ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

近藤効果

索引 近藤効果

近藤効果(こんどうこうか、Kondo effect)とは、磁性を持った極微量な不純物(普通磁性のある鉄原子など)がある金属では、温度を下げていくとある温度以下で電気抵抗が上昇に転じる現象である。これは通常の金属の、温度を下げていくとその電気抵抗も減少していくという一般的な性質とは異なっている。現象そのものは電気抵抗極小現象とよばれ、1930年頃から知られていたが、その物理的機構は1964年に日本の近藤淳が初めて理論的に解明した。近藤はこの仕事により1973年に日本学士院恩賜賞を受章した。.

59 関係: 効果の一覧基底状態くりこみ群希土類元素交換相互作用京都大学基礎物理学研究所伝導電子強い相互作用マンガンノーベル物理学賞ボルン–オッペンハイマー近似ボルツマン定数プラセオジムプルトニウムデイビッド・グロスフランク・ウィルチェックフィリップ・アンダーソンフェルミ液体論アンダーソン模型イッテルビウムウランキュリー定数クロムクォーククォークの閉じ込めケネス・ウィルソンスピン角運動量セリウム磁化率磁性結合エネルギー絶対零度熱振動物性物理学面心立方格子構造超交換相互作用超伝導近藤淳重い電子系量子ドット量子色力学臨界指数金属電気伝導電気抵抗電気抵抗率...H. デビッド・ポリツァーProgress of Theoretical PhysicsRKKY相互作用恩賜賞 (日本学士院)格子欠陥格子振動比熱容量漸近的自由性摂動 インデックスを展開 (9 もっと) »

効果の一覧

効果の一覧(こうかのいちらん)は、固有名として使われる効果を示す。学問上の効果、社会一般で言われる効果を含む。効果の名称の後ろの注記は分野を示す。但し、特殊効果、視覚効果は除く。.

新しい!!: 近藤効果と効果の一覧 · 続きを見る »

基底状態

基底状態(きていじょうたい、)とは、系の固有状態の内で最低のエネルギーの状態をいう。 古典力学では系の取りうるエネルギーは連続して存在するはずだが、ミクロの世界では量子力学によりエネルギーはとびとびの値を取る。その中で最低エネルギーの状態を基底状態とよび、それ以外の状態は励起状態とよぶ。 分子のような少数多体系であれば、基底状態は絶対零度の波動関数を意味する。しかし固体物理学では、有限温度での状態に対しても、素励起がなく、量子統計力学で記述される熱平衡状態をもって基底状態ということがある。これらは厳密には区別すべきものである。.

新しい!!: 近藤効果と基底状態 · 続きを見る »

くりこみ群

くりこみ群(くりこみぐん、renormalization group)とは、くりこみ変換により構成される半群である。くりこみ“群” (renormalization group) と名前はついているが、実際は「群」(group) ではなく「半群」(semi-group) である点は注意すべきことである。.

新しい!!: 近藤効果とくりこみ群 · 続きを見る »

希土類元素

希土類元素(きどるいげんそ、)又はレアアースは、31鉱種あるレアメタルの中の1鉱種で、スカンジウム Sc、イットリウム Yの2元素と、ランタン La からルテチウム Lu までの15元素(ランタノイド)の計17元素の総称である(元素記号の左下は原子番号)。周期表の位置では、第3族のうちアクチノイドを除く第4周期から第6周期までの元素を包含する。なお、希土類・希土と略しており、かつて稀土類・稀土とも書き、それらは英語名の直訳であり、比較的希な鉱物から得られた酸化物から分離されたことに由来している。.

新しい!!: 近藤効果と希土類元素 · 続きを見る »

交換相互作用

物理学において、交換相互作用(こうかんそうごさよう、exchange interaction、交換エネルギーとも)は、同種粒子間でのみ起こる量子力学的効果である。 この効果は区別ができない粒子の波動関数が交換対称性〔2つの粒子を交換した時に符号が変化しない(対称)または変化する(反対称)〕の対象となるためである。ボース粒子およびフェルミ粒子のどちらも交換相互作用を経験しうる。フェルミ粒子では、これはパウリ反発と呼ばれることもあり、パウリの排他原理と関係している。ボース粒子では、交換相互作用は、ボース=アインシュタイン凝縮において見られるように、同種粒子がすぐ近くに見出される原因となる引きつける性質の形を取る。 交換相互作用は、2つ以上の同種粒子の波動関数が重なり合う時の距離のを変化させる。同種粒子間の距離の期待値は(区別ができる粒子の場合と比較して)、フェルミ粒子では増大し、ボース粒子では減少する。その他の帰結として、交換相互作用は強磁性や物質の体積に関与している。古典力学による交換相互作用の説明はできず、典型的な量子力学の効果のひとつである。 交換相互作用効果は、1926年に物理学者のヴェルナー・ハイゼンベルクとポール・ディラックによって独立に発見された。1928年、ハイゼンベルクがハイトラー-ロンドンの方法を使って交換相互作用(この場合特に直接交換相互作用とも言う)から強磁性の発現について議論した。ただし、この場合の交換相互作用による強磁性の実際の例は非常に少ないと思われている。 状態 i, j に対するスピンに関する演算子をそれぞれ、、とすると、 の形で表される相互作用が交換相互作用である。Jは交換積分と言い、後で詳述する。.

新しい!!: 近藤効果と交換相互作用 · 続きを見る »

京都大学基礎物理学研究所

京都大学基礎物理学研究所(きょうとだいがくきそぶつりがくけんきゅうしょ、英称:Yukawa Institute for Theoretical Physics、略称:基研・基礎研・YITP)は、京都大学の附置研究所で、理論物理学の諸問題についての研究および、国内の研究者の共同利用、国内外の研究者間の交流の場を提供するために設置された研究所である。共同利用・共同研究拠点に指定されている。.

新しい!!: 近藤効果と京都大学基礎物理学研究所 · 続きを見る »

伝導電子

伝導電子(でんどうでんし、conduction electron)とは、物質(主に金属)において、電気伝導を担う電子のこと。 半導体において、伝導帯にある電子のことも伝導電子と呼ぶ(半導体において単に「電子」と言う場合、多くは伝導電子の意味になる)。価電子帯に存在する電子が、ある温度においては、絶対温度とボルツマン定数の積に値するエネルギーを受ける。このエネルギーがバンドギャップより大きい場合、価電子帯上端付近の電子が伝導帯へと励起され、この電子が伝導電子として振舞うことになる。金属においては、フェルミ準位が伝導帯内に存在するため、この熱的励起のエネルギーが非常に小さくともフェルミ準位以上のエネルギー帯域に電子が存在することになる。強く束縛を受けない伝導電子を自由電子と呼ぶ。 固体中の伝導電子は原子のポテンシャルによってある程度の束縛を受ける。真空中における自由電子は任意のエネルギーを持てるのに対し、結晶中の電子では、その結晶周期性に起因して、運動量(波数)に制限が生じるため、ブリュアンゾーンが生じ、またバンド構造を取る。 しかし電子に部分的に占有されているエネルギーバンドにある電子は自由電子的に振る舞い、格子振動(フォノン)との相互作用などを示すほか、エネルギー準位の占有確率はフェルミ統計に従う。半導体の場合、伝導帯の底付近の電子は、本来の電子の質量とは異なる有効質量を持つ自由電子のように振る舞う。.

新しい!!: 近藤効果と伝導電子 · 続きを見る »

強い相互作用

強い相互作用(つよいそうごさよう、Strong interaction)は、基本相互作用の一つである。ハドロン間の相互作用や、原子核内の各核子同士を結合している力(核力)を指し、標準模型においては量子色力学によって記述される。強い力、強い核力とも。その名の通り電磁相互作用に比べて約137倍の強さがある。 強い相互作用の理解は、歴史的には湯川秀樹による、パイ中間子の交換によって核子に働く核力の説明に始まるが、1970年代前半の量子色力学の成立によって、ゲージ理論として完成した。.

新しい!!: 近藤効果と強い相互作用 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: 近藤効果とマンガン · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: 近藤効果とノーベル物理学賞 · 続きを見る »

ボルン–オッペンハイマー近似

ボルン–オッペンハイマー近似(ボルン–オッペンハイマーきんじ、)とは、電子と原子核の運動を分離して、それぞれの運動を表す近似法である。この近似は、原子核の質量が電子の質量よりも遥かに大きいために可能となる。 まず、電子状態については、原子核が固定されているものとして、電子波動関数とエネルギー固有値を求めることができる。これにより、ポテンシャルエネルギー曲線(曲面)を核の座標の関数として定義することができる。そして、核の波動関数は、核の運動がこのポテンシャルエネルギー曲面上に乗っているものとして求めることができる。 この近似により、分子の電子波動関数と振動・回転の波動関数を分離して求めることが可能になる。また、分子の励起に伴う振動状態の分布に関する、フランク=コンドンの原理も説明することができる。.

新しい!!: 近藤効果とボルン–オッペンハイマー近似 · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: 近藤効果とボルツマン定数 · 続きを見る »

プラセオジム

プラセオジム(praseodymium)は原子番号59の元素。元素記号は Pr。希土類元素の一つ(ランタノイドにも属す)。 和名のプラセオジムとは、ドイツ語の praseodym からきている。なお、プラセオジウムと呼ばれたり記述することもあるが、これは間違った呼称である。.

新しい!!: 近藤効果とプラセオジム · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

新しい!!: 近藤効果とプルトニウム · 続きを見る »

デイビッド・グロス

デイビッド・グロス(David Jonathan Gross、1941年2月19日 - )は、アメリカ合衆国ワシントンD.C.生まれの理論物理学者。カリフォルニア大学サンタバーバラ校カブリ理論物理学研究所所長。2004年に、ウィルチェック 、H. デビッド・ポリツァーとともに「強い相互作用の理論における漸近的自由性の発見」の功績によりノーベル物理学賞を受賞した。.

新しい!!: 近藤効果とデイビッド・グロス · 続きを見る »

フランク・ウィルチェック

フランク・ウィルチェック(Frank Wilczek、1951年5月15日 - )は、ポーランド、イタリア系のアメリカ合衆国の物理学者。ニューヨーク州出身。シカゴ大学、プリンストン大学で学ぶ。プリンストン大を経て1980年よりカリフォルニア大学サンタバーバラ校教授、2000年よりマサチューセッツ工科大学教授を歴任。 2004年デイビッド・グロス 、H. デビッド・ポリツァー とともに「強い相互作用の理論における漸近的自由性の発見」の功績によりノーベル物理学賞を受賞した。 1973年にプリンストン大学で, デイビッド・グロスとともに漸近的自由性を発見した。素粒子物理学における漸近的自由性とは、素粒子間の「強い相互作用」は、近距離ないし高エネルギー下では相互作用が弱くなるという性質で、陽子や中性子の構成要素とされるクォークが単独で観測できないことなどを説明する量子色力学の理論である。H・デイヴィッド・ポリツァーの論文とウィルチェックらの論文がPhysical Review Lettersの同じ号に掲載され、公式には、3人が同時に漸近自由性を発見したことになった。.

新しい!!: 近藤効果とフランク・ウィルチェック · 続きを見る »

フィリップ・アンダーソン

フィリップ・ウォーレン・アンダーソン(Philip Warren Anderson、1923年12月13日 - )は、アメリカの物理学者。プリンストン大学教授。.

新しい!!: 近藤効果とフィリップ・アンダーソン · 続きを見る »

フェルミ液体論

フェルミ液体論(またはランダウ-フェルミ液体論)とは、 相互作用するフェルミ粒子の理論的モデルであり、多くの金属における十分に低温での標準状態を記述する。 ここで多体系の粒子間の相互作用は小さい必要はない。 フェルミ液体の現象論は1956年にソビエトの物理学者レフ・ランダウによって導入され、後にアレクセイ・アブリコソフとアイザック・カラトニコフがファインマン・ダイアグラムを用いた摂動論によって発展させた。 フェルミ液体論は、なぜ相互作用するフェルミ粒子系のいくつかの性質がフェルミ気体(相互作用しないフェルミ粒子)と非常に似ており、なぜその他の性質は異なっているのかを説明する。 フェルミ液体論が適用された重要な例として、金属中の電子や液体ヘリウム3が挙げられる。 液体ヘリウム3は、(超流動にはならない程度の)低温ではフェルミ液体である。 ヘリウム3はヘリウムの同位体であり、単位原子中に2つの陽子、1つの中性子、2つの電子を持つ。 よって原子核の中に奇数個のフェルミ粒子があるため、原子自身はフェルミ粒子である。 (超伝導体ではない)通常の金属中の電子や、原子核中の核子(陽子と中性子)もフェルミ液体である。 ルテニウム酸ストロンチウムは、強相関物質であるがフェルミ液体のいくつかの性質を示し、クプラートのような高温超伝導体と比較される。.

新しい!!: 近藤効果とフェルミ液体論 · 続きを見る »

アンダーソン模型

アンダーソン模型.

新しい!!: 近藤効果とアンダーソン模型 · 続きを見る »

イッテルビウム

イッテルビウム (ytterbium) は原子番号70の元素。元素記号は Yb。希土類元素の一つ(ランタノイドにも属す)。.

新しい!!: 近藤効果とイッテルビウム · 続きを見る »

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。.

新しい!!: 近藤効果とウラン · 続きを見る »

キュリー定数

ュリー定数(―ていすう)は、常磁性体の磁化率のキュリーの法則や強磁性体、反強磁性体のキュリー・ワイスの法則に表れる物質に固有な物性値である。 ここで または局在磁気モーメントの大きさの二乗平均\langle m \rangle.

新しい!!: 近藤効果とキュリー定数 · 続きを見る »

クロム

ム(chromium 、Chrom 、chromium、鉻)は原子番号24の元素。元素記号は Cr。クロム族元素の1つ。.

新しい!!: 近藤効果とクロム · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: 近藤効果とクォーク · 続きを見る »

クォークの閉じ込め

ークの閉じ込め(クォークのとじこめ、quark confinement)とは、クォークを単独では取り出すことが出来ないという物理現象。.

新しい!!: 近藤効果とクォークの閉じ込め · 続きを見る »

ケネス・ウィルソン

ネス・G・ウィルソン(Kenneth Geddes Wilson、1936年6月8日 - 2013年6月15日)は、アメリカ合衆国の物理学者。「相転移に関連した臨界現象に関する研究」により、1982年のノーベル物理学賞を受賞した。.

新しい!!: 近藤効果とケネス・ウィルソン · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 近藤効果とスピン角運動量 · 続きを見る »

セリウム

リウム(cerium)は原子番号58の元素で、元素記号は Ce。軟らかく、銀白色の、延性に富む金属で、空気中で容易に酸化される。セリウムの名は準惑星ケレスに因んでいる。セリウムは希土類元素として最も豊富に存在して、地殻中に質量パーセント濃度で0.046%含んでいる。さまざまな鉱物中で見つかり、最も重要なのはモナザイトとバストネサイトである。セリウムの商業的な用途はたくさんある。触媒、排出物を還元するための燃料への添加剤、ガラス、エナメルの着色剤などがある。酸化物はガラス研磨剤、スクリーンの蛍光体、蛍光灯などで重要な成分である。.

新しい!!: 近藤効果とセリウム · 続きを見る »

磁化率

磁化率(じかりつ、英語:magnetic susceptibility)とは、磁気分極の起こりやすさを示す物性値である。帯磁率、磁気感受率などとも言う。.

新しい!!: 近藤効果と磁化率 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 近藤効果と磁性 · 続きを見る »

結合エネルギー

結合エネルギー(けつごうエネルギー)とは、互いに引き合う複数の要素からなる系において、その系がひとところに寄り集まって存在する状態と、粒子がばらばらに存在する状態との間での、ポテンシャルエネルギーの差のこと。結合エネルギーが大きいほど、その結合は強固で安定であると言える。束縛エネルギーとも言う。 本来、保存力によって結合する系ならば、どのような系に対しても考えることが出来るが、この語が良く用いられるのは、化学分野における分子中の原子間結合の場合と、原子核の核子間相互作用の場合である。 英語表記は、bond energy や binding energy 等があるが、前者は主に化学分野において、後者は主に原子核物理学分野において用いられる。.

新しい!!: 近藤効果と結合エネルギー · 続きを見る »

絶対零度

絶対零度(ぜったいれいど、Absolute zero)とは、絶対温度の下限で、理想気体のエントロピーとエンタルピーが最低値になった状態、つまり 0 度を表す。理想気体の状態方程式から導き出された値によるとケルビンやランキン度の0 度は、セルシウス度で −273.15 ℃、ファーレンハイト度で −459.67 である。 絶対零度は最低温度とされるが、エンタルピーは0にはならない。統計力学では0 K未満の負温度が存在する。.

新しい!!: 近藤効果と絶対零度 · 続きを見る »

熱振動

熱振動(ねつしんどう、Thermal vibration)は、原子の振動のこと。分子や固体中の原子は運動エネルギーを持っていて、基準となる位置を中心に振動運動をしている。結晶格子上の原子の熱振動は特に格子振動とよばれる。 温度が高くなるほど振動の振幅は大きくなる。絶対零度であっても、不確定性原理から原子の振動は止まっていない(零点振動)。 なお、類似した言葉に熱運動(thermal motion) がある。こちらは微小な粒子がするランダムな運動で、ブラウン運動の原因ともなる。熱運動については熱の記事を参照。.

新しい!!: 近藤効果と熱振動 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

新しい!!: 近藤効果と物性物理学 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

新しい!!: 近藤効果と銅 · 続きを見る »

銀(ぎん、silver、argentum)は原子番号47の元素。元素記号は Ag。貴金属の一種。.

新しい!!: 近藤効果と銀 · 続きを見る »

面心立方格子構造

面心立方格子構造(めんしんりっぽうこうしこうぞう、face-centered cubic, fcc)は、ブラベー格子の一種。単位格子の各頂点および各面の中心に原子が位置する。立方最密充填構造(りっぽうさいみつじゅうてんこうぞう、cubic close-packed, ccp)とは見る角度が違うだけで同じ配列である。面心立方格子構造を持つ単体金属は多い。.

新しい!!: 近藤効果と面心立方格子構造 · 続きを見る »

超交換相互作用

超交換相互作用(superexchange interaction)とは陰イオンを挟んだ二つの磁性イオンとの間に作用する交換相互作用である。この考えを初めて提唱したのはオランダの物理学者ヘンリク・アンソニー・クラマース(Hendrik Anthony Kramers)であり、アメリカの物理学者フィリップ・ウォーレン・アンダーソン(Philip Warren Anderson)により詳細が与えられた。二つの磁性イオン 1, 2のスピンに関する演算子をそれぞれS1、S2とすると、二つの磁性イオンのスピン間には の形の交換相互作用が働く。.

新しい!!: 近藤効果と超交換相互作用 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: 近藤効果と超伝導 · 続きを見る »

近藤淳

近藤 淳(こんどう じゅん、1930年2月6日 - )は、日本の男性物理学者。東京府出身。東邦大学名誉教授、産業技術総合研究所特別顧問。.

新しい!!: 近藤効果と近藤淳 · 続きを見る »

重い電子系

重い電子系(おもいでんしけい、Heavy fermion)は、ランタノイドやアクチノイドの化合物において、金属的な電気伝導を示すにもかかわらず、電気伝導を担う電子の有効質量が、自由電子の質量の数百倍~千倍も「重く」なっていると考えられる一連の物質群のことである。 電子は周りの電子や磁場との相互作用により動きにくくなり、見かけ上の重さ(有効質量)が重くなる。すなわち有効質量の増大は電子間斥力の効果(電子相関)に由来するものであり、数百倍~千倍もの大きい有効質量は、ランタノイドイオンやアクチノイドイオンの持つ局在性の高いf電子間の強い斥力に起因するものと考えられている。このため、重い電子系は強相関電子系の重要な研究対象の一つとして、現在も盛んに研究されている。 有効質量が大きいこと自体も重要な研究対象であるが、それに加えて、重い電子系物質群の多様な物性が興味を惹いている。有効質量が大きいということは、電子については、遍歴性よりも局在性が強くなっていることを示している。電子の局在性が強まると、電子の持つスピンの自由度が顕れて来て、系は磁性を示すようになる。実際、重い電子系の中には、低温で磁気秩序を示すものがある。多くは反強磁性秩序であるが、強磁性秩序やその他の磁気秩序を示すものもある。重い電子系状態からこれらの磁気秩序状態への変化や、各々の状態の関係などが研究されている。また、電子間斥力が非常に強いにもかかわらず、クーパー対が形成されて超伝導を示す物質もあり、そのクーパー対の形成機構の解明も続けられている。重い電子系は高温超電導体に必要な特殊な磁場を作ることで知られている。他にも、低温で半導体的・絶縁体的な電気伝導を示す物質群もあり、重い電子系の中でも、特に、近藤半導体または近藤絶縁体、近藤半金属と呼ばれている。その例としてはCeRhSb, CeRhAs, CePtSn, CeNiSn, YbB12, SmB6, Ce3Bi4Pt3などがあげられる。.

新しい!!: 近藤効果と重い電子系 · 続きを見る »

量子ドット

量子ドット(りょうしどっと、Quantum dot (QD)、古くは量子箱)とは、3次元全ての方向から移動方向が制限された電子の状態のことである。.

新しい!!: 近藤効果と量子ドット · 続きを見る »

量子色力学

量子色力学(りょうしいろりきがく、、略称: QCD)とは、素粒子物理学において、SU(3)ゲージ対称性に基づき、強い相互作用を記述する場の量子論である。.

新しい!!: 近藤効果と量子色力学 · 続きを見る »

臨界指数

臨界指数(りんかいしすう、英:Critical exponents)は、臨界点近傍での物理量の臨界挙動を記述するのに使われる指数定数。.

新しい!!: 近藤効果と臨界指数 · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 近藤効果と金 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 近藤効果と金属 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 近藤効果と鉄 · 続きを見る »

電気伝導

電気伝導(でんきでんどう、electrical conduction)は、電場(電界)を印加された物質中の荷電粒子を加速することによる電荷の移動現象、すなわち電流が流れるという現象。 電荷担体は主として電子であるが、イオンや正孔などもこれに該当する。荷電粒子の加速には抵抗力が働き、これを電気抵抗という。抵抗の主な原因として、格子振動や不純物などによる散乱が挙げられる。この加速と抵抗は、最終的には釣り合うことになる。.

新しい!!: 近藤効果と電気伝導 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: 近藤効果と電気抵抗 · 続きを見る »

電気抵抗率

電気抵抗率(でんきていこうりつ、英語:electrical resistivity)は、どんな材料が電気を通しにくいかを比較するために、用いられる物性値である。単に、抵抗率(resistivity)、比抵抗(specific electrical resistance)とも呼ばれる。単位は、オームメートル(Ω・m)である。慣例的に Ω・cm もよく使われる。 電気抵抗 R の値は、電気抵抗率を \rho(ロー)、導体の長さを l 、導体の断面積を A とすると次の式で示される。 すなわち、電気抵抗率 \rho の値は、次の式で表される。 電気抵抗率 \rho の逆数 \frac を電気伝導率(導電率)と呼ぶ。.

新しい!!: 近藤効果と電気抵抗率 · 続きを見る »

H. デビッド・ポリツァー

ヒュー・デビッド・ポリツァー(Hugh David Politzer, 1949年8月31日 – )はアメリカ合衆国の理論物理学者。デイビッド・グロス、フランク・ウィルチェックとともに、強い相互作用の理論における漸近的自由性の発見によって2004年度のノーベル物理学賞を授与された。 ポリツァーはニューヨークに生まれた。1966年にブロンクス理科高校を卒業し、学士号は1969年にミシガン大学で、博士号はシドニー・コールマンの指導の下で1974年にで取得した。1973年に出版された最初の論文では、クォークの距離が近づけば近づくほど、色荷に由来する強い相互作用が弱くなるという漸近的自由性の現象を指摘した。クオークが極端に近くなると、それらの間に働く核力が弱くなるので、自由な粒子のように振舞う。同じ頃、プリンストン大学のデイビッド・グロス、フランク・ウィルチェックにより独立に発見されていたこの結果は強い相互作用の理論を発展させる上で極めて重要なものだった。 トーマス・アップルキストとともに、ポリツァーはチャームクォークと反チャームクオークでできた素粒子であり、実験物理学者がジェイプサイ中間子と呼ぶチャーモニウムの存在の予言に中心的な役割を果たした。 ポリツァーは、カリフォルニア工科大学に移るまでの1974年から1977年まで、ハーバード大学のジュニアフェローの職に就き、現在はここの理論物理学の教授である。1989年、彼はポール・ニューマンがレズリー・グローヴス中将役を演じた映画、Fat Man and Little Boyに、マンハッタン計画に携わったロバート・サーバーとともに端役で出演した。.

新しい!!: 近藤効果とH. デビッド・ポリツァー · 続きを見る »

Progress of Theoretical Physics

Progress of Theoretical Physics(理論物理学の進歩)とは、京都大学基礎物理学研究所と日本物理学会の共同事業として刊行されている、英文の基礎物理学理論の学術論文誌(以下はPTPと表記する)。1946年に、湯川秀樹博士らによって刊行が始められた。の発表するインパクトファクターは、2010年現在、2.553。.

新しい!!: 近藤効果とProgress of Theoretical Physics · 続きを見る »

RKKY相互作用

RKKY相互作用(RKKYそうごさよう)とは、金属中の伝導電子のスピンを介して行われる局在スピン同士の相互作用である。この相互作用を導出した4人の物理学者(M.A. Ruderman、C. Kittel、T. Kasuya、K. Yoshida)の頭文字から、RKKY相互作用と命名された。.

新しい!!: 近藤効果とRKKY相互作用 · 続きを見る »

恩賜賞 (日本学士院)

恩賜賞(おんししょう)とは日本学士院の賞である。日本学士院は学術上特にすぐれた論文、著書その他の研究業績に対する授賞事業を行っている(日本学士院法第8条1項1号)。日本学士院による賞は、日本の学術賞としては最も権威ある賞である。恩賜賞は日本学士院による賞の中でも特に権威あるもので、本来は日本学士院賞(帝国学士院賞)とは別個の賞であったが、1970年からは毎年9件以内授賞される日本学士院賞の中から特に優れた各部1件乃至2件以内に皇室の下賜金で授賞されるものとなっている。1911年創設。.

新しい!!: 近藤効果と恩賜賞 (日本学士院) · 続きを見る »

格子欠陥

格子欠陥(こうしけっかん, Lattice Defect)とは、結晶において空間的な繰り返しパターンに従わない要素である。格子欠陥は大別すると「不純物」と「原子配列の乱れ」があり、後者だけを格子欠陥と呼ぶときがある。狭い意味では特に格子空孔(後述)を指すこともある。伝導電子や正孔も広い意味では格子欠陥に含まれる。.

新しい!!: 近藤効果と格子欠陥 · 続きを見る »

格子振動

格子振動(こうししんどう、英語:lattice vibration)は、結晶中の原子(格子)の振動のこと。振動の駆動力は熱であるが、絶対零度においても、不確定性原理から原子(格子)は振動している(零点振動)。 格子振動は、熱伝導の原因の一つであり、比熱とも関係が深い(→デバイ比熱)、また格子振動によって電子が散乱される(→電気伝導に影響)。 格子振動は、従来型の超伝導と深く関わっている(→BCS理論)。 量子化された格子振動がフォノン。 振動という意味では、単独の原子や、分子、クラスター、表面などでの各原子も振動していて、これらを量子化したものもフォノンである。.

新しい!!: 近藤効果と格子振動 · 続きを見る »

比熱容量

比熱容量(ひねつようりょう、英語:specific heat capacity)とは、圧力または体積一定の条件で、単位質量の物質を単位温度上げるのに必要な熱量のこと。単位は J kg−1 K−1 もしくは J g−1 K−1 が用いられる。水の比熱容量(18℃)は、1 cal g−1 K−1.

新しい!!: 近藤効果と比熱容量 · 続きを見る »

漸近的自由性

漸近的自由性(ぜんきんてきじゆうせい、Asymptotic freedom)とは、クォークなど粒子間に生じる力が近距離になるにつれ(エネルギースケールが大きくなるにつれ)弱くなる性質をいう。4次元の場の理論においては、特定のゲージ理論のもつ特徴である。漸近的自由性は高エネルギー散乱において、クォークが原子核内部を相互作用をしない自由粒子として振る舞う事を意味する。これは、素粒子物理における様々な事象についての散乱断面積を、を用い、正確に計算できる事を意味している。.

新しい!!: 近藤効果と漸近的自由性 · 続きを見る »

摂動

摂動(せつどう、 perturbation)とは、一般に力学系において、主要な力の寄与(主要項)による運動が、他の副次的な力の寄与(摂動項)によって乱される現象である。摂動という語は元来、古典力学において、ある天体の運動が他の天体から受ける引力によって乱れることを指していたが、その類推から量子力学において、粒子の運動が複数粒子の間に相互作用が働くことによって乱れることも指すようになった。なお、転じて摂動現象をもたらす副次的な力のことを摂動と呼ぶ場合がある。.

新しい!!: 近藤効果と摂動 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »