ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ハインリヒ・ヘルツ

索引 ハインリヒ・ヘルツ

ハインリヒ・ルドルフ・ヘルツ(Heinrich Rudolf Hertz, 1857年2月22日 - 1894年1月1日)は、ドイツの物理学者。マックスウェルの電磁気理論をさらに明確化し発展させた。1888年に電磁波の放射の存在を、それを生成・検出する機械の構築によって初めて実証した。.

86 関係: 多発血管炎性肉芽腫症定常波亜鉛ミュンヘン工科大学ノーベル物理学賞マイケル・ファラデーマイケルソン・モーリーの実験マクスウェルの方程式ハンブルクユダヤ教ヨハネウム学院ライン・フリードリヒ・ヴィルヘルム大学ボンルートヴィヒ・マクシミリアン大学ミュンヘンルーテル教会ボンヘルマン・フォン・ヘルムホルツヘルツヘルツの接触応力フンボルト大学ベルリンフィリップ・レーナルトドレスデンドイツドイツ民主共和国ニュートン環ダイポールアンテナベルリン周波数アナーレン・デア・フィジークアラビア語アルミニウムアルバート・マイケルソンアルベルト・アインシュタインアンテナアンドレ=マリ・アンペールアドルフ・ヒトラーエーテル (物理)カールスルーエ工科大学キリスト教クリスティアン・アルブレヒト大学キールクレーターグスタフ・ヘルツグスタフ・キルヒホフコイルシカゴ大学出版局ジェームズ・クラーク・マクスウェルサンスクリット光電効果光速国家社会主義ドイツ労働者党国際単位系...石英紫外線経済産業省無線無線通信物理学物理学者片頭痛誘導コイル超音波検査蒸発電場電磁気学の年表電磁波電荷電気工学陰極線IEEE極超短波気象学液体湿度計振幅断熱過程放射1857年1880年1881年1883年1885年1888年1894年1930年代1月1日2月22日 インデックスを展開 (36 もっと) »

多発血管炎性肉芽腫症

多発血管炎性肉芽腫症()は全身性の血管炎で、中〜小型動脈を傷害する疾患。1939年ドイツの病理学者 Wegenerにより報告された。 鼻やのどの傷害からはじまるので最初は風邪のようでもあるが、急速に間質性肺炎、急速進行性糸球体腎炎をきたす。したがって症状は、咳、呼吸困難、浮腫などである。軽度の発熱もおこる。鼻に関しても内部構造が破壊され、つぶれて鞍鼻を呈することがある。眼球突出、ぶどう膜炎、角膜潰瘍など眼科的疾患も起こることがある。そのほか皮膚(有痛性紅斑)、神経、脳をおかしうる。 血液検査ではc-ANCA(PR3-ANCA)が特異的に上昇する。ステロイド剤などの治療をもってしてもきわめて重篤な疾患であった。 かつては、ウェゲナー肉芽腫症(Wegener's granulomatosis)との名称が用いられていたが、血管炎の分類を定めたCHCC分類が2012年に改訂され、正式名称は「多発血管炎性肉芽腫症 (Granulomatosis with polyangiitis)」とされた。.

新しい!!: ハインリヒ・ヘルツと多発血管炎性肉芽腫症 · 続きを見る »

定常波

振動していない赤い点が節。節と節の中間に位置する振幅が最大の場所が腹。波形が進行しない様子がわかる。 定常波(ていじょうは、standing waveまたはstationary wave)とは、波長・周期(振動数または周波数)・振幅・速さ(速度の絶対値)が同じで進行方向が互いに逆向きの2つの波が重なり合うことによってできる、波形が進行せずその場に止まって振動しているようにみえる波動のことである。定在波(ていざいは)ともいう。.

新しい!!: ハインリヒ・ヘルツと定常波 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

新しい!!: ハインリヒ・ヘルツと亜鉛 · 続きを見る »

ミュンヘン工科大学

ミュンヘン工科大学メインキャンパス 上空から見たミュンヘン工科大学(こげ茶色の建物のあるエリアがキャンパス) ミュンヘンキャンパス内にあるすり鉢状の巨大円形講義室。あだ名はアウディマックス。 数学ならびにコンピュータサイエンス学科の校舎内にある巨大滑り台 ガーヒングキャンパス内にある機械工学部 1900年に印刷された同大学のリトグラフ版画 ミュンヘン工科大学(ミュンヘンこうかだいがく、Technische Universität München, 略称:TUM)は、ドイツのミュンヘンにある大学の一つ。.

新しい!!: ハインリヒ・ヘルツとミュンヘン工科大学 · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: ハインリヒ・ヘルツとノーベル物理学賞 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

新しい!!: ハインリヒ・ヘルツとマイケル・ファラデー · 続きを見る »

マイケルソン・モーリーの実験

マイケルソン・モーリーの実験(マイケルソン・モーリーのじっけん、Michelson-Morley experiment)とは、1887年にアルバート・マイケルソンとエドワード・モーリーによって行なわれた光速に対する地球の速さの比 の二乗 を検出することを目的とした実験であるなお、この実験は現在のケース・ウェスタン・リザーブ大学で行なわれた。。 マイケルソンは、この業績により1907年にノーベル賞を受賞したこの実験は、エーテル理論を初めて否定した物理学史における重要な役割を果たしたものとして知られている。同時に、「第二次科学革命の理論面の端緒」ともされている。 Earl R. Hoover, Cradle of Greatness: National and World Achievements of Ohio’s Western Reserve (Cleveland: Shaker Savings Association, 1977).

新しい!!: ハインリヒ・ヘルツとマイケルソン・モーリーの実験 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ハインリヒ・ヘルツとマクスウェルの方程式 · 続きを見る »

ハンブルク

ハンブルク(Hamburg、低ザクセン語・Hamborg (Hamborch) )は、ドイツの北部に位置し、エルベ川河口から約100kmほど入った港湾都市。正式名称は自由ハンザ都市ハンブルク(Freie und Hansestadt Hamburg、フライエ・ウント・ハンゼシュタット・ハンブルク)。行政上では、ベルリン特別市と同様に、一市単独で連邦州(ラント)を構成する特別市(都市州)なので、ハンブルク特別市やハンブルク州と呼ばれる。人口約175万人。国際海洋法裁判所がある。.

新しい!!: ハインリヒ・ヘルツとハンブルク · 続きを見る »

ユダヤ教

ダビデの星 ユダヤ教(ユダヤきょう、יהדות)は、古代の中近東で始まった唯一神ヤハウェ(יהוה)を神とし、選民思想やメシア(救世主)信仰などを特色とするユダヤ人の民族宗教である。ただしメシア思想は、現在ではハバド・ルバヴィッチ派などを除いて中心的なものとなっていない。 『タナハ』(キリスト教の『旧約聖書』に当たる書物)が重要な聖典とされる。.

新しい!!: ハインリヒ・ヘルツとユダヤ教 · 続きを見る »

ヨハネウム学院

ヨハネウム学院 (Gelehrtenschule des Johanneums) は、ドイツのハンブルクにある学校。ハンブルクで最も伝統のある学校で、創立は1529年。ラテン語とギリシャ語を教える学校である。.

新しい!!: ハインリヒ・ヘルツとヨハネウム学院 · 続きを見る »

ライン・フリードリヒ・ヴィルヘルム大学ボン

ライン・フリードリヒ・ヴィルヘルム大学ボン(Universität Bonn)は、ドイツのボンにある総合大学。通称はボン大学。 以降、本項では「ボン大学」と呼称する。.

新しい!!: ハインリヒ・ヘルツとライン・フリードリヒ・ヴィルヘルム大学ボン · 続きを見る »

ルートヴィヒ・マクシミリアン大学ミュンヘン

ルートヴィヒ・マクシミリアン大学ミュンヘン(Ludwig-Maximilians-Universität München)は、ドイツ・バイエルン州ミュンヘンにある大学。州立大学である。「英タイムズ・ハイアー・エデュケーション」による「世界大学ランキング」では、30位。ドイツにおけるエクセレンス・イニシアティブ(Exzellenzinitiative)に指定された11大学の一つで、ミュンヘン工科大学、カールスルーエ工科大学と共に最初に選ばれた三校のうちの一つである。ミュンヘン工科大学、ルプレヒト・カール大学ハイデルベルクとは様々なランキングで国内一位の座を争っている(後述)。通称、ミュンヘン大学。 1472年に下バイエルン=ランツフート公ルートヴィヒ9世によってインゴルシュタット大学として創設されたが、北のプロテスタント系ライプツィヒ大学と対立して長らくイエズス会の支配下におかれ、閉鎖を繰り返しつつ、ナポレオン戦争の後の1826年にバイエルン王ルートヴィヒ1世によってミュンヘンに移転再創設された。.

新しい!!: ハインリヒ・ヘルツとルートヴィヒ・マクシミリアン大学ミュンヘン · 続きを見る »

ルーテル教会

ルーテル教会(ルーテルきょうかい、, )は、マルティン・ルターによりドイツに始まる、キリスト教の教派または教団。ルター派(ルターは)とも呼ばれる。プロテスタントの一つであり、全世界に推定8260万人の信徒が存在する。発祥の地ドイツを始め、北欧諸国では国民の大半がルター派であり、そこから移民が渡った先のアメリカ合衆国、カナダ、ブラジル等の南アメリカ各国でも信徒数が多い。 パッヘルベル、J.S.バッハ、テレマン、メンデルスゾーンなど著名な音楽家が多く所属し、作曲家や音楽家に縁がある教会としても知られる。.

新しい!!: ハインリヒ・ヘルツとルーテル教会 · 続きを見る »

ボン

ボン(Bonn)は、ジーベンゲビルゲ山脈の北部にあるライン川沿いのケルンの南約20 km に位置する、ノルトライン=ヴェストファーレン州に属するドイツ連邦共和国の(19番目に大きい)都市である。人口318,809人(2015年現在)。 分断時代の1949年から1990年まで西ドイツの首都であり、ドイツ再統一後も首都機能を分担する。 1288年から1803年までケルン大司教の在所であり、1818年にボン大学が設置された後は小さな文教都市という位置づけであった。作曲家ベートーヴェンの生誕地・シューマンの終焉の地としても知られている。.

新しい!!: ハインリヒ・ヘルツとボン · 続きを見る »

ヘルマン・フォン・ヘルムホルツ

ヘルマン・ルートヴィヒ・フェルディナント・フォン・ヘルムホルツ(Hermann Ludwig Ferdinand von Helmholtz, 1821年8月31日 - 1894年9月8日)はドイツ出身の生理学者、物理学者。.

新しい!!: ハインリヒ・ヘルツとヘルマン・フォン・ヘルムホルツ · 続きを見る »

ヘルツ

ヘルツ(hertz、記号:Hz)は、国際単位系 (SI) における周波数・振動数の単位である。その名前は、ドイツの物理学者で、電磁気学の分野で重要な貢献をしたハインリヒ・ヘルツに因む。.

新しい!!: ハインリヒ・ヘルツとヘルツ · 続きを見る »

ヘルツの接触応力

ヘルツの接触応力(ヘルツのせっしょくおうりょく)は、球面と球面、円柱面と円柱面、任意の曲面と曲面などの弾性接触部分に掛かる応力あるいは圧力のことである。1881年にハインリヒ・ヘルツが、理論的に解析して半無限体に分布荷重を受けるケースの結果を利用して接触応力に関する式を導いたことからこのように呼ばれている。歯車の接触に関する計算などにも使用されている。接触面の摩擦を考慮せず、接触面の圧力分布を仮定している点が特徴である。本項では、球面と球面の接触について記述する。 2つの弾性の球の半径をR_1、R_2、縦弾性係数(ヤング係数)をE_1、E_2、ポアソン比を\nu_1、\nu_2とする。2つの球の接近量を\deltaとすると、接触力Pは以下の式で表される。 また、最大接触圧力p_は、以下で表される。.

新しい!!: ハインリヒ・ヘルツとヘルツの接触応力 · 続きを見る »

フンボルト大学ベルリン

アレクサンダー・フォン・フンボルトの像 ベルリン・フンボルト大学(Humboldt-Universität zu Berlin)またはフンボルト大学ベルリンは、ドイツのベルリンにある大学。ドイツにおけるエクセレンス・イニシアティブ(Exzellenzinitiative)に指定された11のエリート大学の一つ。 プロイセン王国に1810年、教育改革者で言語学者のヴィルヘルム・フォン・フンボルトによってフリードリヒ・ヴィルヘルム大学 (Friedrich-Wilhelms-Universität) として創立された。ベルリンでは最も古い大学で、第二次世界大戦後にはフンボルト大学と改称され、ドイツ再統一後に現称となった。以下、本項では「フンボルト大学」と呼称する。.

新しい!!: ハインリヒ・ヘルツとフンボルト大学ベルリン · 続きを見る »

フィリップ・レーナルト

フィリップ・エドゥアルト・アントン・フォン・レーナルト(Philipp Eduard Anton von Lenard, 1862年6月7日 – 1947年5月20日)はハンガリーのポジョニ 出身のドイツの物理学者である。ハンガリー名レーナールド・フュレプ・エデ・アンタル(Lénárd Fülöp Ede Antal)。陰極線の研究で1905年にノーベル物理学賞を受賞した。また、熱心な反ユダヤ主義者だったことでも知られている。.

新しい!!: ハインリヒ・ヘルツとフィリップ・レーナルト · 続きを見る »

ドレスデン

ドレスデン(ドレースデン、Dresden、)は、ドイツ連邦共和国ザクセン州の州都でありエルベ川の谷間に位置している都市である。人口は約51万人(2008年)である。.

新しい!!: ハインリヒ・ヘルツとドレスデン · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: ハインリヒ・ヘルツとドイツ · 続きを見る »

ドイツ民主共和国

ドイツ民主共和国(ドイツみんしゅきょうわこく、Deutsche Demokratische Republik; DDR)、通称東ドイツ(ひがしドイツ、Ostdeutschland)または東独(とうどく)は、第二次世界大戦後の1949年に旧ドイツ国のソビエト連邦占領地域に建国された国家。旧ドイツ国西部から南部にかけてのアメリカ・イギリス・フランス占領地域に建国されたドイツ連邦共和国(西ドイツ)とともにドイツを二分した分断国家の一つ。1990年、ドイツ連邦共和国に領土を編入される形で消滅した。.

新しい!!: ハインリヒ・ヘルツとドイツ民主共和国 · 続きを見る »

ニュートン環

ニュートン環(ニュートンかん、Newton's rings)は、接触させた2つの凸レンズもしくは凸レンズと透明な板に光を当てたときに観察される同心円状のリングである。ニュートン・リングともいう。これらが作る隙間の両面で反射される光波の干渉によって起こるとして説明できる。.

新しい!!: ハインリヒ・ヘルツとニュートン環 · 続きを見る »

ダイポールアンテナ

ダイポールアンテナ(英語:dipole antenna)またはダブレットアンテナ(doublet antenna)は、ケーブルの先(給電点)に2本の直線状の導線(エレメント)を左右対称につけたアンテナである。とともに線状アンテナの基本となるアンテナであり、最も構造が簡単なアンテナである。略してDP。アマチュア無線用の自作アンテナとして広く普及している。理論上の利得は2.14dBi(2.15dBiとされる場合もある)である。導線は水平の状態で用いることが多い(水平ダイポール)。設置スペースを節約するため、および打ち上げ角を調整して遠距離通信に有利とするため、傾斜または垂直の状態(垂直ダイポール)で用いられることもある。.

新しい!!: ハインリヒ・ヘルツとダイポールアンテナ · 続きを見る »

ベルリン

ベルリン(Berlin 、伯林)は、ドイツ北東部、ベルリン・ブランデンブルク大都市圏地域の中心に位置する都市である。16ある連邦州のうちの一つで、市域人口は万人とドイツでは最大の都市で欧州連合の市域人口ではロンドンに次いで2番目に多く、都市的地域の人口は7番目に多い。同国の首都と定められている。.

新しい!!: ハインリヒ・ヘルツとベルリン · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: ハインリヒ・ヘルツと周波数 · 続きを見る »

アナーレン・デア・フィジーク

アナーレン・デア・フィジーク (Annalen der Physik) は世界で最も古い物理学の学術雑誌の一つ(1799年創刊)。物理学に関する幅広い分野の査読済み原著論文を掲載している。 この雑誌は1790年から1794年まで発行されたJournal der Physikと、1795年から1797年まで発行されたNeues Journal der Physikの後継雑誌であるhttp://www.physik.uni-augsburg.de/annalen/history/history.html 。創刊以後、何度か名前を変えて出版されてきた。.

新しい!!: ハインリヒ・ヘルツとアナーレン・デア・フィジーク · 続きを見る »

アラビア語

アラビア語(アラビアご、اللغة العربية, UNGEGN式:al-lughatu l-ʻarabīyah, アッ.

新しい!!: ハインリヒ・ヘルツとアラビア語 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: ハインリヒ・ヘルツとアルミニウム · 続きを見る »

アルバート・マイケルソン

アルバート・エイブラハム・マイケルソン(Albert Abraham Michelson, 1852年12月19日 - 1931年5月9日)は、アメリカの物理学者。アメリカ海軍士官。光速度やエーテルについての研究を行った。1907年、光学に関する研究によってノーベル物理学賞を受賞した。これは科学部門における、アメリカ人初の受賞でもある。.

新しい!!: ハインリヒ・ヘルツとアルバート・マイケルソン · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ハインリヒ・ヘルツとアルベルト・アインシュタイン · 続きを見る »

アンテナ

アンテナ(antenna)とは、高周波エネルギーを電波(電磁波)として空間に放射(送信)したり、逆に空間の電波(電磁波)を高周波エネルギーへ相互に変換(受信)する装置のことで、日本語だと空中線と呼ばれ、英語における本来の意味だと昆虫の触角を意味している。  アンテナは、その用途から送信用と受信用に分けられるが、可逆性を備えている物なら送受信の兼用が可能である。.

新しい!!: ハインリヒ・ヘルツとアンテナ · 続きを見る »

アンドレ=マリ・アンペール

アンドレ=マリ・アンペール(André-Marie Ampère, 1775年1月20日 - 1836年6月10日)は、フランスの物理学者、数学者。電磁気学の創始者の一人。アンペールの法則を発見した。電流のSI単位の アンペアはアンペールの名にちなんでいる。.

新しい!!: ハインリヒ・ヘルツとアンドレ=マリ・アンペール · 続きを見る »

アドルフ・ヒトラー

アドルフ・ヒトラー(Adolf Hitler, 1889年4月20日 - 1945年4月30日)は、ドイツの政治家。ドイツ国首相、および国家元首であり、国家と一体であるとされた国家社会主義ドイツ労働者党(ナチス)の指導者。 1933年に首相に指名され、1年程度で指導者原理に基づく党と指導者による独裁指導体制を築いたため、独裁者の典型とされる。その冒険的な外交政策はドイツを第二次世界大戦へと導くことになった。また、ユダヤ人などに対する組織的な大虐殺「ホロコースト」を主導したことでも知られる。敗戦を目の前にした1945年4月30日、自ら命を絶った。.

新しい!!: ハインリヒ・ヘルツとアドルフ・ヒトラー · 続きを見る »

エーテル (物理)

ーテル は、主に19世紀までの物理学で、光が伝播するために必要だと思われた媒質を表す術語である。現代では特殊相対性理論などの理論がエーテルの概念を用いずに確立されており、エーテルは廃れた物理学理論の一部であると考えられている。 このエーテルの語源はギリシア語のアイテール であり、ラテン語を経由して英語になった。アイテールの原義は「燃やす」または「輝く」であり、古代ギリシア以来、天空を満たす物質を指して用いられた。英語ではイーサーのように読まれる。.

新しい!!: ハインリヒ・ヘルツとエーテル (物理) · 続きを見る »

カールスルーエ工科大学

ールスルーエ工科大学(独:KIT / Karlsruher Institut für Technologie)は、1825年、ルートヴィヒ1世 (バーデン大公) によって創立されたドイツでは最古の工業大学。ドイツのバーデン=ヴュルテンベルク州に位置する。 ドイツ9大工科大学によるコンソーシアム(TU9)に参加している。世界100大学に常に入り、工学系は現在ドイツで最も評価が高い。.

新しい!!: ハインリヒ・ヘルツとカールスルーエ工科大学 · 続きを見る »

キリスト教

リスト教で最も頻繁に用いられるラテン十字 アギア・ソフィア大聖堂にある『全能者ハリストス』と呼ばれるタイプのモザイクイコン。 キリスト教(キリストきょう、基督教、Χριστιανισμός、Religio Christiana、Christianity)は、ナザレのイエスをキリスト(救い主)として信じる宗教「キリスト教」『宗教学辞典』東京大学出版会、1973年、146頁。「キリスト教」『大辞泉』増補・新装版、小学館、1998年11月20日、第一版、714頁。 小学館、コトバンク。。イエス・キリストが、神の国の福音を説き、罪ある人間を救済するために自ら十字架にかけられ、復活したものと信じる。その多く(正教会正教会からの出典:・東方諸教会東方諸教会からの出典:・カトリック教会カトリック教会からの出典:・聖公会聖公会からの出典:・プロテスタントルーテル教会からの出典:改革派教会からの出典:バプテストからの出典:メソジストからの参照:フスト・ゴンサレス 著、鈴木浩 訳『キリスト教神学基本用語集』p103 - p105, 教文館 (2010/11)、ISBN 9784764240353など)は「父なる神」「御父」(おんちち、『ヨハネによる福音書』3:35〈『新共同訳聖書』〉)。と「その子キリスト」「御子」(みこ、『ヨハネによる福音書』3:35〈『新共同訳聖書』〉)・「子なる神」。と「聖霊」を唯一の神(三位一体・至聖三者)として信仰する。 世界における信者数は20億人を超えており、すべての宗教の中で最も多い。.

新しい!!: ハインリヒ・ヘルツとキリスト教 · 続きを見る »

クリスティアン・アルブレヒト大学キール

リスティアン・アルブレヒト大学キール(ドイツ語:Christian-Albrechts-Universität zu Kiel、略称:CAU、キール大学)は、ドイツシュレースヴィヒ=ホルシュタイン州キールにある大学。1665年にシュレースヴィヒ=ホルシュタイン=ゴットルプ公クリスチャン・アルブレクトによって Academia Holsatorum Chiloniensis として創設された。 キール大学の卒業生や教員などから、ノーベル賞受賞者12名を輩出した。.

新しい!!: ハインリヒ・ヘルツとクリスティアン・アルブレヒト大学キール · 続きを見る »

クレーター

月面のクレーター クレーター (crater) とは、天体衝突などによって作られる地形である。典型的には、円形の盆地とそれを取り囲む円環状の山脈であるリムからなるが、実際にはさまざまな形態がある。主に隕石・彗星・小惑星・微惑星などの衝突でできるが、核爆発や大量の火薬などの爆発でも同様の地形ができる。 ギリシャ語で「ボウル」「皿」を意味する語が語源で、本来は成因を問わず円形の窪地を意味し、火山の噴火口や、沈降による穴も含む。英語文献では、そのような意味での使用も少なくない。なお、コップ座の学名はCrater(クラテル)で、同じ語源である。 狭義には、天体衝突で形成された地形のことである。1609年にガリレオ・ガリレイが、月面を天体望遠鏡で観察し、多数の円形の凹地を確認したが、ガリレオは「小さな斑点」と呼んでいる。成因を明確に示したいときは衝突クレーター、インパクトクレーター (impact crater) と呼ぶ。またこの意味で使う場合は、「円形の窪地」という本来の意味ではクレーターと呼べないような形状の地形(たとえば地中構造、リムの一部のみ、など)も含めることが多い。窪地が明瞭なものは隕石孔(いんせきこう)と呼ぶこともある。.

新しい!!: ハインリヒ・ヘルツとクレーター · 続きを見る »

グスタフ・ヘルツ

タフ・ルートヴィヒ・ヘルツ(Gustav Ludwig Hertz, 1887年7月22日 - 1975年10月30日)は、ドイツの物理学者。ニールス・ボーアの量子論の原子が離散的なエネルギーを持っていることを検証する実験(フランク=ヘルツの実験)を行った。ジェイムス・フランクと共に1925年ノーベル物理学賞を受賞した。.

新しい!!: ハインリヒ・ヘルツとグスタフ・ヘルツ · 続きを見る »

グスタフ・キルヒホフ

分光器を使っているキルヒホフ グスタフ・ロベルト・キルヒホフ(Gustav Robert Kirchhoff, 1824年3月12日 - 1887年10月17日)は、プロイセン(現在のロシアのカリーニングラード州)生まれの物理学者。電気回路におけるキルヒホッフの法則、放射エネルギーについてのキルヒホッフの法則、反応熱についてのキルヒホッフの法則は、どれも彼によってまとめられた法則である。 グスタフ・キルヒホフは1824年、ケーニヒスベルク(現在のカリーニングラード)で生まれた。ケーニヒスベルクにあるケーニヒスベルク大学で学び、1850年にブレスラウ大学員外教授に就任した。 学生時代にオームの法則を拡張した電気法則を提唱。1849年に電気回路におけるキルヒホフの法則として纏め上げた。この法則は電気工学において広く応用されている。 1859年、黒体放射におけるキルヒホフの放射法則を発見した。 ロベルト・ブンゼンとともに、分光学研究に取り組み、セシウムとルビジウムを発見した。フラウンホーファーが発見した太陽光スペクトルの暗線(フラウンホーファー線)がナトリウムのスペクトルと同じ位置に見られることを明らかにし、分光学的方法により太陽の構成元素を同定できることを示した。 このほか音響学、弾性論に関しても研究を行った。.

新しい!!: ハインリヒ・ヘルツとグスタフ・キルヒホフ · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: ハインリヒ・ヘルツとコイル · 続きを見る »

シカゴ大学出版局

大学出版局(-だいがくしゅっぱんきょく、University of Chicago Press)は、シカゴ大学が運営する出版局。大学が運営する出版局ではアメリカ合衆国で最古かつ最大規模。これまで1万以上の著作を出版している。2016年現在、11000以上が出版、5000以上の著作が販売されている。.

新しい!!: ハインリヒ・ヘルツとシカゴ大学出版局 · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

新しい!!: ハインリヒ・ヘルツとジェームズ・クラーク・マクスウェル · 続きを見る »

サンスクリット

Bhujimolという書体を使って書かれており、椰子の葉からできている (貝葉)。 サンスクリット(संस्कृत、saṃskṛta、Sanskrit)は、古代インド・アーリア語に属する言語。インドなど南アジアおよび東南アジアにおいて用いられた古代語。文学、哲学、学術、宗教などの分野で広く用いられた。ヒンドゥー教、仏教、シーク教、ジャイナ教の礼拝用言語でもあり、現在もその権威は大きく、母語話者は少ないが、現代インドの22の公用語の1つである。 サンスクリットは「完成された・洗練された(言語、雅語)」を意味する。言語であることを示すべく日本ではサンスクリット語とも呼ばれる。 漢字表記の梵語(ぼんご)は、中国や日本でのサンスクリットの異称。日本では近代以前から、般若心経など、サンスクリットの原文を漢字で翻訳したものなどを通して、梵語という言葉は使われてきた。梵語は、サンスクリットの起源を造物神ブラフマン(梵天)とするインドの伝承を基にした言葉である。.

新しい!!: ハインリヒ・ヘルツとサンスクリット · 続きを見る »

光電効果

光電効果(こうでんこうか、photoelectric effect)とは、外部光電効果と内部光電効果の総称である。単に光電効果という場合は外部光電効果を指す場合が多い。内部光電効果は光センサなどで広く利用される。光電効果そのものは特異な現象ではなく酸化物、硫化物その他無機化合物、有機化合物等に普遍的に起こる。.

新しい!!: ハインリヒ・ヘルツと光電効果 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: ハインリヒ・ヘルツと光速 · 続きを見る »

国家社会主義ドイツ労働者党

国家社会主義ドイツ労働者党(こっかしゃかいしゅぎドイツろうどうしゃとう、Nationalsozialistische Deutsche Arbeiterpartei 、略称: NSDAP)は、かつて存在したドイツ国の政党。一般にナチス、ナチ党などと呼ばれる(詳細は#名称を参照)。1919年1月に前身のドイツ労働者党が設立され、1920年に改称した。指導者原理に基づく指導者(Führer)アドルフ・ヒトラーが組織全体の意思決定を行い、カリスマ的支配を行っていた。1933年の政権獲得後、ドイツ国に独裁体制を敷いたものの(ナチス・ドイツ)、1945年にドイツ国が第二次世界大戦で敗戦し崩壊したことに伴い事実上消滅し、連合国によって禁止(非合法化)された。.

新しい!!: ハインリヒ・ヘルツと国家社会主義ドイツ労働者党 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: ハインリヒ・ヘルツと国際単位系 · 続きを見る »

石英

水晶砂 石英(せきえい、、、クォーツ、クオーツ)は、二酸化ケイ素 (SiO₂) が結晶してできた鉱物。六角柱状のきれいな自形結晶をなすことが多い。中でも特に無色透明なものを水晶(すいしょう、、、ロッククリスタル)と呼び、古くは玻璃(はり)と呼ばれて珍重された。 石英を成分とする砂は珪砂(けいしゃ・けいさ、、)と呼ばれ、石英を主体とした珪化物からなる鉱石は珪石と呼ぶ。.

新しい!!: ハインリヒ・ヘルツと石英 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: ハインリヒ・ヘルツと紫外線 · 続きを見る »

経済産業省

経済産業省(けいざいさんぎょうしょう、略称:経産省(けいさんしょう)、Ministry of Economy, Trade and Industry、略称:METI)は、日本の行政機関の一つである。 「民間の経済活力の向上及び対外経済関係の円滑な発展を中心とする経済及び産業の発展並びに鉱物資源及びエネルギーの安定的かつ効率的な供給の確保を図ること」を任務とする(経済産業省設置法第3条)。.

新しい!!: ハインリヒ・ヘルツと経済産業省 · 続きを見る »

無線

無線(むせん、wireless)とは、線を使わない方法・方式のこと。 接頭辞などとして被修飾語に附加され、複合語を構成する。そのうち特に「無線電気通信」(あるいは「無線通信」)は頻繁に短縮され単に「無線」と呼ばれるので、結果として「無線」は無線電気通信を指していることが多い。.

新しい!!: ハインリヒ・ヘルツと無線 · 続きを見る »

無線通信

無線通信(むせんつうしん)は、伝送路として線を使わない電気通信のことである。しばしば短縮して「無線」と呼ばれる。線を使わない無線通信に対して、線を使う通信の方は有線通信と呼ぶ。無線通信は軍事行動においてこそ長所際立つものの、気候変動や気温・水温などの変化によって受信が不安定なものとなる。.

新しい!!: ハインリヒ・ヘルツと無線通信 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: ハインリヒ・ヘルツと物理学 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: ハインリヒ・ヘルツと物理学者 · 続きを見る »

片頭痛

片頭痛(へんずつう、migraine)とは、頭痛の一種で、偏頭痛とも表記する。頭の片側のみに発作的に発生し、脈打つような痛みや嘔吐などの症状を伴うのが特徴である。軽度から激しい頭痛、体の知覚の変化、吐き気といった症状によって特徴付けられる神経学的症候群である。生理学的には、片頭痛は男性よりも低血圧の女性に多い神経学的疾患であるThe International Classification of Headache Disorders, 2nd Edition。 典型的な片頭痛の症状は片側性(頭の半分に影響を及ぼす)で、拍動を伴って4時間から72時間持続する。症状には吐き気、嘔吐、羞明(光に過敏になる)、音声恐怖(音に過敏になる)などがある。およそ3分の1の人は「前兆」と呼ばれる、異常な視覚的、嗅覚的、あるいはその他の感覚の(片頭痛が間もなく始まることを示す)経験をするとされる。 初期治療としては、頭痛にNSAID鎮痛剤や、血管収縮剤であるエルゴタミン・トリプタンなどの服用、吐き気に制吐剤の服用、そしてさらなる発症の抑制がある。片頭痛の原因は未解明であるが、セロトニン作動性制御システムの障害であるという説が一般的である。 片頭痛には変異型があり、脳幹に由来するもの(カルシウムやカリウムイオンの細胞間輸送の機能不全が特徴的である)や、遺伝的性質のものなどがある。双子に関する研究で、片頭痛を発症する傾向への遺伝的影響が、60〜65パーセントの確率であることが分かった。さらに変動するホルモンレベルも、片頭痛と関係がある。思春期前には男女ほとんど同じ数だけ片頭痛を発症するのに対し、成人患者では実に75パーセントが女性なのである。片頭痛は妊娠中にはあまり発症しなくなると知られているが、中には妊娠中の方が頻繁に発症するという人もいる。.

新しい!!: ハインリヒ・ヘルツと片頭痛 · 続きを見る »

誘導コイル

誘導コイル(ゆうどうコイル)とは、電磁誘導により起電力を発生させるためのコイルである。.

新しい!!: ハインリヒ・ヘルツと誘導コイル · 続きを見る »

超音波検査

超音波検査(ちょうおんぱけんさ、ultrasonography, US echo)は、超音波を対象物に当ててその反響を映像化する画像検査法。 主に医療分野で広く利用され、近年、金属材料などを対象として、レーザーを用いて超音波を励起・計測するレーザー超音波計測が行われている。本稿では、主に医療用超音波検査について記述する。.

新しい!!: ハインリヒ・ヘルツと超音波検査 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: ハインリヒ・ヘルツと蒸発 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: ハインリヒ・ヘルツと電場 · 続きを見る »

電磁気学の年表

電磁気学の年表.

新しい!!: ハインリヒ・ヘルツと電磁気学の年表 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: ハインリヒ・ヘルツと電磁波 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: ハインリヒ・ヘルツと電荷 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: ハインリヒ・ヘルツと電気工学 · 続きを見る »

陰極線

極線(いんきょくせん、Cathode ray)とは真空管の中で観察される電子の流れである。真空に排気されたガラス容器に一対の電極を封入して電圧をかけると、陰極(電源のマイナス端子に接続された電極)の逆側にある容器内壁が発光する。その原因は陰極表面から電子が垂直に撃ち出されることによる。この現象は1869年にドイツの物理学者ヴィルヘルム・ヒットルフによって初めて観察され、1876年にによってKathodenstrahlen(陰極線)と名付けられた。近年では電子線や電子ビームと呼ばれることが多い。 電子が初めて発見されたのは、陰極線を構成する粒子としてであった。1897年、英国の物理学者J・J・トムソンは、陰極線の正体が負電荷を持つ未知の粒子であることを示し、この粒子が後に「電子」と呼ばれるようになった。初期のテレビに用いられていたブラウン管(CRT、cathode ray tubeすなわち「陰極線管」)は、収束させた陰極線を電場や磁場で偏向させることによって像を作っている。.

新しい!!: ハインリヒ・ヘルツと陰極線 · 続きを見る »

IEEE

IEEE(アイ・トリプル・イー、The Institute of Electrical and Electronics Engineers, Inc.)は、アメリカ合衆国に本部を持つ電気工学・電子工学技術の学会である。.

新しい!!: ハインリヒ・ヘルツとIEEE · 続きを見る »

極超短波

極超短波(ごくちょうたんぱ、UHF.

新しい!!: ハインリヒ・ヘルツと極超短波 · 続きを見る »

気象学

気象学(きしょうがく、meteorology)は、地球の大気で起こる諸現象(気象)や個々の流体現象を研究する学問。自然科学あるいは地球科学の一分野。 気象を長期的な傾向から、あるいは地理学的観点から研究する気候学は、気象学の一分野とされる場合もあるが、並列する学問とされる場合もある。現代では気象学と気候学をまとめて大気科学(atmospheric science)と呼ぶこともある。 なお、将来の大気の状態の予測という実用に特化した分野を天気予報(気象予報)という。.

新しい!!: ハインリヒ・ヘルツと気象学 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: ハインリヒ・ヘルツと液体 · 続きを見る »

湿度計

バイメタル式湿度計の内部 実際の湿度の表示 湿度計(しつどけい)は、湿度を測定する器具。 乾球温度と湿球温度の温度差から表により求める乾湿計や、吸湿材の電気特性の変化をセンサーで測定する電気式湿度計がある。また精密観測用には、露点計も用いられる。毛髪の性質を利用した毛髪湿度計など、伸縮性の素材を用いた湿度計もあるが、誤差や時間差が大きいのが欠点である。 測定原理は、相対湿度を感知部の物性・形状の変化として検出するものと、大気温度と水蒸気圧とを測定することによって間接的に算出する(気圧による補正が必要)ものとに大別される。一般的には後者のほうが精度の高い観測が可能であるとされ、殊に乾湿式湿度計は、他の湿度計を校正する基準器としての性格を持つ。 日本では、気象業務法及びその下位法令により、公共的な気象観測には、検定に合格した乾湿式湿度計、毛髪製湿度計、露点式湿度計又は電気式湿度計を用いることとされている。.

新しい!!: ハインリヒ・ヘルツと湿度計 · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: ハインリヒ・ヘルツと振幅 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: ハインリヒ・ヘルツと月 · 続きを見る »

断熱過程

断熱過程(だんねつかてい、)とは、外部との熱のやりとり(熱接触)がない状況で、系をある状態から別の状態へと変化させる熱力学的な過程である。.

新しい!!: ハインリヒ・ヘルツと断熱過程 · 続きを見る »

放射

放射(ほうしゃ,radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつての日本では、輻射(ふくしゃ)とされていたが、太平洋戦争後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。.

新しい!!: ハインリヒ・ヘルツと放射 · 続きを見る »

1857年

記載なし。

新しい!!: ハインリヒ・ヘルツと1857年 · 続きを見る »

1880年

記載なし。

新しい!!: ハインリヒ・ヘルツと1880年 · 続きを見る »

1881年

記載なし。

新しい!!: ハインリヒ・ヘルツと1881年 · 続きを見る »

1883年

記載なし。

新しい!!: ハインリヒ・ヘルツと1883年 · 続きを見る »

1885年

記載なし。

新しい!!: ハインリヒ・ヘルツと1885年 · 続きを見る »

1888年

記載なし。

新しい!!: ハインリヒ・ヘルツと1888年 · 続きを見る »

1894年

記載なし。

新しい!!: ハインリヒ・ヘルツと1894年 · 続きを見る »

1930年代

1930年代(せんきゅうひゃくさんじゅうねんだい)は、西暦(グレゴリオ暦)1930年から1939年までの10年間を指す十年紀。.

新しい!!: ハインリヒ・ヘルツと1930年代 · 続きを見る »

1月1日

1月1日(いちがつついたち)はグレゴリオ暦で年始から1日目に当たり、年末まであと364日(閏年では365日)ある。誕生花は松(黒松)、または福寿草。 キリスト教においては生後8日目のイエス・キリストが割礼と命名を受けた日として伝えられる。.

新しい!!: ハインリヒ・ヘルツと1月1日 · 続きを見る »

2月22日

2月22日(にがつにじゅうににち)はグレゴリオ暦で年始から53日目にあたり、年末まであと312日(閏年では313日)ある。.

新しい!!: ハインリヒ・ヘルツと2月22日 · 続きを見る »

ここにリダイレクトされます:

ハインリッヒ・ヘルツ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »