ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

レオンハルト・オイラー

索引 レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

105 関係: 力 (物理学)偏微分口述筆記多面体多重積分大倉孫兵衛天文学天文学者の一覧変分法変数岩波書店三角関数一筆書き九点円二次形式微分積分学微分方程式ペルガのアポロニウスナビエ–ストークス方程式ネイピア数バーゼルバーゼル大学バーゼル問題ヨハン・ベルヌーイリーマンゼータ関数ロシア帝国ロシア科学アカデミーヴォルテールプロイセン王国プロイセン科学アカデミーピエール・ド・フェルマーフリードリヒ2世 (プロイセン王)フェルマーの小定理ニュートン力学ダニエル・ベルヌーイベルンハルト・リーマンベータ関数アレクサンドル・ネフスキー大修道院エカチェリーナ1世エカチェリーナ2世オイラー (小惑星)オイラー力オイラーの定理 (平面幾何学)オイラーの定理 (微分幾何学)オイラーの定理 (数論)オイラーの定数オイラーの五角数定理オイラーの分割恒等式オイラーの和公式オイラーのコマ...オイラーの公式オイラーの等式オイラーの運動方程式オイラーのφ関数オイラー予想オイラー図オイラー積オイラー積分オイラー線オイラー類オイラー角オイラー路オイラー=ラグランジュ方程式オイラー標数オイラー法オイラー方程式 (流体力学)オイラー数ガンマ関数グラフ理論ゴールドバッハ・オイラーの定理ゴットフリート・ライプニッツジョゼフ=ルイ・ラグランジュスイスサンクトペテルブルク円錐曲線剛体章動級数素数特殊関数複素数解析学解析幾何学高瀬正仁近似関数 (数学)連分数連続の方程式林鶴一楕円函数母関数指数 (初等整数論)指数関数流体力学海鳴社新暦数学数学者数理物理学数論1707年1783年18世紀4月15日9月18日 インデックスを展開 (55 もっと) »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: レオンハルト・オイラーと力 (物理学) · 続きを見る »

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: レオンハルト・オイラーと偏微分 · 続きを見る »

口述筆記

記載なし。

新しい!!: レオンハルト・オイラーと口述筆記 · 続きを見る »

多面体

多面体の一種、立方体 初等幾何学における多面体(ためんたい、polyhedron)は、複数(4つ以上)の平面に囲まれた立体のこと。複数の頂点を結ぶ直線の辺と、その辺に囲まれた面によって構成される。したがって、曲面をもつものは含まず、(円柱などは入らない)また、すべての面の境界が直線である場合に限られる。 3次元空間での多胞体であるとも定義できる。2次元空間での多胞体は多角形なので、多角形を3次元に拡張した概念であるとも言える。 英語ではポリヘドロン (polyhedron)、複数形はポリヘドラ (polyhedra) である。多角形のポリゴン (polygon) の複数形がポリゴンズ (polygons) であるのとは異なる。.

新しい!!: レオンハルト・オイラーと多面体 · 続きを見る »

多重積分

数学の微分積分学周辺分野における重積分(じゅうせきぶん、multiple integral; 多重積分)は、一変数の実函数に対する定積分を多変数函数に対して拡張したものである。n-変数函数の重積分は n-重積分とも呼ばれ、二変数および三変数函数に対する重積分は、それぞれ特に二重積分 (double integral) および三重積分 (triple integral) と呼ばれる。.

新しい!!: レオンハルト・オイラーと多重積分 · 続きを見る »

大倉孫兵衛

大倉 孫兵衛(おおくら まごべい、天保14年(1843年3月8日) - 大正10年(1921年)12月17日)は、幕末明治から大正にかけての実業家である。家業の絵草紙屋から独立して絵草紙屋・萬屋を開店し後に大倉書店、大倉孫兵衛洋紙店(現・新生紙パルプ商事)を設立した。また、森村市左衛門との出会いから日本陶器(現・ノリタケカンパニーリミテド)、大倉陶園の設立に参加し日本の陶磁器産業に多大なる貢献をした。.

新しい!!: レオンハルト・オイラーと大倉孫兵衛 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: レオンハルト・オイラーと天文学 · 続きを見る »

天文学者の一覧

天文学者の一覧(てんもんがくしゃのいちらん)は、天文学者の一覧である。なお日本の天文学者は多数にわたるのでノーベル物理学賞受賞者・文化勲章受章者のみ掲載する。ノーベル物理学賞受賞者・文化勲章受章者以外の日本の天文学者については日本の天文学者の一覧を参照。 括弧内は国名、生年。ユリウス暦とグレゴリオ暦ではグレゴリオ暦を優先。.

新しい!!: レオンハルト・オイラーと天文学者の一覧 · 続きを見る »

変分法

解析学の一分野、変分法(へんぶんほう、calculus of variations, variational calculus; 変分解析学)は、汎函数(函数の集合から実数への写像)の最大化や最小化を扱う。汎函数はしばしば函数とその導函数を含む定積分として表される。この分野の主な興味の対象は、与えられた汎函数を最大・最小とするような「極値」函数、あるいは汎函数の変化率を零とする「停留」函数である。 そのような問題のもっとも単純な例は、二点を結ぶ最短の曲線を求める問題である。何の制約も無ければ二点を結ぶ直線が明らかにその解を与えるが、例えば空間上の特定の曲面上にある曲線という制約が与えられていれば、解はそれほど明らかではないし、複数の解が存在し得る。この問題の解は測地線と総称される。関連する話題としてフェルマーの原理は「光は二点を結ぶ最短の光学的長さを持つ経路を通る。ただし光学的長さは間にある物質によって決まる」ことを述べる。これは力学における最小作用の原理に対応する。 重要な問題の多くが多変数函数を含む。ラプラス方程式の境界値問題の解はディリクレの原理を満足する。 は空間内の与えられた周回路の張る面積が最小の曲面()を求める問題であり、しばしばその解を石鹸水に浸した枠が張る石鹸膜として見つけるデモンストレーションを目にする。こうした経験は比較的容易に実験できるけれども、その数学的解釈は簡単とはほど遠い(局所的に最小化する曲面は複数存在し得るし、非自明な位相を持ち得る)。.

新しい!!: レオンハルト・オイラーと変分法 · 続きを見る »

変数

変数(variable).

新しい!!: レオンハルト・オイラーと変数 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: レオンハルト・オイラーと岩波書店 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: レオンハルト・オイラーと三角関数 · 続きを見る »

一筆書き

六芒星の一筆書きの例 一筆書き(ひとふでがき)とは、広い意味では「筆記具を平面から一度も離さず線図形を描く」ことである。狭い意味では、これに加えて「同じ線を二度なぞらない(点で交差するのはかまわない)」という条件が加わる。筆記体のdは、前者の意味では一筆書きであるが、後者の意味では一筆書きではない。 以下は後者の狭い意味での一筆書きについて記す。 三角形「△」や四角形「□」は一筆書き可能だが、十字「+」は一筆書きできない。また、五芒星や白星「☆」、六芒星「✡」は一筆書き可能だが、アスタリスク「*」は一筆書きができない。このように、一筆書きできる図形とできない図形がある。 「与えられた図形が一筆書き可能かどうか」という問題の例として、「ケーニヒスベルクの橋の問題」(Königsberger Brückenproblem)が知られている。なお、ケーニヒスベルクとは実際にあった場所の名前である。.

新しい!!: レオンハルト・オイラーと一筆書き · 続きを見る »

九点円

九点円(きゅうてんえん)は、三角形において特定の9個の点を通る円の名称である。発見した人の名前から、オイラー円・フォイエルバッハ円とも呼ばれる。.

新しい!!: レオンハルト・オイラーと九点円 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: レオンハルト・オイラーと二次形式 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: レオンハルト・オイラーと微分積分学 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: レオンハルト・オイラーと微分方程式 · 続きを見る »

ペルガのアポロニウス

ペルガのアポロニウス(Ἀπολλώνιος, Apollonius Pergaeus, Apollonius of Perga、紀元前262年頃 - 紀元前190年頃)はギリシャの数学者・天文学者である。小アジアの町ペルガに生まれた。アレキサンドリアでプトレマイオス3世およびプトレマイオス4世の時代に活躍した。現トルコのペルガモンでしばらく暮らしたとされる。アレキサンドリアで没した。.

新しい!!: レオンハルト・オイラーとペルガのアポロニウス · 続きを見る »

ナビエ–ストークス方程式

ナビエ–ストークス方程式(ナビエ–ストークスほうていしき、Navier–Stokes equations)は、流体の運動を記述する2階非線型偏微分方程式であり、流体力学で用いられる。アンリ・ナビエとジョージ・ガブリエル・ストークスによって導かれた。NS方程式とも略される。ニュートン力学における運動の第2法則に相当し、運動量の流れの保存則を表す。.

新しい!!: レオンハルト・オイラーとナビエ–ストークス方程式 · 続きを見る »

ネイピア数

1.

新しい!!: レオンハルト・オイラーとネイピア数 · 続きを見る »

バーゼル

バーゼル(Basel、Bâle(バール))は、スイスの都市。バーゼル=シュタット準州の州都。 スイス北西部、ドイツとフランスとスイスの3国の国境が接する地点(三国国境)に位置し、市街地はライン川をまたぐ形で広がっている。チューリッヒ、ジュネーヴに次ぎスイス第3の都市。大型船舶が通航できるライン川最上流の港を持つ最終遡行地点である。ドイツ語圏に属するがフランス語使用者も多い。.

新しい!!: レオンハルト・オイラーとバーゼル · 続きを見る »

バーゼル大学

バーゼル大学 バーゼル大学(独:Universität Basel)は、スイスのバーゼルにある大学。.

新しい!!: レオンハルト・オイラーとバーゼル大学 · 続きを見る »

バーゼル問題

バーゼル問題(バーゼルもんだい、Basel problem)は、級数の問題の一つで、平方数の逆数全ての和はいくつかという問題である。1644年に によって提起され、1735年にレオンハルト・オイラーによって解かれた。バーゼルはオイラーの故郷であり、この問題を解くのに失敗したベルヌーイ一家の故郷でもある。.

新しい!!: レオンハルト・オイラーとバーゼル問題 · 続きを見る »

ヨハン・ベルヌーイ

ヨハン・ベルヌーイ(Johann Bernoulli, 1667年7月27日 - 1748年1月1日)は、スイスの数学者。フランス語読みでジャン・ベルヌーイ (Jean Bernoulli) と表記されることもある。ロピタルの定理として知られる微分の平均値の定理の発見者である。.

新しい!!: レオンハルト・オイラーとヨハン・ベルヌーイ · 続きを見る »

リーマンゼータ関数

1.

新しい!!: レオンハルト・オイラーとリーマンゼータ関数 · 続きを見る »

ロシア帝国

ア帝国(ロシアていこく、 ラスィーイスカヤ・インピェーリヤ)は、1721年から1917年までに存在した帝国である。ロシアを始め、フィンランド、リボニア、リトアニア、ベラルーシ、ウクライナ、ポーランド、カフカーズ、中央アジア、シベリア、外満州などのユーラシア大陸の北部を広く支配していた。帝政ロシア(ていせいロシア)とも呼ばれる。通常は1721年のピョートル1世即位からロシア帝国の名称を用いることが多い。統治王家のロマノフ家にちなんでロマノフ朝とも呼ばれるがこちらはミハイル・ロマノフがロシア・ツァーリ国のツァーリに即位した1613年を成立年とする。.

新しい!!: レオンハルト・オイラーとロシア帝国 · 続きを見る »

ロシア科学アカデミー

ア科学アカデミー(Росси́йская акаде́мия нау́к、Rossiiskaya Akademiya Nauk、略称はРАН、RAN)は、ロシアの最高学術機関とされる国立アカデミーである。ロシア科学アカデミーは、ロシア連邦全土の学術研究機関を包括するものである。 アカデミーの名称は、1803年からは、帝国科学アカデミー、1836年以降は、帝国サンクトペテルブルク科学アカデミー、ロシア革命により、1917年帝政ロシアが倒れると、ロシア科学アカデミーとなる。ソ連成立後の1925年からは、ソビエト社会主義共和国連邦科学アカデミー(Академия наук СССР、Akademiya Nauk SSSR)の名称で知られていた。.

新しい!!: レオンハルト・オイラーとロシア科学アカデミー · 続きを見る »

ヴォルテール

ヴォルテール(Voltaire)こと、本名フランソワ=マリー・アルエ(François-Marie Arouet、1694年11月21日 - 1778年5月30日)は、フランスの哲学者、文学者、歴史家である。歴史的には、イギリスの哲学者であるジョン・ロックなどとともに啓蒙主義を代表する人物とされる。また、ドゥニ・ディドロやジャン・ル・ロン・ダランベールなどとともに百科全書派の学者の一人として活躍した。ボルテールと表記されることもある。 パリの公証人の子。姓は“アルーエ”とも表記される。Voltaireという名はペンネームのようなもので、彼の名のArouetをラテン語表記した"AROVET LI" のアナグラムの一種、「ヴォロンテール」(意地っぱり)という小さい頃からの渾名(あだな)をもじった等、諸説ある。.

新しい!!: レオンハルト・オイラーとヴォルテール · 続きを見る »

プロイセン王国

プロイセン王国(プロイセンおうこく、Königreich Preußen)は、ホーエンツォレルン家の君主が統治したヨーロッパの王国。現在のドイツ北部からポーランド西部にかけてを領土とし、首都はベルリンにあった。 プロイセンの語源となったプルーセンはドイツ騎士団に征服され、1224年にドイツ騎士団国が作られた。ドイツ騎士団国は1525年にプロシア公領ないしプロイセン公国となる。1618年、公国はブランデンブルク選帝侯領とともに、同君連合であるブランデンブルク=プロイセンを構成した。君主フリードリヒ・ヴィルヘルムは、オランダ総督との姻戚関係によって威勢を増した。1701年にプロイセン王国となった。王国は北ドイツ連邦の盟主となるまで軍事国家として成長し続け、普仏戦争に勝利した。そのときプロイセンを盟主とするドイツ帝国ができた。1918年からドイツ革命によりヴァイマル共和政のプロイセン州となった。(#歴史).

新しい!!: レオンハルト・オイラーとプロイセン王国 · 続きを見る »

プロイセン科学アカデミー

プロイセン科学アカデミー(Preußische Akademie der Wissenschaften)は、1700年7月11日にベルリンで創設されたアカデミー。その4年前に創設されたベルリン芸術アカデミーと共に「ベルリン・アカデミー」とも呼ばれた。.

新しい!!: レオンハルト・オイラーとプロイセン科学アカデミー · 続きを見る »

ピエール・ド・フェルマー

ピエール・ド・フェルマー ピエール・ド・フェルマー(Pierre de Fermat、1607年末または1608年初頭 - 1665年1月12日)はフランスの数学者。「数論の父」とも呼ばれる。ただし、職業は弁護士であり、数学は余暇に行ったものである。.

新しい!!: レオンハルト・オイラーとピエール・ド・フェルマー · 続きを見る »

フリードリヒ2世 (プロイセン王)

フリードリヒ2世(Friedrich II.

新しい!!: レオンハルト・オイラーとフリードリヒ2世 (プロイセン王) · 続きを見る »

フェルマーの小定理

数論において、フェルマーの小定理(フェルマーのしょうていり、Fermat's little theorem)は素数の性質についての定理であり、実用としてもRSA暗号に応用されている定理である。.

新しい!!: レオンハルト・オイラーとフェルマーの小定理 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: レオンハルト・オイラーとニュートン力学 · 続きを見る »

ダニエル・ベルヌーイ

ダニエル・ベルヌーイ(Daniel Bernoulli, 1700年2月8日 - 1782年3月17日)は、スイスの数学者・物理学者。.

新しい!!: レオンハルト・オイラーとダニエル・ベルヌーイ · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: レオンハルト・オイラーとベルンハルト・リーマン · 続きを見る »

ベータ関数

数学において、ベータ関数(ベータかんすう、beta function)とは、ルシャンドルの定義に従って第一種オイラー積分とも呼ばれる特殊関数である。.

新しい!!: レオンハルト・オイラーとベータ関数 · 続きを見る »

アレクサンドル・ネフスキー大修道院

アレクサンドル・ネフスキー大修道院(アレクサンドル・ネフスキーだいしゅうどういん、ロシア語:Александро-Невская лавра)は、18世紀にロシア、サンクトペテルブルク市のネフスキー地区の南端に建設された修道院。1724年、ピョートル大帝の命により、ウラジーミルにあったアレクサンドル・ネフスキーの聖骸がこの修道院に移され、聖アレクサンドル・ネフスキーは新首都サンクトペテルブルクの守護聖人となった。1797年、それまでキエフ・ペチェールシク大修道院と至聖三者聖セルギイ大修道院にのみ用いられてきた修道院の称号である「ラヴラ」 Ла́вра、Lavra(大修道院)に昇格した。 修道院の敷地内にある2つのバロック様式の教会は、トレジーニ父子によってそれぞれ1717年 - 1722年、1742年 - 1750年に建てられた。修道院の中心である新古典主義建築の至聖三者聖堂は、イヴァン・スタローフの設計により1778年 - 1790年にかけて建設された。聖骸を納めた棺はこの聖堂に安置されている。その他にも、神学校棟など重要な建造物が多数存在する。 敷地内にはラーザレフ墓地とチーフヴィン墓地があり、古今のロシア各界の偉人達が眠っている。また、18世紀から19世紀にかけての著名な彫刻家による新古典主義彫刻の墓碑の数々でも知られている。.

新しい!!: レオンハルト・オイラーとアレクサンドル・ネフスキー大修道院 · 続きを見る »

エカチェリーナ1世

チェリーナ1世(Екатерина I Алексеевна, 1684年4月15日(ユリウス暦4月5日) - 1727年5月17日(ユリウス暦5月6日))は、ロマノフ朝第2代のロシア皇帝(在位:1725年 - 1727年)。ピョートル1世の妃。.

新しい!!: レオンハルト・オイラーとエカチェリーナ1世 · 続きを見る »

エカチェリーナ2世

チェリーナ2世(エカチェリーナ2世アレクセーエヴナ、、1729年4月21日(ロシア暦)/5月2日(グレゴリオ暦) - 1796年11月6日(ロシア暦)/11月17日(グレゴリオ暦)は、ロマノフ朝第8代ロシア皇帝(在位:1762年6月28日(ロシア暦)/7月9日(グレゴリオ暦) - 1796年11月6日(ロシア暦)/11月17日(グレゴリオ暦))。夫はピョートル3世ならびにグリゴリー・ポチョムキン(秘密結婚)、子はパーヴェル1世ほか。 プロイセンのフリードリヒ2世(大王)やオーストリアのヨーゼフ2世と共に啓蒙専制君主の代表とされる。ロシア帝国の領土をポーランドやウクライナに拡大し、大帝 (ヴェリーカヤ)(Вели́кая)と称される。 帝政時代にが発行していた100ルーブル紙幣の肖像に描かれていたほか、沿ドニエストル共和国のが発行する500沿ドニエストル・ルーブルにも描かれていた。 日本では従来「エカテリーナ」の表記が多かったが、近年は原音により忠実な「エカチェリーナ」の表記が普及してきた。また、ドイツ語や英語由来の「カタリーナ」(Katharina II.)、「カザリン」、「キャサリン」などの表記も散見する。.

新しい!!: レオンハルト・オイラーとエカチェリーナ2世 · 続きを見る »

オイラー (小惑星)

イラー (2002 Euler) は、小惑星帯の小惑星である。1973年8月29日にタマラ・スミルノワによってクリミア天体物理天文台で発見された。 スイスの数学者レオンハルト・オイラーにちなんで名付けられた。.

新しい!!: レオンハルト・オイラーとオイラー (小惑星) · 続きを見る »

オイラー力

古典力学において、オイラー力は、角加速度に伴って生じる慣性力である。それに伴う加速度はレオンハルト・オイラーにちなみ、オイラー加速度とよばれ、方位加速度及び横加速度としても知られている。言い換えると、不均一な回転座標系の運動を分析して、基準系の座標軸の角速度に変化量がある時に現れる加速度でもある。この力は、固定軸の周りを回転する座標系のみに限定して現れる。 オイラー力は F.

新しい!!: レオンハルト・オイラーとオイラー力 · 続きを見る »

オイラーの定理 (平面幾何学)

三角形におけるオイラーの定理(オイラーのていり)とは、三角形の内接円と外接円の半径と内心と外心の距離の関係を表した定理である。 レオンハルト・オイラーは、1765年にこの関係について述べている岩田至康『幾何学大事典』1巻 P.207が、William Chapple は同じ関係式を1745年に発表している。このため、Chappleの定理・Chapple-オイラーの定理などとも呼ばれる。.

新しい!!: レオンハルト・オイラーとオイラーの定理 (平面幾何学) · 続きを見る »

オイラーの定理 (微分幾何学)

微分幾何学において、オイラーの定理とは、曲面上の曲線の曲率について、極大・極小を与える主曲率とそれに伴う主方向の存在を規定する定理である。1760年にレオンハルト・オイラーにより証明が与えられた。.

新しい!!: レオンハルト・オイラーとオイラーの定理 (微分幾何学) · 続きを見る »

オイラーの定理 (数論)

数論において、オイラーの定理(Euler's theorem)は初等整数論の最も基本的な定理の一つである。.

新しい!!: レオンハルト・オイラーとオイラーの定理 (数論) · 続きを見る »

オイラーの定数

イラーの定数(オイラーのていすう、)は、数学定数の1つで、以下のように定義される。 オイラー・マスケローニ定数、オイラーの とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 を用いた。 を用いたのはである。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されているが、無理数であるかどうかさえ分かっていない。.

新しい!!: レオンハルト・オイラーとオイラーの定数 · 続きを見る »

オイラーの五角数定理

数学において、オイラーの五角数定理(Euler's pentagonal number theorem)は次式が恒等式であることを主張する定理である。 これはヤコビの三重積公式の特殊な場合であり、右辺に五角数が表れる。五角数定理から分割関数の漸化式が導かれる。また、五角数定理は、整数を互いに異なる自然数に分割する方法のうち、偶数個に分割する方法の数と奇数個に分割する方法の数との関係を示すものでもある。整数nの互いに異なる偶数個の自然数への分割を集合\mathcal^0(n)で表し、互いに異なる奇数個の自然数への分割を集合\mathcal^1(n)と表すと が成立する。例えば、整数12を偶数個の互いに異なる自然数に分割する方法は であり、奇数個の互いに異なる自然数に分割する方法は であるから、左辺は7-8.

新しい!!: レオンハルト・オイラーとオイラーの五角数定理 · 続きを見る »

オイラーの分割恒等式

数論、組合せ論におけるオイラーの分割恒等式(オイラーのぶんかつこうとうしき)は、自然数(正の整数)を「互いに異なる自然数に分割する方法の個数」(distinct partition; 異分割) と「奇数の自然数に分割する方法の個数」(odd partotion; 奇分割) が等しいことを示す恒等式である。.

新しい!!: レオンハルト・オイラーとオイラーの分割恒等式 · 続きを見る »

オイラーの和公式

数学において、オイラーの和公式(オイラー・マクローリンの公式)は級数の和を与える公式である。この公式は収束の遅い無限級数の和を求めるときに便利であるが、f(x)が多項式であるような場合を除き、m\to\inftyとすればベルヌーイ数が急速に大きくなって発散する。従って、漸近展開のように発散する前の適当なところで打ち切らなければならない。この公式は台形公式による数値積分の誤差を示すものとも考えられる。 但し、B_nはベルヌーイ数、B_n(x)はベルヌーイ多項式である。 なお、f^は導関数、\lfloor\rfloorは床関数を表す。.

新しい!!: レオンハルト・オイラーとオイラーの和公式 · 続きを見る »

オイラーのコマ

力学において、オイラーのコマ(オイラーのこま、Euler Top)とは、剛体の回転運動(コマの運動)の一種。重力などの外力が全く作用しない自由な運動に相当する。オイラー方程式が可積分となる例の一つとして、知られる。.

新しい!!: レオンハルト・オイラーとオイラーのコマ · 続きを見る »

オイラーの公式

数学、特に複素解析におけるオイラーの公式(オイラーのこうしき、Euler's formula)は、指数関数と三角関数の間に成り立つ以下の関係をいう。 ここで は指数関数、 は虚数単位、 はそれぞれ余弦関数および正弦関数である指数関数 は累乗を拡張したもので、複素数 について という関係が成り立つ。 は自然対数の底あるいはネイピア数と呼ばれる。虚数単位 は を満たす複素数である。余弦関数 および正弦関数 は三角関数の一種である。正弦関数 は、直角三角形の斜辺とその三角形の変数 に対応する角度を持つ鋭角の対辺(正弦)の長さの比を表す。余弦関数 はもう一方の鋭角(余角)の対辺と斜辺の長さの比を表す。単位円(半径の長さを 1 とする円)の中心を原点とする直交座標系をとったとき、単位円上の点を表す 座標はそれぞれ に等しい( は円の中心と円周上の点を結ぶ直線と、 軸のなす角の大きさに対応する)。文献によっては、指数関数は、(指数)から3字取って と表される。また虚数単位には でなく を用いることがある。。任意の複素数 に対して成り立つ等式であるが、特に が実数である場合が重要でありよく使われる。 が実数のとき、 は複素数 がなす複素平面上の偏角(角度 の単位はラジアン)に対応する。 公式の名前は18世紀の数学者レオンハルト・オイラー (Leonhard Euler) に因むが、最初の発見者はロジャー・コーツ (Roger Cotes) とされる。コーツは1714年に を発見したが、三角関数の周期性による対数関数の多価性を見逃した。 1740年頃オイラーはこの対数関数の形での公式から現在オイラーの公式の名で呼ばれる指数関数での形に注意を向けた。指数関数と三角関数の級数展開を比較することによる証明が得られ出版されたのは1748年のことだった。 この公式は複素解析をはじめとする純粋数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要な役割を演じる。物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 オイラーの公式は、変数 が実数である場合には、右辺は実空間上で定義される通常の三角関数で表され、虚数の指数関数の実部と虚部がそれぞれ角度 に対応する余弦関数 と正弦関数 に等しいことを表す。このとき、偏角 をパラメータとする曲線 は、複素平面上の単位円をなす。 特に、 のとき(すなわち偏角が 180 度のとき)、 となる。この関係はオイラーの等式 と呼ばれる三角関数の周期性(従って複素指数関数の周期性)により、オイラーの等式が成り立つのは に限らない。すなわち、任意の整数 について は を満たす。。 が純虚数である場合には、左辺は実空間上で定義される通常の指数関数であり、右辺は純虚数に対する三角関数となる。 オイラーの公式は、三角関数 が双曲線関数 に対応することを導く。また応用上は、オイラーの公式を経由して三角関数を複素指数関数に置き換えることで、微分方程式やフーリエ級数などの扱いを簡単にすることなどに利用される。.

新しい!!: レオンハルト・オイラーとオイラーの公式 · 続きを見る »

オイラーの等式

イラーの等式(オイラーのとうしき、Euler's identity)とは、解析学における等式 であり、その名はレオンハルト・オイラーに因む。ここに、 である。.

新しい!!: レオンハルト・オイラーとオイラーの等式 · 続きを見る »

オイラーの運動方程式

力学において、オイラーの運動方程式(オイラーのうんどうほうていしき)とは剛体の回転運動を表す式である。 一般に、トルク と角運動量 の関係は、剛体の回転中心、または剛体の重心を原点とする慣性系においては次のような表式となる。 剛体に固定された座標系における角運動量 と、剛体の角速度ベクトル を使うとこの式は以下のように表される。 慣性主軸座標系では主慣性モーメント によって と表せることを使い、これを成分ごとに分解して整理すると、以下の式になる。.

新しい!!: レオンハルト・オイラーとオイラーの運動方程式 · 続きを見る »

オイラーのφ関数

φ(''n'')の最初の1000個の値 オイラーのトーシェント関数(オイラーのトーシェントかんすう、Euler's totient function)は各正の整数 に対して、 から までの自然数のうち と互いに素なものの個数を として与えることによって定まる数論的関数 である。慣例的に と表記されるため、オイラーの 関数(ファイかんすう、phi function)とも呼ばれる。また、簡略的にオイラーの関数と呼ぶこともある。 例えば、 のうち と互いに素なのは の 2 個であるから、定義によれば である。また例えば のうち 以外は全て と互いに素だから、 と定まる。なおトーシェント関数の値域に含まれない自然数をノントーシェントという。 から までの値は以下の通りである。 1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。.

新しい!!: レオンハルト・オイラーとオイラーのφ関数 · 続きを見る »

オイラー予想

イラー予想(オイラーよそう)とは、スイスの数学者レオンハルト・オイラーが提唱した、フェルマーの最終定理を発展させた数学的予想である。現在では、反例によってこの予想は正しくないことが証明されている。.

新しい!!: レオンハルト・オイラーとオイラー予想 · 続きを見る »

オイラー図

イラー図(オイラーず、Euler diagram)は集合の相互関係を表す図。 考案者であるレオンハルト・オイラーの名をとってオイラー図と名付けられた。ベン図と似ているが、ベン図とは異なり、各集合を表す円が必ずしも重なっている必要はない(右図参照)。.

新しい!!: レオンハルト・オイラーとオイラー図 · 続きを見る »

オイラー積

イラー積(-せき、Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明したレオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。 a(n) は n に関する乗法的関数、p は全ての素数にわたり、変数 s は複素数である。このような表示が成り立つためには a(n) が a(1).

新しい!!: レオンハルト・オイラーとオイラー積 · 続きを見る »

オイラー積分

数学において、オイラー積分(オイラーせきぶん, Euler integral, Eulerian integral)とは、数学者オイラー、ルジャンドルによって研究された積分。第一種オイラー積分と第二種オイラー積分の2つが存在し、それぞれがベータ関数とガンマ関数に相当する。 オイラー積分の名はルジャンドルによって与えられた。.

新しい!!: レオンハルト・オイラーとオイラー積分 · 続きを見る »

オイラー線

イラー線(オイラーせん、 line )は、三角形の外心・重心・垂心を通る直線であり、その名称は存在を見出した数学者レオンハルト・オイラーに由来している。.

新しい!!: レオンハルト・オイラーとオイラー線 · 続きを見る »

オイラー類

数学において、特に代数トポロジーにおいて、レオンハルト・オイラー(Leonhard Euler)の名前のついたオイラー類(Euler class)は、(oriented)実ベクトルバンドルの特性類である。他の特性類と同様に、オイラー類は、ベクトルバンドルがどれくらい「ツイストしている」かを測る。オイラー類は古典的概念であるオイラー標数を、滑らかな多様体の接バンドルの場合へ一般化したものである。 本記事を通して、E → X は向き付けられた、(rank) r の実ベクトルバンドルである。.

新しい!!: レオンハルト・オイラーとオイラー類 · 続きを見る »

オイラー角

イラー角とは、三次元ユークリッド空間中の2つの直交座標系の関係を表現する方法の一つである。 レオンハルト・オイラーにより考案された。 剛体に固定された座標系を考えることで、剛体の姿勢を表すことができる。 オイラー角は3つの角度の組で表される。 一方の座標系を (x,y,z) で表し、他方を (X,Y,Z) で表す。簡単のために、2つの座標系は原点を共有するものと考える。.

新しい!!: レオンハルト・オイラーとオイラー角 · 続きを見る »

オイラー路

イラー路(オイラーろ、Eulerian trail)とは、グラフの全ての辺をちょうど1度だけ通る路のこと。また全ての辺をちょうど1度だけ通る閉路は、オイラー閉路(オイラーへいろ、Euler circuit)という。これらの名称は1736年にこれらを含むグラフの特徴づけを与えたレオンハルト・オイラーにちなむ。 グラフの辺をすべて通るようなオイラー閉路を持つグラフのことをオイラーグラフ(Eulerian graph)という。またグラフの辺をすべて通るような、閉路でないオイラー路を持つグラフのことを準オイラーグラフという。.

新しい!!: レオンハルト・オイラーとオイラー路 · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: レオンハルト・オイラーとオイラー=ラグランジュ方程式 · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: レオンハルト・オイラーとオイラー標数 · 続きを見る »

オイラー法

イラー法(オイラーほう、Euler method) とは、常微分方程式の数値解法の一つである。この方法は、数学的に理解しやすく、プログラム的にも簡単なので、数値解析の初歩的な学習問題としてよく取りあげられる。 しかし、1階段数常微分方程式の数値解法としては誤差が蓄積されるため、精度が悪く、元の微分方程式によってはいかなる をとっても元の方程式の解に収束しないこともある方法なので、学習目的以外であまり使われない。.

新しい!!: レオンハルト・オイラーとオイラー法 · 続きを見る »

オイラー方程式 (流体力学)

流体力学におけるオイラー方程式(オイラーほうていしき、Euler equations)とは、完全流体を記述する運動方程式である巽『連続体の力学』 p.142。 この方程式は1755年にレオンハルト・オイラーにより定式化された。完全流体とは粘性を持たない流体である。粘性がないため、境界条件として壁面でのすべりを許す必要がある。 高マッハ数の圧縮性流れでは、流速が大きいことから粘性や乱流の効果は壁面近くの小さな領域にしか現れないため、オイラー方程式を用いて流れの解析が行われる。 オイラー方程式は で表される。ここで は流体の速度場、 は密度場、 は圧力場で、 は流体の質量当たりにかかる外力場(加速度場)である。これはナビエ-ストークス方程式から粘性項を省いたものと同じである。 ベクトル解析の公式から と変形されるので、オイラー方程式は となる。ここで は流体の渦度である。 さらに密度が圧力だけで決まる順圧の場合には圧力関数 を導入すれば と表される。外力が重力のような保存力である場合には、外力のポテンシャルを として であり、オイラー方程式は となる。.

新しい!!: レオンハルト・オイラーとオイラー方程式 (流体力学) · 続きを見る »

オイラー数

イラー数は、双曲線正割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: における E_k がオイラー数である。 この数列は整数であり、奇数項がすべて 0、偶数項の符号が交互に切り替わることが特徴である。 双曲線正割関数の代わりに、三角関数の正割関数: の展開級数 \hat_k (セカント数) をオイラー数と呼ぶこともある。 なお、\hat_.

新しい!!: レオンハルト・オイラーとオイラー数 · 続きを見る »

ガンマ関数

1.

新しい!!: レオンハルト・オイラーとガンマ関数 · 続きを見る »

グラフ理論

ラフ理論(グラフりろん、graph theory)は、ノード(節点・頂点)の集合とエッジ(枝・辺)の集合で構成されるグラフに関する数学の理論である。グラフ (データ構造) などの応用がある。.

新しい!!: レオンハルト・オイラーとグラフ理論 · 続きを見る »

ゴールドバッハ・オイラーの定理

ールドバッハ・オイラーの定理(ゴールドバッハ・オイラーのていり、Goldbach–Euler theorem)はある自然数の逆数を項とする級数に関する定理であり、以下の式で表される。 ただし、pは累乗数(1は含まない)を動くものとする。上の式は、累乗数より1小さい自然数の逆数の無限和が1に収束することを意味する。この定理は1737年にレオンハルト・オイラーがその論文中で初めて述べたものであるが、クリスティアン・ゴールドバッハが彼に宛てた手紙の中でオイラーに明らかにしたとされる(手紙は散逸している)。.

新しい!!: レオンハルト・オイラーとゴールドバッハ・オイラーの定理 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: レオンハルト・オイラーとゴットフリート・ライプニッツ · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: レオンハルト・オイラーとジョゼフ=ルイ・ラグランジュ · 続きを見る »

スイス

イス連邦(スイスれんぽう)、通称スイスは中央ヨーロッパにある連邦共和制国家。永世中立国であるが、欧州自由貿易連合に加盟しているほかバチカン市国の衛兵はスイス傭兵が務めている。歴史によって、西欧に分類されることもある。 ドイツ、フランス、イタリア、オーストリア、リヒテンシュタインに囲まれた内陸に位置し、国内には多くの国際機関の本部が置かれている。首都はベルンで、主要都市にチューリッヒ、バーゼル、ジュネーヴ、ローザンヌなど。.

新しい!!: レオンハルト・オイラーとスイス · 続きを見る »

サンクトペテルブルク

'''サンクトペテルブルク周辺の人工衛星写真'''ラドガ湖から南西に流れ出したネヴァ川は北西に流路を変え、フィンランド湾最深部に流れ込む。サンクトペテルブルクの街はネヴァ川河口の三角州を中心に発達した。 サンクトペテルブルク(Санкт-Петербург,, IPA: )は、バルト海東部のフィンランド湾最東端に面するネヴァ川河口デルタに位置するロシア西部の都市、レニングラード州の州都。1917年までロシア帝国の首都であった。 都市建設ののち、第一次世界大戦まで(1703年 - 1914年)はペテルブルク(Петербург)、第一次世界大戦開戦以降(1914 - 24年)はペトログラード(Петроград)、ソビエト連邦時代(1924 - 91年)はレニングラード(Ленинград)と呼ばれた。.

新しい!!: レオンハルト・オイラーとサンクトペテルブルク · 続きを見る »

円錐曲線

円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。.

新しい!!: レオンハルト・オイラーと円錐曲線 · 続きを見る »

剛体

剛体(ごうたい、)とは、力の作用の下で変形しない物体のことである。 物体を質点の集まり(質点系)と考えたとき、質点の相対位置が変化しない系として表すことができる。 剛体は物体を理想化したモデルであり、現実の物体には完全な意味での剛体は存在せず、どんな物体でも力を加えられれば少なからず変形する。 しかし、大きな力を加えなければ、多くの固体や結晶体は変形を無視することができて剛体として扱うことができる。 剛体は、変形を考えないことから、その運動のみが扱われる。剛体の運動を扱う動力学は剛体の力学()と呼ばれる。大きさを無視した質点の力学とは異なり、大きさをもつ剛体の力学は姿勢の変化(転向)が考えられる。 こまの回転運動などは剛体の力学で扱われるテーマの一つである。 なお、物体の変形を考える理論として、弾性体や塑性体の理論がある。 また、気体や液体は比較的自由に変形され、これを研究するのが流体力学である。 これらの変形を考える分野は連続体力学と呼ばれる。 剛体の動力学は、剛体の質量が重心に集中したものとしたときの並進運動に関するニュートンの運動方程式と、重心のまわりの回転に関するオイラーの運動方程式で記述できる。.

新しい!!: レオンハルト・オイラーと剛体 · 続きを見る »

章動

地球の自転(R)、歳差(P)、章動(N)の概念図 章動(しょうどう、)とは、物体の回転運動において、歳差運動をする回転軸の動きの短周期で微小な成分をさす。.

新しい!!: レオンハルト・オイラーと章動 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: レオンハルト・オイラーと級数 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: レオンハルト・オイラーと素数 · 続きを見る »

特殊関数

特殊関数(とくしゅかんすう、special functions)は、何らかの名前や記法が定着している関数であり、解析学、関数解析学、物理学、その他の応用分野でよく使われる関数であることが多い。 何が特殊関数であるかのはっきりした定義は存在しないが、しばしば特殊関数として扱われるものには、ガンマ関数、ベッセル関数、ゼータ関数、楕円関数、ルジャンドル関数、超幾何関数、ラゲール多項式、エルミート多項式などがある。一般には初等関数の対義語ではなく、ある関数が初等関数であって同時に特殊関数とされる場合もある。.

新しい!!: レオンハルト・オイラーと特殊関数 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: レオンハルト・オイラーと複素数 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: レオンハルト・オイラーと解析学 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: レオンハルト・オイラーと解析幾何学 · 続きを見る »

高瀬正仁

正仁(たかせ まさひと、1951年1月23日- )は日本の数学者、数学史家。理学博士(九州大学)。九州大学基幹教育研究院教授、大正大学非常勤講師。専門は多変数関数論、数学史。.

新しい!!: レオンハルト・オイラーと高瀬正仁 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: レオンハルト・オイラーと近似 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: レオンハルト・オイラーと関数 (数学) · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: レオンハルト・オイラーと連分数 · 続きを見る »

連続の方程式

連続の方程式(れんぞくのほうていしき、equation of continuity、連続方程式、連続の式、連続式などとも言う)は物理学で一般的に適用できる方程式で、「原因もなく物質が突然現れたり消えたりすることはない」という自然な考え方を表す。保存則と密接に関わっている。 狭義には流体力学における質量保存則 + \nabla \cdot (\rho \boldsymbol).

新しい!!: レオンハルト・オイラーと連続の方程式 · 続きを見る »

林鶴一

林 鶴一(はやし つるいち、1873年(明治6年)6月13日 - 1935年(昭和10年)10月4日)は日本の数学者、数学史家。京都帝国大学理工科大学の助教授、東北帝国大学理科大学の教授を務めた佐々木重夫。.

新しい!!: レオンハルト・オイラーと林鶴一 · 続きを見る »

楕円函数

数学の一分野、複素解析における楕円函数(だえんかんすう、elliptic function)は、二方向に周期を持つ有理型のことをいう。歴史的には、楕円函数は楕円積分の逆函数として、ニールス・アーベルによって発見された(楕円積分は楕円の周長を求める問題に関連して研究されていたものである)。.

新しい!!: レオンハルト・オイラーと楕円函数 · 続きを見る »

母関数

数学において、母関数(ぼかんすう、generating function; 生成関数)は、(自然数で添字付けられた)数列 に関する情報を内包した係数を持つ、形式的冪級数である。母関数は、一般線型回帰問題の解決のためにド・モアブルによって1730年に初めて用いられた。複数の自然数で添字付けられる数の配列(多重数列)の情報を取り込んだ多変数冪級数を同様に考えることもできる。 母関数には、通常型母関数、指数型母関数、ランベルト級数、ベル級数、ディリクレ級数 など様々なものがある。これらについては定義と例を後述する。原理的にはあらゆる列についてそれぞれの種類の母関数が存在する(ただし、ランベルト級数とディリクレ型は添字を 1 から始めることが必要)が、扱い易さについてはそれぞれの種類で相当異なるかもしれない。どの母関数が最も有効かは、その列の性質と解くべき問題の詳細に依存する。 母関数を、形式的冪級数に対する演算・操作を用いるなどして(級数の形ではなく)の式で表すこともよく行われる。このような母関数の表示は、母関数の不定元を x とすれば、四則演算、母関数のx に関する微分、他の母関数へ代入すること、などを行った結果として得られる。これらの操作は関数に対しても定義されるものであるし、結果として得られる式もやはり x の関数であるかのように見える。実際、母関数を x の(十分小さい)具体的な値で評価することのできる関数として解釈することができる場合も少なくない(このとき、母関数の冪級数表示は、母関数の閉じた形の式のテイラー級数と解釈される)のであり、それがこの式が「母関数」と呼ばれる所以でもある。しかし、形式的冪級数は x に何らかの数値を代入したときに収束するかどうかは問題にしないのであって、母関数についてそのような関数としての解釈が可能であるということは必ずしも要求されるものではないし、同様に x の関数として意味を持つ式がいずれも形式的冪級数に対して意味を持つわけではない。 慣例的に母「関数」と呼ばれてはいるが、始域から終域への写像という関数の厳密な意味に照らして言えば母関数は関数ではなく、今日的には生成級数(母級数)と呼ぶこともしばしばである。.

新しい!!: レオンハルト・オイラーと母関数 · 続きを見る »

指数 (初等整数論)

初等整数論における指数(しすう、index)は、解析学における指数関数・対数関数の概念の類似物である。標数と呼ばれることもある。.

新しい!!: レオンハルト・オイラーと指数 (初等整数論) · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: レオンハルト・オイラーと指数関数 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: レオンハルト・オイラーと流体力学 · 続きを見る »

海鳴社

株式会社海鳴社(かいめいしゃ)は、日本の出版社。 生物学、精神医学、心理学をはじめ宗教、哲学、数学など幅広い分野の学術専門書を出版している。。.

新しい!!: レオンハルト・オイラーと海鳴社 · 続きを見る »

新暦

新暦(しんれき)とは改暦が行われた場合の改暦後の暦法のことである。改暦前の暦は旧暦という。日本ほか東アジアの諸国においては太陰太陽暦から改暦した太陽暦(グレゴリオ暦)のことを言う。.

新しい!!: レオンハルト・オイラーと新暦 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: レオンハルト・オイラーと数学 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: レオンハルト・オイラーと数学者 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: レオンハルト・オイラーと数理物理学 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: レオンハルト・オイラーと数論 · 続きを見る »

1707年

記載なし。

新しい!!: レオンハルト・オイラーと1707年 · 続きを見る »

1783年

記載なし。

新しい!!: レオンハルト・オイラーと1783年 · 続きを見る »

18世紀

Jean-Pierre Houëlが描いたバスティーユ襲撃(フランス国立図書館蔵)。 国立マルメゾン城美術館蔵)。 ロンドン・ナショナル・ギャラリー蔵)。 18世紀(じゅうはっせいき)は、西暦1701年から西暦1800年までの100年間を指す世紀。.

新しい!!: レオンハルト・オイラーと18世紀 · 続きを見る »

4月15日

4月15日(しがつじゅうごにち)はグレゴリオ暦で年始から105日目(閏年では106日目)にあたり、年末まではあと260日ある。誕生花はモクレン、タンポポ。.

新しい!!: レオンハルト・オイラーと4月15日 · 続きを見る »

9月18日

9月18日(くがつじゅうはちにち)は、グレゴリオ暦で年始から261日目(閏年では262日目)にあたり、年末まであと104日ある。.

新しい!!: レオンハルト・オイラーと9月18日 · 続きを見る »

ここにリダイレクトされます:

Leonhard Eulerオイラー

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »