ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

衝撃波

索引 衝撃波

衝撃波(しょうげきは、shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。.

53 関係: 原子大気圏再突入太陽系太陽風媒質人工衛星圧力圧力波圧縮性流れマッハ数ランキン・ユゴニオの式ルートヴィヒ・プラントルロケットピエール=アンリ・ユゴニオベルンハルト・リーマンウィリアム・ランキンエルンスト・マッハシュリーレン現象ソニックブーム光子光速CJ理論火山理想気体空気力学空振素粒子爆轟隕石銀河系音速音波荷電粒子衝撃波管衝撃波自励振動超音速跳水開水路電子電子軌道電磁波速度造波抵抗連続 (数学)ZND理論核実験戦闘機...星間物質流体断熱過程 インデックスを展開 (3 もっと) »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 衝撃波と原子 · 続きを見る »

大気圏再突入

ミュレーション画像 大気圏再突入(たいきけんさいとつにゅう、atmospheric reentry)とは、宇宙船などが真空に近い宇宙空間から地球などの大気圏に進入すること。単に再突入(さいとつにゅう、)ともいう。宇宙飛行においては最も危険が大きいフェイズのひとつである。大気圏突入(たいきけんとつにゅう、atmospheric entry)と言う場合は、隕石など外来の物体も含む広義の使われ方であるのに対し、大気圏再突入は地上から打ち上げた宇宙機や物体の帰還に限って言う。.

新しい!!: 衝撃波と大気圏再突入 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: 衝撃波と太陽系 · 続きを見る »

太陽風

太陽風(たいようふう、Solar wind)は、太陽から吹き出す極めて高温で電離した粒子(プラズマ)のことである。これと同様の現象はほとんどの恒星に見られ、「恒星風」と呼ばれる。なお、太陽風の荷電粒子が存在する領域は太陽圏と呼ばれ、それと恒星間領域の境界はヘリオポーズと呼ばれる。.

新しい!!: 衝撃波と太陽風 · 続きを見る »

媒質

媒質(ばいしつ、medium)とは波動が伝播する場となる物質・物体のことである。.

新しい!!: 衝撃波と媒質 · 続きを見る »

人工衛星

GPS衛星の軌道アニメーション 人工衛星(じんこうえいせい)とは、惑星、主に地球の軌道上に存在し、具体的な目的を持つ人工天体。地球では、ある物体をロケットに載せて第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s.

新しい!!: 衝撃波と人工衛星 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 衝撃波と圧力 · 続きを見る »

圧力波

圧力波(あつりょくは)は、流体中に見られる波の一形態である。音波・電磁波・衝撃波(空気中)は圧力波の一部である。圧力波の場合、液体中の気泡がそれ自身の運動、特に膨張・収縮(体積)運動によって音を発生することにある。 Category:圧力 Category:波.

新しい!!: 衝撃波と圧力波 · 続きを見る »

圧縮性流れ

圧縮性流れ(あっしゅくせいながれ)とは、流体力学における、密度が圧力の変化に応じて変化する流体である。縮む流体、圧縮流とも呼ばれる。圧縮性は特に気体で顕著に現れるため、圧縮性流れを扱う分野は、高速空気力学とも呼ばれる。 逆に密度が圧力によって変化しない流れを非圧縮性流れという。圧縮性流れと非圧縮性流れの最も顕著な違いは、圧縮性流れモデルは衝撃波とチョーク流れの存在を可能にすることである。.

新しい!!: 衝撃波と圧縮性流れ · 続きを見る »

マッハ数

マッハ数(マッハすう、Mach number)は、流体の流れの速さと音速との比で求まる無次元量である。 名称は、オーストリアの物理学者エルンスト・マッハ(Ernst Mach)に由来し、航空技師のにより名付けられた。英語圏ではMachを英語読みして(マーク・ナンバ)、あるいは、(メァク・ナンバ)と呼ぶ。.

新しい!!: 衝撃波とマッハ数 · 続きを見る »

ランキン・ユゴニオの式

ランキン・ユゴニオの式(ランキン・ユゴニオのしき、Rankine-Hugoniot equation)、またはランキン・ユゴニオ関係式とは、垂直衝撃波の通過前後における物理量の関係を表す次の式のことである: & \frac.

新しい!!: 衝撃波とランキン・ユゴニオの式 · 続きを見る »

ルートヴィヒ・プラントル

ルートヴィヒ・プラントル ルートヴィヒ・プラントル(Ludwig Prandtl 、1875年2月4日 - 1953年8月15日)はドイツの物理学者。空気力学の方面で業績を上げた。境界層、薄翼の理論、揚力線理論を研究した。無次元量のプラントル数の命名者である。 ミュンヘン近郊のフライジンクに生れた。父親も工学の教授である。1894年ミュンヘン大学に入学し固体物理を学んで、機械設計者になった。流体機械の設計から流体力学の分野に加わるようになった。 1901年ハノーファー工科大学(現ゴットフリート・ヴィルヘルム・ライプニッツ大学ハノーファー)の教授になった。1904年に境界層に関する論文を執筆した。ゲッティンゲン大学に移り、航空流体工学の先端研究機関とした。1925年にカイザー・ヴィルヘルム・流体力学研究所(Kaiser-Wilhelm-Institut für Strömungsforschung)を創立した。 フレデリック・ランチェスターと3次元翼の理論(ランチェスター=プラントル理論または揚力線理論)を1918年から1919年に発表した。キャンバーをもつ薄翼の理論も研究した。翼端効果の重要性を示した。それまで考慮されなかった翼端渦が抗力を引き起こすことを示した。 1908年にテオドル・マイヤー(Theodor Meyer )と共に、超音速衝撃波の理論を初めて示した。超音速風洞の構造も考案した。 その他にハーマン・グロワート(''Hermann Glauert'' 、英、1892年 - 1934年)とともにプラントル=グロワートの法則に名前を残している。.

新しい!!: 衝撃波とルートヴィヒ・プラントル · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

新しい!!: 衝撃波とロケット · 続きを見る »

ピエール=アンリ・ユゴニオ

ピエール=アンリ・ユゴニオ(Pierre-Henri Hugoniot、1851年6月5日 - 1887年)は、フランスの発明家、数学者、物理学者。流体力学の分野で大きな成果を残した。 ランキン・ユゴニオの式やユゴニオ弾性限界などは彼の名前にちなんで命名されたものである。 フランス東部のドゥー県生まれ。1872年にエコール・ポリテクニークを卒業後、海軍に入る。 1879年から1882年にかけてロリアン砲兵学校の教員を務め、1882年から1884年にかけて海軍の大砲中央研究所副所長を務めた 1884年1月に大尉に昇進し、4月にはエコール・ポリテクニークの助教授に任命され、:fr:Hippolyte Sebertと共に大砲の発射薬の研究を行った。.

新しい!!: 衝撃波とピエール=アンリ・ユゴニオ · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 衝撃波とベルンハルト・リーマン · 続きを見る »

ウィリアム・ランキン

ウィリアム・ランキン(William John Macquorn Rankine 、1820年7月5日 - 1872年12月24日)は19世紀イギリス(スコットランド)の物理学者、工学者、技術者。エディンバラ生まれ。1855年から終生、グラスゴー大学の欽定教授の任にあった。グラスゴーで没。父親も技術者であった。 物理学者としては熱力学の分野で業績を残した。長らく主流であった熱素説を否定し、「エネルギー」の用語と概念を導入した。ほぼ同時期のトムソン(ケルヴィン卿)、クラウジウスと並んで、熱力学の基礎を作った人物だと評価されている。温度の単位「蘭氏」(ランキン度)は彼の名前に因む。.

新しい!!: 衝撃波とウィリアム・ランキン · 続きを見る »

エルンスト・マッハ

ルンスト・ヴァルトフリート・ヨーゼフ・ヴェンツェル・マッハ(、 1838年2月18日 - 1916年2月19日)は、オーストリアの物理学者、科学史家、哲学者。 オーストリア帝国モラヴィア州ヒルリッツ Chirlitz(現チェコのモラヴィア、フルリツェ Chrlice)出身のモラヴィア・ドイツ人である。.

新しい!!: 衝撃波とエルンスト・マッハ · 続きを見る »

シュリーレン現象

ュリーレン現象(シュリーレンげんしょう)とは、透明な媒質の中で場所により屈折率が違うとき、その部分にしま模様やもや状の影が見える現象である。屈折率の差が大きければ肉眼でも観測される。この現象を利用した流体の光学的観測法をシュリーレン法と呼ぶ。シュリーレンはドイツ語の Schliere(むら)に由来する。 砂糖や食塩などの結晶を水中に入れて放置したり、溶質の濃度が大きく異なる2種類の水溶液を混合したときに発生するもやのようなゆらぎはシュリーレン現象である。 また、暑い日、長時間直射日光が当たった自動車などの上に、もやのようなものが立ち上ることがあるが、これは温度によって空気の密度が異なることで屈折率が変わり生じるもので、シュリーレン現象の1つである。これは陽炎と呼ばれている。.

新しい!!: 衝撃波とシュリーレン現象 · 続きを見る »

ソニックブーム

ニックブーム(sonic boom)とは、主に戦闘機などの超音速飛行により発生する衝撃波が生む、轟くような大音響のこと。衝撃波以外の原因で生じる単発的な大音響を含める場合もある。 地上で観測される轟音は衝撃波が減衰したものと、地上の物体を衝撃波が広範囲に鳴動させて発生するものが主体で、空中の飛行機内などでは轟くような音にならない(何かがぶつかったように聞こえる)。.

新しい!!: 衝撃波とソニックブーム · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 衝撃波と光 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 衝撃波と光子 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 衝撃波と光速 · 続きを見る »

CJ理論

CJ理論 CJ理論(CJりろん、Chapman-Jouguet condition)とは、デヴィッド・レナード・チャップマン(David Leonard Chapman, 1869年–1958年)とジャック・ジュグエ(Jacques Charles Emile Jouguet, 1871年–1943年)が提唱した流体力学と熱力学に基づく一次元の定常爆轟波に関する理論である。チャップマンは1899年、ジュグエは1906年に論文を発表している。 現在でも爆薬の計算には広く用いられている最も一般的な爆轟理論である。 CJ理論では爆薬中を伝わる爆轟波の構造は図のようになっていると考えられている。爆薬の中に衝撃波が入射すると爆薬が反応を開始して衝撃波の背後に反応帯が出来る。この反応が一応、終わったとみなされる点がC-J点 (Chapman-Jouguet Point) である。衝撃波の先端からC-J点までの距離を反応帯の幅としている。 爆薬の爆轟により空気中にも衝撃波が投射される。そのため、爆発生成ガス中には逆に希薄波が発生し、希薄波の内部では圧力が低下するために反応が弱められる。爆薬中の衝撃波面と希薄波に囲まれた部分を爆轟頭と言う。.

新しい!!: 衝撃波とCJ理論 · 続きを見る »

火山

火山(かざん、)は、地殻の深部にあったマグマが地表または水中に噴出することによってできる、特徴的な地形をいう。文字通りの山だけでなく、カルデラのような凹地形も火山と呼ぶ。火山の地下にはマグマがあり、そこからマグマが上昇して地表に出る現象が噴火である。噴火には、様々な様式(タイプ)があり、火山噴出物の成分や火山噴出物の量によってもその様式は異なっている。 火山の噴火はしばしば人間社会に壊滅的な打撃を与えてきたため、記録や伝承に残されることが多い。 は、ローマ神話で火と冶金と鍛治の神ウルカヌス(ギリシア神話ではヘーパイストス)に由来し、16世紀のイタリア語で または と使われていたものが、ヨーロッパ諸国語に入った。このウルカヌス(英語読みではヴァルカン)は、イタリアのエトナ火山の下に冶金場をもつと信じられていた。シチリア島近くのヴルカーノ島の名も、これに由来する。日本で の訳として「火山」の語が広く用いられるようになったのは、明治以降である。.

新しい!!: 衝撃波と火山 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: 衝撃波と理想気体 · 続きを見る »

空気力学

気力学(くうきりきがく、aerodynamics)とは、流体力学の一種で、空気(または他の気体)の運動作用や、空気中を運動する物体への影響を扱う。航空分野においては航空力学と関係している。.

新しい!!: 衝撃波と空気力学 · 続きを見る »

空振

振(くうしん)は、火山の噴火や、核実験などに伴って発生する空気中を伝わる空気振動である。圧力波の1種とされる。.

新しい!!: 衝撃波と空振 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 衝撃波と素粒子 · 続きを見る »

爆轟

轟(ばくごう、detonation)とは、気体の急速な熱膨張の速度が音速を超え衝撃波を伴いながら燃焼する現象である。.

新しい!!: 衝撃波と爆轟 · 続きを見る »

隕石

隕石(いんせき、)とは、惑星間空間に存在する固体物質が地球などの惑星の表面に落下してきたもののこと平凡社『世界大百科事典』1988年版 vol.2, p.42 「隕石」。武田弘 + 村田定男 執筆培風館『物理学辞典』1992、 p.108 「隕石」。 「隕」が常用漢字に含まれていないため、「いん石」とまぜ書きされることもある。昔は「天隕石」「天降石」あるいは「星石」などと書かれたこともある。.

新しい!!: 衝撃波と隕石 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 衝撃波と銀河系 · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: 衝撃波と音速 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: 衝撃波と音波 · 続きを見る »

鞭(笞、むち)は、人や動物を打つための細長い竹の棒、もしくは棒状の柄に革紐や鎖などを取り付けた道具。.

新しい!!: 衝撃波と鞭 · 続きを見る »

荷電粒子

荷電粒子(かでんりゅうし)とは、電荷を帯びた粒子のこと。通常は、イオン化した原子や、電荷を持った素粒子のことである。 核崩壊によって生じるアルファ線(ヘリウムの原子核)やベータ線(電子)は、荷電粒子から成る放射線である。質量の小さな粒子が電荷を帯びると、電場によって正と負の電荷が引き合ったり、反対に正と正、負と負が反発しあったりするクーロン力を受けたり、また磁場中でこういった粒子が運動することで進行方向とは直角方向に生じる力を受けたりする。これら2つの力をまとめてローレンツ力というが、磁場によって生じる力のほうが大きい場合には電界による力を無視して、磁場の力だけをローレンツ力と言うことがある。これはローレンツ力の定義式にある電界の項をゼロとおき(電界の影響が小さいため無視する)、磁場の影響だけを計算した結果で、近似である。詳しくはローレンツ力を参照。.

新しい!!: 衝撃波と荷電粒子 · 続きを見る »

衝撃波管

衝撃波管(しょうげきはかん、ショックチューブ、英: shock tube)は、管内に発生する衝撃波を利用して、主として気相中の燃焼反応を研究するための実験装置である。衝撃波管およびショックトンネルなどの類似装置は、他の実験装置ではデータを得ることが困難であるような、広範な温度・圧力範囲に渡る流体力学研究にも使用することができる。.

新しい!!: 衝撃波と衝撃波管 · 続きを見る »

衝撃波自励振動

衝撃波自励振動(しょうげきはじれいしんどう)とは遷音速流中の衝撃波と境界層の干渉によって起きる衝撃波の振動現象である。 衝撃波自励振動は外部流、内部流のどちらでも発生することが報告されている。例えば、外部流としては超臨界翼、内部流としては翼・翼列、ディフューザなどにおける振動がある。.

新しい!!: 衝撃波と衝撃波自励振動 · 続きを見る »

超音速

超音速(ちょうおんそく、supersonic speed)とは、媒質中で移動する物体と媒質の相対速度が、その媒質における音速を超えること、およびその速度を指す。 音速との比であるマッハ数を使えば、マッハ数が1より大きいとも定義できる。 ただし、速度単位としてのマッハは対気速度で気温や気圧によって変化する。便宜上、超音速機のカタログスペックにおいては、対地速度1225km/h(340.31m/s、15℃・1気圧)をマッハ1とすることが多いが、この場合は物理現象としての音速・超音速とは扱いが異なる。.

新しい!!: 衝撃波と超音速 · 続きを見る »

跳水

ダム放流の跳水 thumb 跳水(ちょうすい、hydraulic jump)とは、開水路流れにおいて、射流から常流に変わるときに、流れの速度が減少し、水深が急激に増大する現象である。.

新しい!!: 衝撃波と跳水 · 続きを見る »

開水路

開水路(かいすいろ、open channel)とは、水面を持つ水路およびその流れの区分のことである日下部・檀・湯城『水理学』、p.38。.

新しい!!: 衝撃波と開水路 · 続きを見る »

住宅近郊への落雷 稲妻 雷(かみなり、いかずち)とは、雲と雲との間、あるいは雲と地上との間の放電によって、光と音を発生する自然現象のこと。 なお、ここでは「気象現象あるいは神話としての雷」を中心に述べる。雷の被害とその対策・回避方法については「落雷」を参照のこと。.

新しい!!: 衝撃波と雷 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 衝撃波と電子 · 続きを見る »

電子軌道

軌道はエネルギーの固有関数である。 電子軌道(でんしきどう、)とは、電子の状態を表す、座標表示での波動関数のことを指す。電子軌道は単に「軌道」と呼ばれることもある。.

新しい!!: 衝撃波と電子軌道 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 衝撃波と電磁波 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 衝撃波と速度 · 続きを見る »

造波抵抗

造波抵抗(ぞうはていこう、Wave drag)は水の上を動く物体が受ける抵抗の1つである。造波抵抗は、英国の流体力学の科学者で船舶設計者でもあったウィリアム・フルード(William Froude、1810~1879)が考案したフルード数によって分析された。水の上を動く物体とは多くが船であるため、以下では簡単のために船で説明する。 船が航走する時の抵抗は次の3つに分解出来る。.

新しい!!: 衝撃波と造波抵抗 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 衝撃波と連続 (数学) · 続きを見る »

ZND理論

ZND理論(ZNDりろん、Zeldovich von Neumann Doering detonation model)とは、1940年代にジョン・フォン・ノイマンによって考え出された火薬の爆轟現象を予測する理論である。 同年代にソビエトのヤーコフ・ゼルドビッチも同様の理論を考え出し、ソビエトの核兵器開発に役立てたと言われている。 この理論では有限率化学反応を認め、爆発を発熱化学反応の地帯が続く無限に薄い非連続な衝撃波(実際には平均自由行程の数倍程度の厚み)としてモデル化し、衝撃波による熱量の増大が爆薬自身の断熱圧縮によるものであると捉え、実質的に、爆薬の持つ温度などの化学エネルギーも全て、前方へ衝撃波を伝播するために利用されることを示し、ZNDモデルとして理論化されている。 まとめると以下の4点を前提条件としている。.

新しい!!: 衝撃波とZND理論 · 続きを見る »

核実験

核実験(かくじっけん)とは、核爆弾の新たな開発や性能維持を確認したり、維持技術を確立したりするために、実験的に核爆弾を爆発させることを指す。1945年から約半世紀の間に2379回(その内大気圏内は502回)の核実験が各国で行われた。そのエネルギーはTNT換算で530メガトン(大気圏内は440メガトン)でこれは広島へ投下されたリトルボーイの3万5千発以上に相当する。.

新しい!!: 衝撃波と核実験 · 続きを見る »

戦闘機

F-15 戦闘機(せんとうき、英:fighter aircraft, あるいは単にfighter)とは敵対する航空機との空対空戦闘を主任務とする軍用機。現在では空対空戦闘にとどまらず、場合によっては対地攻撃や対艦攻撃、爆撃などの任務を行う場合もある。なお、地上や洋上の目標の攻撃を主任務とするのが攻撃機である。 フランス空軍のローラン・ギャロスが1915年モラーヌ・ソルニエ Lの中心線に固定銃を装備したことで思想が生まれ、ドイツによるフォッカー アインデッカーの量産によって、固定銃を装備して敵の航空機を撃墜する機体として登場した。時代が進むにつれて技術の発達、戦訓により戦闘機の任務は多様化し、技術的、思想的にも違いが生まれていった。また、高い運動性を持つため、特殊飛行の公演にも利用される。 世界で最も生産された戦闘機はドイツのBf109の約35,000機。ジェット機最多はソビエト連邦のMiG-15の約15,000機(超音速機ではMiG-21の約10,000機)。日本最多生産機は零式艦上戦闘機の約10,000機。 英語では「Fighter」だが、1948年以前のアメリカ陸軍航空軍では「pursuit aircraft (追撃機)」と呼ばれていた。戦闘機の命名方法については軍用機の命名規則を参照。また、兵器を搭載できる航空機全般を指して戦闘機と呼ぶ場合があるが、その意味での戦闘機は軍用機を参照。.

新しい!!: 衝撃波と戦闘機 · 続きを見る »

星間物質

星間物質(せいかんぶっしつ、Interstellar medium、ISM)は、恒星間の宇宙空間に分布する希薄物質の総称である。密度では、地球の上層大気よりも遙かに希薄であるが、地上からもしばしば星雲として観測される。大量の星間物質が凝縮して、星を構成する材料にもなる。.

新しい!!: 衝撃波と星間物質 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: 衝撃波と流体 · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: 衝撃波と断熱過程 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »