ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

流体

索引 流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

60 関係: せん断応力塑性境界層境界条件完全流体密度層流乱流平均自由行程保存則圧力圧縮率圧縮性流れナビエ–ストークス方程式マッハ数レイノルズ数レオンハルト・オイラーヘルムホルツの定理プラズマパスカルの原理ニュートン流体分子分散系エネルギー保存の法則オイラー方程式 (流体力学)クヌーセン数回転 (ベクトル解析)固体状態方程式 (熱力学)粘度粘弾性無次元量熱伝導物質相似則発散 (ベクトル解析)音速音波運動量保存の法則運動方程式非圧縮性流れ非ニュートン流体順圧衝撃波複素速度ポテンシャル調和関数質量保存の法則速度速度ポテンシャル連続の方程式...連続体連続体力学気体液体温度準静的過程流体力学流体静力学流れ流線 インデックスを展開 (10 もっと) »

せん断応力

せん断応力(剪断応力、せんだんおうりょく、)とは、物体内部のある面の平行方向に、すべらせるように作用する応力のことである。シヤー応力とも。物体内部の面積Aのある面に平行方向のせん断力T が作用している時、Aに作用する平均的な剪断応力\tau は\tau.

新しい!!: 流体とせん断応力 · 続きを見る »

塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

新しい!!: 流体と塑性 · 続きを見る »

境界層

境界層(きょうかいそう、boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって発見された。.

新しい!!: 流体と境界層 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 流体と境界条件 · 続きを見る »

完全流体

完全流体(かんぜんりゅうたい、perfect fluid)または理想流体(りそうりゅうたい、ideal fluid)、非粘性流体(ひねんせいりゅうたい、inviscid fluid)とは、流体力学において、粘性が存在しない流体のことである。粘性を持つ実在の流体を単純化したモデルとして用いられる。 粘性が存在しないとは、せん断応力が常に(流体が運動していても)存在しないことと同義である。粘性によるせん断応力は一般に抵抗力として働くので、この仮定は力学における摩擦力の無視に類似している。.

新しい!!: 流体と完全流体 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 流体と密度 · 続きを見る »

層流

層流(そうりゅう、英語:laminar flow)とは、各流体要素が揃って運動して作り出す流れのことである。.

新しい!!: 流体と層流 · 続きを見る »

乱流

乱流(らんりゅう、turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。 乱流の確立した定義は現時点においても存在しないが、数学的にはナヴィエ・ストークス方程式の非定常解の集合であるということができる。層流と乱流のおおよその区別はレイノルズ数によって判断され、レイノルズ数の値が大きいと乱流と判断される。また、層流が乱流に遷移するときのレイノルズ数を臨界レイノルズ数という。 生活の中でのわかりやすい例としては水道の蛇口から流れる水がある。水道の水は流れが少ないときはまっすぐに落ちるが、少し多くひねると急に乱れ出す。このとき前者が層流、後者が乱流である。生活の中で見られる空気や水の流れはほぼ全てが乱流であるだけでなく、熱や物質を輸送し拡散する効果が非常に強いので工学的にも非常に重要である。 乱流の数値シミュレーションは、気象予報や自動車等の空力設計からノートパソコンの冷却まで工学的には非常に幅広く利用されている。しかし高い計算機性能を要求するため、スーパーコンピュータなどHPC(高性能計算)の重要な用途の一つになっている。.

新しい!!: 流体と乱流 · 続きを見る »

平均自由行程

平均自由行程(へいきんじゆうこうてい、mean free path)または平均自由行路(へいきんじゆうこうろ)とは、物理学や化学のうち、気体分子運動論において、分子や電子などの粒子が、散乱源(同じ粒子の場合もあれば、異なる粒子の場合もある)による散乱(衝突)で妨害されること無く進むことのできる距離(これを自由行程という)の平均値のことを言う。粒子が平均自由行程だけ運動すると、平均として必ず他の粒子と1回衝突する。 平均自由行程は、その系の特性や粒子により異なってくる。そのため、一般的な場合、ランダムな速度を持った粒子が、散乱源に衝突するまでの距離として、次の式で表記される。 ただし、\ellは平均自由行程(単位m)で、n は散乱源の数密度(m-3)、σは散乱時の有効断面積(m2)である。粒子の速度がマクスウェル分布に従うと仮定される場合、平均自由行程は次式で表せる。.

新しい!!: 流体と平均自由行程 · 続きを見る »

保存則

保存則(ほぞんそく、conservation law)とは、物理的変化あるいは化学的変化の前後で物理量(あるいは物理量の結合)の値が変わらない、という法則出典:『ブリタニカ国際大百科事典』「保存則」。言い方を変えると、。保存則が成り立つ系のことを保存系と呼ぶ。 最も基本的な保存則としては、運動量保存則、角運動量保存則、エネルギー保存則、質量保存則、電荷保存則などがある。 ネーターの定理により、系が持つある一つの保存則は系の持つ一つの対称性に対応することが示されている。 なお、保存則の破れ(例外)が発見されることで、新しい物理理論が構築されるきっかけとなることがある。.

新しい!!: 流体と保存則 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 流体と圧力 · 続きを見る »

圧縮率

圧縮率(あっしゅくりつ、Compressibility)とは、系にかかる圧力に対して、系の体積がどの程度変化するかを表す状態量である。.

新しい!!: 流体と圧縮率 · 続きを見る »

圧縮性流れ

圧縮性流れ(あっしゅくせいながれ)とは、流体力学における、密度が圧力の変化に応じて変化する流体である。縮む流体、圧縮流とも呼ばれる。圧縮性は特に気体で顕著に現れるため、圧縮性流れを扱う分野は、高速空気力学とも呼ばれる。 逆に密度が圧力によって変化しない流れを非圧縮性流れという。圧縮性流れと非圧縮性流れの最も顕著な違いは、圧縮性流れモデルは衝撃波とチョーク流れの存在を可能にすることである。.

新しい!!: 流体と圧縮性流れ · 続きを見る »

ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

新しい!!: 流体とナビエ–ストークス方程式 · 続きを見る »

マッハ数

マッハ数(マッハすう、Mach number)は、流体の流れの速さと音速との比で求まる無次元量である。 名称は、オーストリアの物理学者エルンスト・マッハ(Ernst Mach)に由来し、航空技師のにより名付けられた。英語圏ではMachを英語読みして(マーク・ナンバ)、あるいは、(メァク・ナンバ)と呼ぶ。.

新しい!!: 流体とマッハ数 · 続きを見る »

レイノルズ数

レイノルズ数(Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。 概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが、レイノルズ数はオズボーン・レイノルズ (1842–1912) の名にちなんで名づけられており、1883年にその利用法について普及させた。 流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。 また、レイノルズ数は層流や乱流のように異なる流れ領域を特徴づけるためにも利用される。層流については、低いレイノルズ数において発生し、そこでは粘性力が支配的であり、滑らかで安定した流れが特徴である。乱流については、高いレイノルズ数において発生し、そこでは慣性力が支配的であり、無秩序な渦や不安定な流れが特徴である。 実際には、レイノルズ数の一致のみで流れの相似性を保証するには十分ではない。流体流れは一般的には無秩序であり、形や表面の粗さの非常に小さな変化が異なる流れをもたらすことがある。しかしながら、レイノルズ数は非常に重要な指標であり、世界中で広く使われている。.

新しい!!: 流体とレイノルズ数 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: 流体とレオンハルト・オイラー · 続きを見る »

ヘルムホルツの定理

ヘルムホルツの定理(ヘルムホルツのていり、Helmholtz's theorem)とは、ベクトル解析における定理の一つ。ヘルムホルツの定理により、任意のベクトル場を回転なしの場と発散なしの場に分解できることが示される。回転なしの場は元の場の波数空間における縦成分、発散なしの場は元の場の波数空間における横成分に対応し、ベクトル場をこれらの成分に分解することをヘルムホルツ分解 と呼ぶ。定理の名はドイツの物理学者ヘルマン・フォン・ヘルムホルツに因む。 ベクトル解析の応用として、物理学の特に電磁気学や流体力学などでしばしば利用されている。.

新しい!!: 流体とヘルムホルツの定理 · 続きを見る »

プラズマ

プラズマ(英: plasma)は固体・液体・気体に続く物質の第4の状態R.

新しい!!: 流体とプラズマ · 続きを見る »

パスカルの原理

流体のはいった容器の一点に力を及ぼすと容器表面のすべての単位面積の面素に、垂直で同じ大きさの内部の力(接触力)が発生する。この図では重力の影響は無視している。 パスカルの原理(パスカルのげんり、英語:Pascal's principle)は、ブレーズ・パスカルによる「密閉容器中の流体は、その容器の形に関係なく、ある一点に受けた単位面積当りの圧力ここでの「圧力」は容器に垂直で圧縮する向きの「力」という意味であり、本来の「圧力」(単位面積当たりの力の法線成分)ではない。をそのままの強さで、流体の他のすべての部分に伝える。」パスカル「液体の平衡及び空気の質量の測定についての論述」の紹介 http://www.kanazawa-it.ac.jp/dawn/166301.htmlという流体静力学における基本原理である。.

新しい!!: 流体とパスカルの原理 · 続きを見る »

ニュートン流体

ニュートン流体(ニュートンりゅうたい、Newtonian fluid)は、流れのせん断応力(接線応力)と流れの速度勾配(ずり速度、せん断速度)が比例した粘性の性質を持つ流体のこと。この流れのことをニュートン流動と言う。 比例関係が成立した粘性率は、流体の種類によって固有の物性値であることが表される。これをニュートンの粘性法則と言う。 直交座標による空間を考え、そこでx方向に流体による流れが存在すると考える。簡単のため境界等の効果は考えないものとする。x-y平面を考えると、その面を境にして流体は力(応力)を及ぼし合っていて、面に垂直な方向(法線方向)の単位面積当りに働く力が圧力であり、面に平行な方向(接線方向)の単位面積当りに働く力を接線応力と言う。 流れている流体の粘性率をμとして、x 方向の流れの速さをux とすると、接線応力τxy は、 となる。この時、 \partial u_x / \partial y をずり速度と言う。ニュートン流体は、粘性率μがこのずり速度に依存せず、接線応力が上式で表現できる。 3次元に一般化した場合、上式はテンソル表示され次のようになる。 &\tau.

新しい!!: 流体とニュートン流体 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 流体と分子 · 続きを見る »

分散系

分散系(ぶんさんけい)とは、サイズが1nmから1000nm(1µm)程度の粒子が、気体、液体あるいは固体に浮遊あるいは懸濁している物質である。このように浮遊あるいは懸濁する現象を分散(dispersion)と呼ぶ。.

新しい!!: 流体と分散系 · 続きを見る »

エネルギー保存の法則

ネルギー保存の法則(エネルギーほぞんのほうそく、law of the conservation of energy)とは、「孤立系のエネルギーの総量は変化しない」という物理学における保存則の一つである。しばしばエネルギー保存則とも呼ばれる。 任意の異なる二つの状態について、それらのエネルギー総量の差がゼロであることをいう。たとえば、取り得る状態がすべて分かっているとして、全部で つの状態があったとき、それらの状態のエネルギーを と表す。エネルギー保存の法則が成り立つことは、それらの差について、 が成り立っていることをいう。 時間が導入されている場合には、任意の時刻でエネルギー総量の時間変化量がゼロであることをいい、時間微分を用いて表現される。 エネルギー保存の法則は、物理学の様々な分野で扱われる。特に、熱力学におけるエネルギー保存の法則は熱力学第一法則 と呼ばれ、熱力学の基本的な法則となっている。 熱力学第一法則は、熱力学において基本的な要請として認められるものであり、あるいは熱力学理論を構築する上で成立すべき定理の一つである。第一法則の成立を前提とする根拠は、一連の実験や観測事実のみに基づいており、この意味で第一法則はいわゆる経験則であるといえる。一方でニュートン力学や量子力学など一般の力学において、エネルギー保存の法則は必ずしも前提とされない。.

新しい!!: 流体とエネルギー保存の法則 · 続きを見る »

オイラー方程式 (流体力学)

流体力学におけるオイラー方程式(オイラーほうていしき、Euler equations)とは、完全流体を記述する運動方程式である巽『連続体の力学』 p.142。 この方程式は1755年にレオンハルト・オイラーにより定式化された。完全流体とは粘性を持たない流体である。粘性がないため、境界条件として壁面でのすべりを許す必要がある。 高マッハ数の圧縮性流れでは、流速が大きいことから粘性や乱流の効果は壁面近くの小さな領域にしか現れないため、オイラー方程式を用いて流れの解析が行われる。 オイラー方程式は で表される。ここで は流体の速度場、 は密度場、 は圧力場で、 は流体の質量当たりにかかる外力場(加速度場)である。これはナビエ-ストークス方程式から粘性項を省いたものと同じである。 ベクトル解析の公式から と変形されるので、オイラー方程式は となる。ここで は流体の渦度である。 さらに密度が圧力だけで決まる順圧の場合には圧力関数 を導入すれば と表される。外力が重力のような保存力である場合には、外力のポテンシャルを として であり、オイラー方程式は となる。.

新しい!!: 流体とオイラー方程式 (流体力学) · 続きを見る »

クヌーセン数

ヌーセン数(Knudsen number、Kn )は流体力学で用いられる無次元量のひとつであり、流れ場が連続体として扱えるか否かを決定する。1より十分小さければ(たとえばKn )連続体とみなしてよい。名前はデンマークの物理学者マルティン・クヌーセンに因む。 クヌーセン数は次の式で定義される: ここで.

新しい!!: 流体とクヌーセン数 · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: 流体と回転 (ベクトル解析) · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: 流体と固体 · 続きを見る »

状態方程式 (熱力学)

態方程式(じょうたいほうていしき、)とは、熱力学において、状態量の間の関係式のことをいう。巨視的な系の熱力学的性質を反映しており、系によって式の形は変化する田崎『熱力学』 pp.51-52。状態方程式の具体的な形は実験的に決定されるか、統計力学に基づいて計算され、熱力学からは与えられない。 広義には、全ての状態量の間の関係式のことであるが、特に、流体の圧力を温度、体積と物質量で表す式を指す場合が多い。 流体だけでなく固体に対しても、その熱力学的性質を表現する状態方程式を考えることが出来る。磁性体や誘電体でも状態方程式を考える場合もある。主に熱平衡における系の温度と他の状態量との関係を表す関係式を指すが、必ずしも温度との関係を表すとは限らない。温度依存性を考えない形の関係式は構成方程式と呼ばれることもある。.

新しい!!: 流体と状態方程式 (熱力学) · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: 流体と粘度 · 続きを見る »

粘弾性

粘弾性(ねんだんせい、)とは粘性と弾性の両方を合わせた性質のことである。基本的にすべての物質が持つ性質であるが、特にプラスチックやゴムなどの高分子物質に顕著に見られる。.

新しい!!: 流体と粘弾性 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: 流体と無次元量 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 流体と熱伝導 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: 流体と物質 · 続きを見る »

相似則

力学における相似則(そうじそく、law of similarity (similitude), similarity rule)とは、複数の、ある意味で相似な系における物理量の比が系の大きさによらないある一定値をとるという法則である。たとえば物理現象の基礎方程式が線形の場合、入力と出力は比例し、その比は一定になる。.

新しい!!: 流体と相似則 · 続きを見る »

発散 (ベクトル解析)

ベクトル解析における発散(はっさん、divergence)は、各点においてベクトル場のの大きさを符号付きスカラーの形で測るベクトル作用素である。より技術的に言えば、発散が表すのは与えられた点の無限小近傍領域から出る流束の体積密度である。例えば、空気を熱したり冷ましたりするものとして考えると、各点において空気の移動速度を与えるベクトル場を例にとることができる。領域内で空気を熱すれば空気は全方向へ膨張していくから、速度場は領域の外側をさしていることになり、従って速度場の発散はこの領域で正の値をとり、この領域は流入(あるいは湧き出し、湧出、source)域であることが示される。空気を冷まして収縮させるなら、発散の値は負となり、この領域は流出(あるいは沈み込み、排出、sink)域と呼ばれる。.

新しい!!: 流体と発散 (ベクトル解析) · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: 流体と音速 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: 流体と音波 · 続きを見る »

運動量保存の法則

運動量保存の法則(うんどうりょうほぞんのほうそく)とは、ある系に外部からの力が加わらないかぎり、その系の運動量の総和は不変であるという物理法則。運動量保存則ともいう。最初、デカルトが『哲学原理』の中で、質量と速さの積の総和を神から与えられた不変量として記述したが、ベクトルを用いて現在の形の運動量とその保存則を導いたのはホイヘンスである。 外部からの力が働かない問題の例としては、物体の衝突問題がある。二体の衝突問題は、エネルギー保存の法則と運動量保存の法則を考えることで解くことができる。完全弾性衝突のときのみ物体の運動エネルギーは保存される。.

新しい!!: 流体と運動量保存の法則 · 続きを見る »

運動方程式

運動方程式(うんどうほうていしき)とは、物理学において運動の従う法則を数式に表したもの。英語の equation of motion から EOM と表記されることもある。 以下のようなものがある。.

新しい!!: 流体と運動方程式 · 続きを見る »

非圧縮性流れ

非圧縮性流れ(ひあっしゅくせいながれ)とは流体力学において、流体粒子の内部で密度が一定の流体である。縮まない流体とも呼ばれる。連続体力学における非圧縮性の概念を流体に適用したものである。 言い換えると、非圧縮性とは流体の速度の発散が 0 になることである(この表現が等価である理由は後述)。 非圧縮性流れは、流体自体が非圧縮性であることを意味するものではない。圧縮性流体でも(適切な条件の下で)良い近似で非圧縮性流れとしてモデル化できる。非圧縮性流れは流体と同じ速度で移動する流体粒子の中で密度が一定であることを意味する。 非圧縮性流れに対して、密度が変化する流れを圧縮性流れという。厳密な意味での非圧縮性流れは自然界には存在しないが、一般的に流れのマッハ数(局所音速と流速との比)が小さい流れに対しては圧縮性の影響は無視できる。マッハ数が0.3を超えるか、または流体が非常に大きな圧力変化を受ける場合に、圧縮性の影響は考慮される。.

新しい!!: 流体と非圧縮性流れ · 続きを見る »

非ニュートン流体

非ニュートン流体(ひニュートンりゅうたい、Non-Newtonian fluid)は、流れの剪断応力(接線応力)と流れの速度勾配(ずり速度、剪断速度)の関係が線形ではない粘性の性質を持つ流体のこと。ニュートン流体に当てはまらない流体の総称を指し、この流れのことを非ニュートン流動()と言う。 ニュートンの粘性法則において、剪断応力(接線応力)τ は、流れの速度勾配(ずり速度、剪断速度)∂u /∂y に比例する。ニュートン流体の場合、その比例係数μは定数となり次式で表される: したがって、流れの粘性の度合いはその比例係数である粘性率 μ の大きさによって表される。非ニュートン流体とは、剪断応力と速度勾配がこのような比例関係にない流体の総称である。.

新しい!!: 流体と非ニュートン流体 · 続きを見る »

順圧

流体力学において、流体が順圧(じゅんあつ)である、あるいはバロトロピック( barotropic)であるとは、圧力が密度のみに依存すること、すなわち、等圧面と等密度面が一致することをいう。 天体力学で、恒星内部の流体のモデルとして使われるポリトロピック流体(圧力が密度のべき乗で表せる流体)もバロトロピック流体のよく知られた例である。また、密度一定の流体(ρ.

新しい!!: 流体と順圧 · 続きを見る »

衝撃波

衝撃波(しょうげきは、shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。.

新しい!!: 流体と衝撃波 · 続きを見る »

複素速度ポテンシャル

複素速度ポテンシャル(ふくそそくどぽてんしゃる、complex velocity potential)とは、流体力学において、ある特別な状況下で流れ場の解析を容易にするために用いられる量である。.

新しい!!: 流体と複素速度ポテンシャル · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: 流体と調和関数 · 続きを見る »

質量保存の法則

質量保存の法則(しつりょうほぞんのほうそく、law of conservation of mass)とは「化学反応の前と後で物質の総質量は変化しない」とする化学の法則のことである。現在は自然の基本法則ではないことが知られているが、実用上広く用いられている。.

新しい!!: 流体と質量保存の法則 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 流体と速度 · 続きを見る »

速度ポテンシャル

速度ポテンシャル(そくどポテンシャル、Velocity potential)は、流体力学において、渦なし流れの解析に用いられる。速度ポテンシャルを持つ流れをポテンシャル流と呼ぶ。 速度ポテンシャルΦは次式を満たすようなスカラー場である。 ただし、u は流体の速度であり、渦なし、つまり を満たす。これはベクトル解析における の性質を用いている(ナブラ#二階微分を参照)。 一般のポテンシャルと異なり、速度ポテンシャルの定義には負号がつかないことに注意。.

新しい!!: 流体と速度ポテンシャル · 続きを見る »

連続の方程式

連続の方程式(れんぞくのほうていしき、equation of continuity、連続方程式、連続の式、連続式などとも言う)は物理学で一般的に適用できる方程式で、「原因もなく物質が突然現れたり消えたりすることはない」という自然な考え方を表す。保存則と密接に関わっている。 狭義には流体力学における質量保存則 + \nabla \cdot (\rho \boldsymbol).

新しい!!: 流体と連続の方程式 · 続きを見る »

連続体

連続体(れんぞくたい、continuum ).

新しい!!: 流体と連続体 · 続きを見る »

連続体力学

連続体力学 (れんぞくたいりきがく、Continuum mechanics)とは、物理的対象を連続体という空間的広がりを持った物体として理想化してその力学的挙動を解析する物理学の一分野である。連続体力学では対象である連続体を巨視的に捉え、分子構造のような内部の微視的な構造が無視できるなめらかなものであり、力を加えることで変形するものとみなす。 主な連続体として弾性体と流体がある。直観的には弾性体とは圧力を取り除くと元の状態に復帰する固体であり、流体は気体、液体、プラズマを記述するものである。 連続体力学は物体を空間上の一点に近似して扱う質点の力学とは区別され、物体の変形を許容しない剛体の力学とも区別される。剛体は、変形しにくさを表す量である弾性係数が無限大である(すなわち一切変形しない)連続体であるとみなすこともできる。 連続体の力学は材料力学、水力学、土質力学といった応用力学、およびそれらの応用分野である材料工学、化学工学、機械工学、航空宇宙工学などで用いられる。.

新しい!!: 流体と連続体力学 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 流体と気体 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 流体と液体 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 流体と温度 · 続きを見る »

準静的過程

準静的過程(じゅんせいてきかてい、quasistatic process)とは、系が熱力学的平衡の状態を保ったまま、ある状態から別の状態へとゆっくり変化する過程を指す熱力学上の概念である。.

新しい!!: 流体と準静的過程 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: 流体と流体力学 · 続きを見る »

流体静力学

流体静力学(りゅうたいせいりきがく、fluid statics, hydrostatics)は静止流体についての科学であり、流体力学の一分野である。流体静力学という用語は通常、対象物の力学的取り扱いを指し、流体が安定した平衡下の状態についての研究を含んでいる。仕事をする流体の活用は水理学と呼ばれ、動的な流体についての科学は流体動力学と呼ばれる。.

新しい!!: 流体と流体静力学 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: 流体と流れ · 続きを見る »

流線

流線(りゅうせん、streamline)とは、ある瞬間における、流れ場の速度ベクトルを接線とする曲線(群)のことである。.

新しい!!: 流体と流線 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »