレンス・バークレー国立研究所、カリフォルニア大学バークレー校教授。イリノイ州生まれ。宇宙の加速膨張の観測に関する研究で、2011年ノーベル物理学賞受賞。父は、ペンシルバニア大学の名誉教授(化学・生体分子工学)のダニエル・D・パールムッター。Perlmutter の読みに関しては、パールムッターと読む場合も、パールマッターと読む場合も見られる。.

新しい!!: 物理学者の一覧とソール・パールマッター · 続きを見る »

サハの電離公式

ハの電離公式(サハのでんりこうしき)は、気体の電離度を気体の温度、密度、イオン化エネルギーの関数として求めたものである。インドの物理学者メグナード・サハによって求められた。 X.

新しい!!: 物理学者の一覧とサハの電離公式 · 続きを見る »

サティエンドラ・ボース

ティエンドラ・ボース サティエンドラ・ナート・ボース(英語:Satyendra Nath Bose 、ベンガル語:ソッテンドロナート・ボスゥ সত্যেন্দ্রনাথ বসু 、ヒンディー語:サティエーンドラ・ナート・バスゥ सत्येन्द्र नाथ बसु 、1894年1月1日 - 1974年2月4日)は、インドの物理学者。ボース=アインシュタイン統計を光子の統計として導入。ボース粒子(ボソン、ボーズ粒子/ボゾンとも)として名を残す。 ボースは1894年に英領インドのカルカッタに生れた。1909年からカルカッタのプレジデンシー大学に入学した。1916年から教職に就き、ダッカ大学(1921年~1945年)を経てカルカッタ大学(1945年~1956年)の教授となった。 ボースはダッカ大学時代の1924年、アインシュタインのもとに「プランクの放射法則と光量子仮説」と題する論文を送った。それを読んだアインシュタインは非常に高く評価し、ドイツ語に翻訳して物理学雑誌に掲載させた。ここからボースによる光子の統計法の理論が広まり、アインシュタイン自身によって発展させられた。.

新しい!!: 物理学者の一覧とサティエンドラ・ボース · 続きを見る »

内山龍雄

内山 龍雄(うちやま りょうゆう、1916年(大正5年)8月28日 - 1990年(平成2年)8月30日)は、日本の男性理論物理学者。大阪大学名誉教授。重力場を含む一般ゲージ場の創設者である。.

新しい!!: 物理学者の一覧と内山龍雄 · 続きを見る »

八木・宇田アンテナ

八木・宇田アンテナ(やぎ・うだアンテナ、Yagi-Uda Antenna)は、アレイアンテナの一種。通常、ダイポールアンテナを素子としており、宇田新太郎の主導的研究によって、八木秀次との共同で発明された。一般には八木アンテナという名称で知られている(下記の歴史的経緯を参照されたい)。 主にテレビ放送、FM放送の受信用やアマチュア無線、業務無線の基地局用などに利用される。.

新しい!!: 物理学者の一覧と八木・宇田アンテナ · 続きを見る »

八木秀次

八木 秀次(やぎ ひでつぐ、1886年(明治19年)1月28日 - 1976年(昭和51年)1月19日)は、日本の工学者(電気工学)、実業家、政治家。一般的に八木アンテナとして知られる八木・宇田アンテナの発明家として知られる。 東京工業大学学長、千葉工業大学顧問、内閣技術院総裁、大阪帝国大学総長、八木アンテナ株式会社社長、参議院議員、武蔵工業大学学長などを歴任した。 陸軍における階級は工兵軍曹。日本学士院会員。勲一等瑞宝章受章、文化勲章受章、贈勲一等旭日大綬章(没時陞勲)。.

新しい!!: 物理学者の一覧と八木秀次 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 物理学者の一覧と光子 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

新しい!!: 物理学者の一覧と光学 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 物理学者の一覧と光速 · 続きを見る »

剛体

剛体(ごうたい、)とは、力の作用の下で変形しない物体のことである。 物体を質点の集まり(質点系)と考えたとき、質点の相対位置が変化しない系として表すことができる。 剛体は物体を理想化したモデルであり、現実の物体には完全な意味での剛体は存在せず、どんな物体でも力を加えられれば少なからず変形する。 しかし、大きな力を加えなければ、多くの固体や結晶体は変形を無視することができて剛体として扱うことができる。 剛体は、変形を考えないことから、その運動のみが扱われる。剛体の運動を扱う動力学は剛体の力学()と呼ばれる。大きさを無視した質点の力学とは異なり、大きさをもつ剛体の力学は姿勢の変化(転向)が考えられる。 こまの回転運動などは剛体の力学で扱われるテーマの一つである。 なお、物体の変形を考える理論として、弾性体や塑性体の理論がある。 また、気体や液体は比較的自由に変形され、これを研究するのが流体力学である。 これらの変形を考える分野は連続体力学と呼ばれる。 剛体の動力学は、剛体の質量が重心に集中したものとしたときの並進運動に関するニュートンの運動方程式と、重心のまわりの回転に関するオイラーの運動方程式で記述できる。.

新しい!!: 物理学者の一覧と剛体 · 続きを見る »

倍数比例の法則

倍数比例の法則(ばいすうひれいのほうそく、 )とは、同じ成分元素からなる化合物の間に成り立つ法則である。この法則は、1802年にジョン・ドルトンによって発見され、彼が発表した原子論の有力な証拠として発表された。 法則の和名が現象に則さないため、近年では倍数組成の法則への名称変更が提唱されている。.

新しい!!: 物理学者の一覧と倍数比例の法則 · 続きを見る »

BCS理論

BCS理論(ビーシーエスりろん、BCS theory、Bardeen Cooper Schrieffer)とは、1911年の超伝導現象発見以来、初めてこの現象を微視的に解明した理論。1957年に米国、イリノイ大学のジョン・バーディーン、レオン・クーパー、ジョン・ロバート・シュリーファーの三人によって提唱された。三人の名前の頭文字からBCSと付けられた。この理論によると超伝導転移温度や比熱などが、式により表される。三人はこの業績により1972年のノーベル物理学賞を受賞した。.

新しい!!: 物理学者の一覧とBCS理論 · 続きを見る »

石原純

石原 純(いしわら あつし(じゅん)、1881年1月15日 - 1947年1月19日)は、日本の理論物理学者・科学啓蒙家・歌人。.

新しい!!: 物理学者の一覧と石原純 · 続きを見る »

理論物理学教程

『理論物理学教程』(りろんぶつりがくきょうてい、Курс теоретической физики; Course of Theoretical Physics)は、レフ・ランダウ、エフゲニー・リフシッツおよびらによる物理学の教科書。『ランダウ=リフシッツの理論物理学教程』とも呼ばれる。様々な言語に翻訳されており、標準的な教科書として使用されている。日本では個々の巻を指して「ランダウの力学」「ランダウの統計」などと称されることが多い。「ランダウの〜」と呼ばれるものの文章を書くことが不得手であったランダウに代わり実際に『教程』を執筆したのはリフシッツである。リフシッツはランダウが交通事故に遭遇した時点で未完だった10巻のうち3巻をピタエフスキーに協力を仰ぎつつ『教程』を完成させた。『教程』が全巻完結した後も最新の知見を盛り込むなど改訂を続け、個々の巻は初期の版に比べ大幅にページ数が増加している。.

新しい!!: 物理学者の一覧と理論物理学教程 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 物理学者の一覧と磁性 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: 物理学者の一覧と紫外線 · 続きを見る »

線形応答理論

線形応答理論(線型—、せんけいおうとうりろん、linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、森肇、冨田和久、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸(パワーロス)を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。.

新しい!!: 物理学者の一覧と線形応答理論 · 続きを見る »

繰り込み

繰り込み(くりこみ)とは、場の量子論で使われる、計算結果が無限大に発散してしまうのを防ぐ数学的な技法であり、同時に場の量子論が満たすべき最重要な原理のひとつでもある。 くりこみにより、場の量子論を電磁相互作用に適用した量子電磁力学が完成した。場の量子論にくりこみを用いる方法は、以後の量子色力学およびワインバーグ・サラム理論を構築する際の規範となる。.

新しい!!: 物理学者の一覧と繰り込み · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 物理学者の一覧と結晶 · 続きを見る »

田中舘愛橘

中舘 愛橘(たなかだて あいきつ、安政3年9月18日(1856年10月16日) - 1952年(昭和27年)5月21日)は、日本の地球物理学者。東京帝国大学教授、帝国学士院会員、文化勲章受章者。.

新しい!!: 物理学者の一覧と田中舘愛橘 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 物理学者の一覧と熱力学 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: 物理学者の一覧と熱力学温度 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 物理学者の一覧と熱伝導 · 続きを見る »

界面化学

面化学(かいめんかがく)は、二つの物質が接する境界に生じる現象を扱う化学の一分野。研究領域がコロイド化学と近いため、学会や雑誌などでは両者を合わせて扱われる。 物質の状態により界面化学が扱う現象には以下のような例がある。.

新しい!!: 物理学者の一覧と界面化学 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: 物理学者の一覧と物理学者 · 続きを見る »

特性X線

ネルギーで内殻電子が励起される(左)と、その緩和過程で準位間に相当するエネルギーを持った特性X線が発生する(右)。 特性X線(とくせいえっくすせん)とは、ある原子の電子軌道や原子核において、高い電子準位から低い電子準位に遷移する過程で放射されるX線である。単一エネルギー、線スペクトルが特徴。 機器分析で使用される単一波長のX線はふつう特性X線を利用しており、発生源となる元素(ターゲット)と電子殻によって表記する。X線光電子分光ではMgKα線 (1253.6eV) やAlKα線 (1486.6eV)、X線回折ではCuKα線 (8.048keV) やMoKα線 (17.5keV) などを用いる。 内殻電子の励起源としてX線を用いたときに発生する特性X線は、蛍光X線(XRF)と呼ばれる。その他にも励起源に電子を用いて元素分析をする電子線マイクロアナライザ(EPMA)や、陽子やイオンを用いて元素分析をする粒子線励起X線分析(PIXE)がある。.

新しい!!: 物理学者の一覧と特性X線 · 続きを見る »

益川敏英

川 敏英(ますかわ としひで、1940年2月7日 - )は、日本の理論物理学者。専門は素粒子理論。名古屋大学素粒子宇宙起源研究機構長・特別教授、京都大学名誉教授、京都産業大学益川塾教授・塾頭。愛知県名古屋市出身。.

新しい!!: 物理学者の一覧と益川敏英 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 物理学者の一覧と相対性理論 · 続きを見る »

百科全書

『百科全書』(ひゃっかぜんしょ、L'Encyclopédie、正式には L'Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers, par une société de gens de lettres)は、フランスの啓蒙思想家ディドロとダランベールら「百科全書派」が中心となって編集し、1751年から1772年まで20年以上かけて完成した大規模な百科事典。.

新しい!!: 物理学者の一覧と百科全書 · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: 物理学者の一覧と音速 · 続きを見る »

避雷針

避雷針 草葺き屋根の稜線に避雷用の仕掛けが施してある。 木造の教会。避雷針とそこから地面まで延びるケーブルが見える。 東京タワーの避雷針 Václav Prokop Diviš が発明した "Machina meteorologica" は避雷針のような働きをする。 避雷針(ひらいしん、Lightning rod)は建築物を雷・落雷から保護する仕組みのひとつ。 地面と空中との電位差を緩和し落雷の頻度を下げ、また落雷の際には避雷針に雷を呼び込み地面へと電流を逃がすことで建物などへの被害を防ぐ。そのため、「雷を避ける針」という表記ではあるが、実際には必ずしも雷をはねのけるものではなく、字義とは逆に避雷針へ雷を呼び寄せる、いわば「導雷針」ともなる。.

新しい!!: 物理学者の一覧と避雷針 · 続きを見る »

運動の第1法則

運動の第1法則(うんどうのだい1ほうそく、) は、慣性系における力を受けていない質点の運動を記述する経験則であり、慣性の法則とも呼ばれる。ガリレイやデカルトによってほぼ同じ形で提唱されていたものをニュートンが基本法則として整理した。 「すべての物体は、外部から力を加えられない限り、静止している物体は静止状態を続け、運動している物体は等速直線運動を続ける」 慣性の法則は、どのような座標系でも成立するわけではない。例えば加速中の電車内に固定された座標系では、力を受けていない空き缶がひとりでに動きだすことがある。慣性の法則が成立するような座標系を慣性系という。.

新しい!!: 物理学者の一覧と運動の第1法則 · 続きを見る »

運動方程式

運動方程式(うんどうほうていしき)とは、物理学において運動の従う法則を数式に表したもの。英語の equation of motion から EOM と表記されることもある。 以下のようなものがある。.

新しい!!: 物理学者の一覧と運動方程式 · 続きを見る »

荒勝文策

荒勝 文策(あらかつ ぶんさく、1890年3月25日 - 1973年6月25日)は、日本の物理学者。京都大学名誉教授。兵庫県姫路市的形町出身。.

新しい!!: 物理学者の一覧と荒勝文策 · 続きを見る »

菊池正士

菊池 正士(きくち せいし、1902年(明治35年)8月25日 - 1974年(昭和49年)11月12日)は、日本の原子物理学の第一人者として知られた物理学者。元大阪大学教授。日本学士院会員。文化勲章、勲一等瑞宝章受章者。贈正三位(没時叙位)。.

新しい!!: 物理学者の一覧と菊池正士 · 続きを見る »

華氏

氏度(カしど、、記号: )は、数種ある温度のうちのひとつであり、ケルビンの1.8分の1 である。真水の凝固点を32カ氏温度、沸騰点を212カ氏温度とし、その間を180等分して1カ氏度としたことに由来する。 ドイツの物理学者ガブリエル・ファーレンハイトが1724年に提唱した。カ氏度は他の温度と同様「度」の単位がつけられ、他の温度による値と区別するためにファーレンハイトの頭文字を取って“”と書き表される。「32 」は日本語では「カ氏32度」、英語では“32 degrees Fahrenheit”または“32 F”と表現される。.

新しい!!: 物理学者の一覧と華氏 · 続きを見る »

衝撃波

衝撃波(しょうげきは、shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。.

新しい!!: 物理学者の一覧と衝撃波 · 続きを見る »

行列力学

行列力学(ぎょうれつりきがく、)は、量子力学における理論形式の一つで、量子論をハイゼンベルク描像で行列表示で定式化したものである。マトリックス力学とも呼ばれる。1925年に物理学者ヴェルナー・ハイゼンベルクによって提唱され、マックス・ボルン、パスクアル・ヨルダンらともに展開された。.

新しい!!: 物理学者の一覧と行列力学 · 続きを見る »

西島和彦 (物理学者)

西島 和彦(にしじま かずひこ、1926年10月4日 - 2009年2月15日)は、日本の物理学者。東京大学名誉教授。京都大学名誉教授。茨城県土浦市生まれ。 素粒子の新しい規則性となる「西島・ゲルマンの法則」(Gell-Mann–Nishijima formula)を発見する。生前、1960年と1961年、1964年、1966年にノーベル物理学賞の候補に挙がっていたものの、受賞を逸している。.

新しい!!: 物理学者の一覧と西島和彦 (物理学者) · 続きを見る »

西川正治

西川 正治(にしかわ しょうじ、1884年12月5日 - 1952年1月5日)は、東京都八王子市出身の結晶学者である。.

新しい!!: 物理学者の一覧と西川正治 · 続きを見る »

西澤潤一

西澤 潤一(にしざわ じゅんいち、1926年(大正15年)9月12日 - )は、日本の工学者。上智大学特任教授。専門は電子工学・通信工学で、半導体デバイス、半導体プロセス、光通信の開発で独創的な業績を挙げる。東北大学総長、岩手県立大学学長、首都大学東京学長を歴任。東北大学名誉教授、日本学士院会員。 はとこに冨田勲がいる。.

新しい!!: 物理学者の一覧と西澤潤一 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 物理学者の一覧と解析学 · 続きを見る »

高エネルギー物理学

ネルギー物理学は、加速器で作られる高エネルギーを持った基本粒子の衝突反応を詳しく調べ、素粒子と呼ばれる究極の物質の構造や、その基本的相互作用について研究する分野である。.

新しい!!: 物理学者の一覧と高エネルギー物理学 · 続きを見る »

魔法瓶

法瓶の構造 魔法瓶の構造 家庭用の魔法瓶 Vacuum bottle) Vacuum jug) 魔法瓶(まほうびん、Thermos、)とは、食卓用の液体つぎのうち保温機能を有するもの 特許庁である。.

新しい!!: 物理学者の一覧と魔法瓶 · 続きを見る »

近藤効果

近藤効果(こんどうこうか、Kondo effect)とは、磁性を持った極微量な不純物(普通磁性のある鉄原子など)がある金属では、温度を下げていくとある温度以下で電気抵抗が上昇に転じる現象である。これは通常の金属の、温度を下げていくとその電気抵抗も減少していくという一般的な性質とは異なっている。現象そのものは電気抵抗極小現象とよばれ、1930年頃から知られていたが、その物理的機構は1964年に日本の近藤淳が初めて理論的に解明した。近藤はこの仕事により1973年に日本学士院恩賜賞を受章した。.

新しい!!: 物理学者の一覧と近藤効果 · 続きを見る »

近藤淳

近藤 淳(こんどう じゅん、1930年2月6日 - )は、日本の男性物理学者。東京府出身。東邦大学名誉教授、産業技術総合研究所特別顧問。.

新しい!!: 物理学者の一覧と近藤淳 · 続きを見る »

茅誠司

茅 誠司(かや せいじ、1898年(明治31年)12月21日 - 1988年(昭和63年)11月9日)は、日本の物理学者。第17代東京大学総長(1957年 - 1963年)。.

新しい!!: 物理学者の一覧と茅誠司 · 続きを見る »

蒸気機関

蒸気機関(じょうききかん)は、ボイラで発生した蒸気のもつ熱エネルギーを機械的仕事に変換する熱機関の一部であり、ボイラ等と組み合わせて一つの熱機関となる。作業物質である水を外部より加熱する外燃機関に分類される。 蒸気機関には、蒸気をシリンダに導き、ピストンを往復運動させる往復動型のものと、蒸気で羽根車をまわすタービン型のものとが存在する。本稿では主として往復動型のものを説明する。タービン型のものについては蒸気タービンを参照のこと。.

新しい!!: 物理学者の一覧と蒸気機関 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 物理学者の一覧と量子力学 · 続きを見る »

量子ホール効果

量子ホール効果(りょうしホールこうか、quantum hall effect)は、半導体‐絶縁体界面や半導体のヘテロ接合などで実現される、2次元電子系に対し強い磁場(強磁場)を印加すると、電子の軌道運動が量子化され、エネルギー準位が離散的な値に縮退し、ランダウ準位が形成される現象を指す。ランダウ準位の状態密度は実際の試料では不純物の影響によってある程度の広がりを持つ。この時、フェルミ準位の下の電子は、波動関数が空間的に局在するようになる。これをアンダーソン局在という。 そして絶対温度がゼロ度(.

新しい!!: 物理学者の一覧と量子ホール効果 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: 物理学者の一覧と自由エネルギー · 続きを見る »

自由落下

自由落下(じゆうらっか、)とは、物体が空気の摩擦や抵抗などの影響を受けずに、重力の働きだけによって落下する現象。真空中での落下。重力以外の外力が存在しない状況下での運動のことである。人工衛星や月、地球などの天体の運動がこれにあたる。一様な重力が働く状況下において初速ゼロで運動を開始した物体の等加速度直線運動のことを特に自由落下と呼び、初速度をもって運動する斜方投射などと区別することがある。.

新しい!!: 物理学者の一覧と自由落下 · 続きを見る »

長岡半太郎

長岡 半太郎(ながおか はんたろう、1865年8月19日(慶応元年6月28日) - 1950年(昭和25年)12月11日)は、日本の物理学者。土星型原子モデル提唱などの学問的業績を残した。また、東京帝国大学教授として多くの弟子を指導し、初代大阪帝国大学総長や帝国学士院院長などの要職も歴任した。1937年(昭和12年)、第一回文化勲章受章。正三位勲一等旭日大綬章追贈。.

新しい!!: 物理学者の一覧と長岡半太郎 · 続きを見る »

雪(ゆき、、)とは、大気中の水蒸気から生成される氷の結晶が空から落下してくる天気のこと。また、その氷晶単体である雪片(せっぺん、)、および降り積もった状態である積雪(せきせつ、等)のことを指す場合もある。後者と区別するために、はじめの用法に限って降雪(こうせつ、)と呼び分ける場合がある。.

新しい!!: 物理学者の一覧と雪 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: 物理学者の一覧と電子顕微鏡 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: 物理学者の一覧と電磁気学 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: 物理学者の一覧と電気 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

新しい!!: 物理学者の一覧と電気素量 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: 物理学者の一覧と電波 · 続きを見る »

電流計

電流計(でんりゅうけい、)は、電流を測るための電気計器である。 自動車やオートバイに使用される電流計についても、この項目で説明する。.

新しい!!: 物理学者の一覧と電流計 · 続きを見る »

集団運動模型

集団運動模型(しゅうだんうんどうもけい)とは原子核の性質を記述するモデルのひとつである。.

新しい!!: 物理学者の一覧と集団運動模型 · 続きを見る »

逆2乗の法則

この図はどのように法則が適用されるかを表している。赤い線は発生源 S から放射される流束を表している。流束の線の数の合計は距離に対して一定であり、また源 S の強度に依存する。流束線の密度が大きいのは強い場であることを意味している。流束の密度は源からの距離の 2 乗に反比例する。それは球面の面積が半径の 2 乗に比例して増加するためである。それゆえ場の力の強さは、源からの距離の 2 乗に反比例する。 逆2乗の法則(ぎゃくにじょうのほうそく、inverse square law)とは、物理量の大きさがその発生源からの距離の 2 乗に反比例する、という法則である。逆 2 乗とは 2 乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆 2 乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つこと、特に指数が 2 であることには、我々のいる空間が 3 次元であり等方的であることと密接に関係している。空間の各点で測定できる物理量について、それがある発生源から生じる流体のようなものと見なせる場合、発生源から偏りなく流出する物質からの類推により、発生源を囲む球面を通過する物質の量は、球面の大きさによらず一定であると考えることができる。したがって球面を通過する物質の密度は球面の面積に反比例して小さくなる。発生源が球殻の中心にあるとすれば、球面の大きさは発生源から球面までの距離の 2 乗に比例するから、球面を通過する物質の密度は球面と発生源の距離の 2 乗に反比例する。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 逆2乗の法則が成り立つのは大抵、ある一つの発生源に注目した場合である。たとえば異なる天体の表面重力を比較する際には注意が必要である。構成物質の似通った天体同士では表面重力の大きさは天体の半径に対する逆 2 乗則に従わず、自転による遠心力の影響を除けば、表面重力の大きさは半径に概ね比例する。これは、重力の大きさが天体の質量に比例し、同程度の密度を持つ天体の質量を比較すると、天体の質量は天体の体積に比例するためである。.

新しい!!: 物理学者の一覧と逆2乗の法則 · 続きを見る »

陰極線

極線(いんきょくせん、Cathode ray)とは真空管の中で観察される電子の流れである。真空に排気されたガラス容器に一対の電極を封入して電圧をかけると、陰極(電源のマイナス端子に接続された電極)の逆側にある容器内壁が発光する。その原因は陰極表面から電子が垂直に撃ち出されることによる。この現象は1869年にドイツの物理学者ヴィルヘルム・ヒットルフによって初めて観察され、1876年にによってKathodenstrahlen(陰極線)と名付けられた。近年では電子線や電子ビームと呼ばれることが多い。 電子が初めて発見されたのは、陰極線を構成する粒子としてであった。1897年、英国の物理学者J・J・トムソンは、陰極線の正体が負電荷を持つ未知の粒子であることを示し、この粒子が後に「電子」と呼ばれるようになった。初期のテレビに用いられていたブラウン管(CRT、cathode ray tubeすなわち「陰極線管」)は、収束させた陰極線を電場や磁場で偏向させることによって像を作っている。.

新しい!!: 物理学者の一覧と陰極線 · 続きを見る »

陽電子

陽電子(ようでんし、ポジトロン、英語:positron)は、電子の反粒子。絶対量が電子と等しいプラスの電荷を持ち、その他の電子と等しいあらゆる特徴(質量やスピン角運動量 (1/2))を持つ。.

新しい!!: 物理学者の一覧と陽電子 · 続きを見る »

KS鋼

KS鋼(KSこう、KS steel)は、コバルト・タングステン・クロム・炭素を含む鉄の合金、磁石鋼(工具鋼)。 1916年、東北帝国大学の本多光太郎と高木弘によって発明され、それまでの3倍の保磁力を有する世界最強の永久磁石鋼として脚光を浴びる。KSとは、本多らに研究費を給した住友吉左衛門(住友グループの前身・住友総本店店主)のイニシャルである。 1931年に東京帝国大学の三島徳七がKS鋼の2倍の保磁力を有するMK鋼を開発し、15年間守り続けた世界最強磁石の座を譲り渡した。 1934年に本多らは再び世界最強となる新KS鋼を発明した。また2010年現在、世界最強の保磁力をもつ日立金属のNEOMAX(ネオジ鉄ボロン磁石)の開発者も東北大学の出身者であるなど、東北大学との関係が深い。 Category:鋼 Category:磁石.

新しい!!: 物理学者の一覧とKS鋼 · 続きを見る »

N線

『N線』(エヌせん、N ray)は、1903年にフランスの科学者ルネ・ブロンロにより報告された現象であるが、後にそれは錯誤によるものであることが明らかになった。病的科学の一例として示されることが多い。.

新しい!!: 物理学者の一覧とN線 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 物理学者の一覧とX線 · 続きを見る »

X線天文学

X線天文学(エックスせんてんもんがく、X-ray astronomy)は、観測天文学の一分野で、天体から放射されるX線の研究を行なう。X線放射は地球の大気によって吸収されるため、X線の観測装置は高い高度へ運ばなければならない。そのためにかつては気球やロケットが用いられた。現在ではX線天文学は宇宙探査の一分野となっており、X線検出器は人工衛星に搭載されるのが普通である。 X線は一般に、100万~1億Kという極端な高温のガスから放射される。このような天体では原子や電子が非常に高いエネルギーを持っている。1962年の最初の宇宙X線源の発見は驚くべきものであった。このX線源はさそり座で最初に発見されたX線源であることからさそり座X-1と呼ばれ、天の川の中心方向に位置していた。発見者のリカルド・ジャコーニはこの発見によって2002年のノーベル物理学賞を受賞した。後に、このX線源から放出されているX線は可視光での放射強度より1万倍も強いことが明らかになった。さらに、このX線の放射エネルギーは太陽の全波長での放射エネルギーの10万倍に達するものであった。現在では、このようなX線源は中性子星やブラックホールといったコンパクト星であることが分かっている。このような天体のエネルギー源は重力エネルギーである。天体の強い重力場によって落ち込んだガスが加熱されて高エネルギーのX線を放射している。 現在までに数千個のX線源が知られている。加えて、銀河団にある銀河同士の間の空間は約1億Kという非常に高温でしかも非常に希薄なガスで満たされているらしいことが分かっている。この高温ガスの総量は観測できる銀河の質量の5~10倍に達する。この意味で我々はまさに高温の宇宙に住んでいると言える。.

新しい!!: 物理学者の一覧とX線天文学 · 続きを見る »

林忠四郎

林 忠四郎(はやし ちゅうしろう、1920年(大正9年)7月25日 - 2010年(平成22年)2月28日)は、日本の宇宙物理学者2010年3月1日 アストロアーツ、産経ニュース,、2010.3.1 12:16、京都新聞, 2010年03月01日 12時43分、稲盛財団ニュース, No.71.

新しい!!: 物理学者の一覧と林忠四郎 · 続きを見る »

李政道

李政道(り せいどう、1926年11月24日 - )は、中国系アメリカ人の物理学者。.

新しい!!: 物理学者の一覧と李政道 · 続きを見る »

松山基範

松山 基範(まつやま もとのり、1884年10月25日 - 1958年1月27日)は、日本の地球物理学者・古地磁気学者。山口大学初代学長。能楽師。京都大学名誉教授。理学博士(1918年)取得。.

新しい!!: 物理学者の一覧と松山基範 · 続きを見る »

核磁気共鳴

核磁気共鳴(かくじききょうめい、nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。.

新しい!!: 物理学者の一覧と核磁気共鳴 · 続きを見る »

楊振寧

楊振寧(よう しんねい、1922年10月1日 - )は中国人の物理学者。.

新しい!!: 物理学者の一覧と楊振寧 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: 物理学者の一覧と水素 · 続きを見る »

水素スペクトル系列

水素原子の発光スペクトルは、によって与えられる波長によって、いくつかのスペクトル系列に分けられる。観測されるスペクトル線は原子のエネルギー準位間の電子遷移により生じる。スペクトル系列は、天文学において水素の存在の観測と赤方偏移の計算のため重要である。分光法の発展によって多くの系列が発見されている。.

新しい!!: 物理学者の一覧と水素スペクトル系列 · 続きを見る »

水素爆弾

1952年11月1日、人類初の水爆実験であるアイビー作戦 水素爆弾(すいそばくだん、hydrogen bomb)または熱核兵器(ねつかくへいき、thermonuclear weapon)は、重水素の熱核反応を利用した核兵器を言う。水爆(すいばく)。.

新しい!!: 物理学者の一覧と水素爆弾 · 続きを見る »

永宮健夫

永宮 健夫(ながみや たけお、1910年6月1日 - 2006年6月3日)は、日本の物理学者。大阪大学名誉教授。専門は固体物理学で、特に反強磁性体の理論の仕事は名高い。.

新しい!!: 物理学者の一覧と永宮健夫 · 続きを見る »

気体反応の法則

気体反応の法則(きたいはんのうのほうそく、)は、2種以上の気体物質が関与する化学反応について成り立つ法則である。1808年にジョセフ・ルイ・ゲイ=リュサックによって発表された。 法則の和名が現象に則さないため、近年では反応体積比の法則への名称変更が提唱されている。.

新しい!!: 物理学者の一覧と気体反応の法則 · 続きを見る »

気圧

気圧(きあつ、)とは、気体の圧力のことである。単に「気圧」という場合は、大気圧(たいきあつ、、大気の圧力)のことを指す場合が多い。 気圧は計量単位でもある。日本の計量法では、圧力の法定の単位として定められている(後述)。.

新しい!!: 物理学者の一覧と気圧 · 続きを見る »

江崎玲於奈

江崎 玲於奈(えさき れおな、「崎」は清音、1925年(大正14年)3月12日 - )は、日本の物理学者である。国外においてはレオ・エサキ()の名で知られる。1973年(昭和48年)に日本人としては4人目となるノーベル賞(ノーベル物理学賞)を受賞した。文化勲章受章者、勲一等旭日大綬章受章者。.

新しい!!: 物理学者の一覧と江崎玲於奈 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: 物理学者の一覧と波動方程式 · 続きを見る »

湯川秀樹

湯川 秀樹(ゆかわ ひでき、1907年(明治40年)1月23日 - 1981年(昭和56年)9月8日)は、日本の理論物理学者。 京都府京都市出身。 原子核内部において、陽子や中性子を互いに結合させる強い相互作用の媒介となる中間子の存在を1935年に理論的に予言した。1947年、イギリスの物理学者セシル・パウエルが宇宙線の中からパイ中間子を発見したことにより、湯川の理論の正しさが証明され、これにより1949年(昭和24年)、日本人として初めてノーベル賞を受賞した。 京都大学・大阪大学名誉教授。京都市名誉市民。1943年(昭和18年)文化勲章。位階勲等は従二位勲一等旭日大綬章。学位は理学博士。.

新しい!!: 物理学者の一覧と湯川秀樹 · 続きを見る »

朝永振一郎

朝永 振一郎(ともなが しんいちろう、1906年(明治39年)3月31日 - 1979年(昭和54年)7月8日)は、日本の物理学者。相対論的に共変でなかった場の量子論を超多時間論で共変な形にして場の演算子を形成し、場の量子論を一新した。超多時間論を基に繰り込み理論の手法を生み出し、量子電磁力学の発展に寄与した功績によってノーベル物理学賞を受賞した。また、非摂動論の一般理論である中間結合理論は、物性や素粒子の状態を調べる基本手法となった。東京生まれで京都育ち。なお、朝永家自体は長崎県の出身。武蔵野市名誉市民。.

新しい!!: 物理学者の一覧と朝永振一郎 · 続きを見る »

本多光太郎

東北大学訪問記念写真。左から本多光太郎、アインシュタイン、愛知敬一、日下部四郎太 本多 光太郎(ほんだ こうたろう、1870年3月24日(明治3年2月23日) - 1954年(昭和29年)2月12日)は、日本の物理学者、金属工学者(冶金学者)。鉄鋼及び金属に関する冶金学・材料物性学の研究を、日本はもとより世界に先駆けて創始した。磁性鋼であるKS鋼、新KS鋼の発明者として知られる。文化勲章受章者。文化功労者。 「鉄の神様」「鉄鋼の父」などとも呼ばれ鉄鋼の世界的権威者として知られる。 1932年に日本人初のノーベル物理学賞の候補に挙がっていたものの、受賞を逸している。.

新しい!!: 物理学者の一覧と本多光太郎 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: 物理学者の一覧と流体 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: 物理学者の一覧と流体力学 · 続きを見る »

日本の天文学者の一覧

日本の天文学者の一覧(にほんのてんもんがくしゃのいちらん)は、日本の天文学者の一覧である。 括弧内は出身地(都道府県)、生年。.

新しい!!: 物理学者の一覧と日本の天文学者の一覧 · 続きを見る »

日本の物理学者の一覧

日本の物理学者の一覧(にほんのぶつりがくしゃのいちらん)は、日本の物理学者を一覧する。 物理学者の一覧、:Category:日本の物理学者も参照。なお、日本国外に国籍を移動した者も含めている。.

新しい!!: 物理学者の一覧と日本の物理学者の一覧 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

新しい!!: 物理学者の一覧と放射線 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

新しい!!: 物理学者の一覧と放電 · 続きを見る »

21cm線

21cm線(21センチメートルせん、)は、中性水素原子のエネルギー状態の変化によって放射されるスペクトル線である。 21cm線は周波数 の電波であり、その波長が であることからこの名が付けられている。21cm線は天文学、特に電波天文学の分野で広く使われている。.

新しい!!: 物理学者の一覧と21cm線 · 続きを見る »

ここにリダイレクトされます:

有名な物理学者物理学者のリスト物理学者一覧

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »