ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ダイオード

索引 ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

108 関係: AT&T半導体半導体レーザー半導体素子印加受信機太陽電池寄生容量伝熱復調マイクロ波バリキャップバリスタ (電子部品)バンド構造リアクトルレーザーボルツマン定数トンネル効果トンネルダイオードトーマス・エジソンヒ化ガリウムツェナーダイオードテレビ受像機フライホイールフリーホイールフェルディナント・ブラウンフォトダイオードドイツベル研究所アバランシェフォトダイオードアバランシェダイオードアンペアアヴァランシェ・ブレークダウンインドイギリスウィリアム・ショックレーエレクトロルミネセンスエジソン効果ガン・ダイオードギリシア語グリーンリーフ・ホイッティア・ピカードケイ素ゲルマニウムダイオードゲートウェイショットキーバリアダイオードショットキー接合ジャガディッシュ・チャンドラ・ボースジョン・フレミングスイッチング電源セレン...セレン整流器ゼネラル・エレクトリックサージ電流サイリスタ光子光起電力効果光検出器回生ブレーキ空乏層真空管炭化ケイ素点接触型トランジスタ無線熱力学温度熱電子物理学者発光発光ダイオード発振回路金属酸化銅(I)鉱石鉱石ラジオ鉱石検波器鉄道英語電場電子電子回路電子部品電位電圧制御発振器電圧源電動機電界効果トランジスタ電機子チョッパ制御電気素量電気抵抗Pn接合SPICE (ソフトウェア)携帯電話正孔江崎玲於奈指数関数方鉛鉱整流器1874年1894年1899年1900年代1903年1906年1919年1920年代1930年代1950年代1957年 インデックスを展開 (58 もっと) »

AT&T

AT&T Inc.(エイ ティ アンド ティ)は、アメリカ最大手の電話会社。インターネット接続、映像配信サービス等も提供する。本社はテキサス州ダラスにあり、AT&Tとは旧社名 The American Telephone & Telegraph Company の略。.

新しい!!: ダイオードとAT&T · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: ダイオードと半導体 · 続きを見る »

半導体レーザー

レーザーダイオード本体。非常に小さい。 赤色レーザーダイオードの発振 半導体レーザー 半導体レーザー(はんどうたいレーザー、semiconductor laser)は、半導体の再結合発光を利用したレーザーである。 同じものを指すのに、ダイオードレーザー (diode laser) や、レーザーダイオードという名称も良く用いられLDと表記されることも多い。半導体の構成元素によって発振する中心周波数、つまりレーザー光の色が決まる。常温で動作するものの他に、共振器構造や出力電力によっては冷却が必要なものもある。.

新しい!!: ダイオードと半導体レーザー · 続きを見る »

半導体素子

ここでは半導体素子(はんどうたいそし)や半導体部品(-ぶひん)(英:semiconductor device) セミコンダクター・デバイスについて解説する。.

新しい!!: ダイオードと半導体素子 · 続きを見る »

印加

印加(いんか)とは、電気回路に電源や別の回路から電圧や信号を与える事を意味し、「電圧を印加する」「信号を印加する」という様に使われる。またこの時、印加された電圧、電流はそれぞれ印加電圧、印加電流と呼ばれる。 電圧を印加した瞬間に流れる大電流を突入電流(インラッシュ電流)という。電動機や変圧器など、巻線機器ではこうした突入電流を考慮したうえで機器の設計および保護継電器の整定を行う。 電圧を印加する際には感電災害や機器の破損を防止するため、作業員を当該機器から退避させたこと、配線が正確になされていることを確認しなければならない。.

新しい!!: ダイオードと印加 · 続きを見る »

受信機

受信機の一例(AMラジオ) 受信機(じゅしんき)は通信機の内、信号を受け取り、復調して情報を復元する装置のことである。また、信号の送り出し側は送信機である。ラジオ受信機、レシーバー、チューナー、RXとも呼ばれる。 「Bluetooth受信機」や一般製品として販売されている「受信機」などは送信も行っている場合もあるが、一般的には受信機と呼ばれる。 ふつう「レシーバー」の訳が「受信機」だが、レシーバーと言うとスピーカーなど音声再生装置まで含んで、日本語では「ラジオ」に相当することも多い(英語radioにもラジオ放送の受信機という意味はある)。受信機につなぐヘッドフォンを指してレシーバーと言うことさえある。一方受信機と言った場合スピーカーなどを含まない「チューナー」のような意味であることがあり、またラジオより本格的な装置、一般のラジオ放送以外の電波を受ける装置、を指していることが多い。 ラジオ#受信機も参照。.

新しい!!: ダイオードと受信機 · 続きを見る »

太陽電池

単結晶シリコン型太陽電池 太陽電池(たいようでんち、Solar cell)は、光起電力効果を利用し、光エネルギーを電力に変換する電力機器である。光電池(こうでんち、ひかりでんち)とも呼ばれる。一般的な一次電池や二次電池のように電力を蓄える蓄電池ではなく、光起電力効果によって光を即時に電力に変換して出力する発電機である。タイプとしては、シリコン太陽電池の他、様々な化合物半導体などを素材にしたものが実用化されている。色素増感型(有機太陽電池)と呼ばれる太陽電池も研究されている。 太陽電池(セル)を複数枚直並列接続して必要な電圧と電流を得られるようにしたパネル状の製品単体は、ソーラーパネルまたはソーラーモジュールと呼ばれる。モジュールをさらに複数直並列接続して必要となる電力が得られるように設置したものは、ソーラーアレイと呼ばれる。.

新しい!!: ダイオードと太陽電池 · 続きを見る »

寄生容量

寄生容量とは、浮遊容量とも呼ばれ、電子部品の内部、あるいは電子回路の中で、それらの物理的な構造に起因する、設計者が意図しない容量成分のことである。 一般的には、ストレーキャパシティ(英 stray capacity)と呼ばれる。 インダクタ、トランジスタ、ダイオード、抵抗などの電子部品は、回路図の上では目的の機能のみを持つ理想的な素子として扱われる。しかし、現実の部品には本来の機能だけではなく、抵抗成分、容量成分、誘導成分などが必然的に現れる。 また、プリント基板上において複数の導線パターンが近接していると、それぞれの導線を電極とする微少な容量成分が寄生容量となる。同じ現象は複数の配線が接近している場合にも発生する。.

新しい!!: ダイオードと寄生容量 · 続きを見る »

伝熱

伝熱(でんねつ、)とは、熱エネルギーが、空間のある場所から別の場所に移動する現象。熱移動ともいう。伝熱は、熱の移動現象を扱う工学であり、熱工学の一分野である。.

新しい!!: ダイオードと伝熱 · 続きを見る »

復調

復調(ふくちょう)とは、電気技術用語で、変調信号が伝送されてきたとき、それからもとの信号波を復元することである。変調の対義語である。各変調方式に対応して復調が行われる。 特に電波に関しては検波(けんぱ)ともいう(復調という語は無線有線を問わず、任意の方式の変調を元に戻すことを指す語である)。本来の語義としては、電波の断続(不存在か存在か)を検出することに限定した語が「検波」と考えられるが、歴史的な理由で、モールス符号のようないわゆるCW(電波型式でA1A)においてコヒーラによる検波が復調であったものが、そのまま任意の変調方式における復調を指すものとして流用され、専ら下記の方式名のごとく「-検波」と呼ばれる。 英単語demodulationであるため、ブロック図(系統図)等で「DEM」または「DEMO」等と略記される場合がある。「モデム」(modem)の「デム」(-dem)の由来である。.

新しい!!: ダイオードと復調 · 続きを見る »

マイクロ波

マイクロ波(マイクロは、Microwave)は、電波の周波数による分類の一つである。「マイクロ」は、電波の中で最も短い波長域であることを意味する。.

新しい!!: ダイオードとマイクロ波 · 続きを見る »

バリキャップ

バリキャップ(varicap diode, )とは、ダイオードの一種で、端子に加える電圧によって静電容量が変化するダイオードである。可変容量ダイオード(かへんようりょうダイオード)やバラクタとも呼ばれる。.

新しい!!: ダイオードとバリキャップ · 続きを見る »

バリスタ (電子部品)

酸化金属バリスタ, 385 V バリスタの回路図記号 バリスタ (varistor) は、2つの電極をもつ電子部品で、両端子間の電圧が低い場合には電気抵抗が高いが、ある程度以上に電圧が高くなると急激に電気抵抗が低くなる性質を持つ。 他の電子部品を高電圧から保護するためのバイパスとして用いられる。 名称はvariable resistorに由来し、非直線性抵抗素子の意味である。 バリスタの両端子間の電圧Vと流れる電流Iの関係を I \propto V ^ \alpha\ で近似した場合、通常の抵抗体(オーム抵抗)ならばα.

新しい!!: ダイオードとバリスタ (電子部品) · 続きを見る »

バンド構造

バンド構造(バンドこうぞう、band structure)は、ポテンシャルや誘電率などの周期的構造によって生じる、波動(電子や電磁波など)に対する分散関係のことである。; 電子バンド構造; フォトニックバンド構造 他にも、フォノニックバンド構造やプラズモニックバンド構造などがある。 ---- 電子バンド構造(でんしバンドこうぞう、electronic band structure)は、結晶などの固体の中で、波として振舞う電子(価電子)に対するバンド構造のことである。.

新しい!!: ダイオードとバンド構造 · 続きを見る »

リアクトル

リアクトルは、インダクタを利用した、受動素子である。.

新しい!!: ダイオードとリアクトル · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: ダイオードとレーザー · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: ダイオードとボルツマン定数 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: ダイオードとトンネル効果 · 続きを見る »

トンネルダイオード

トンネルダイオードを表す回路記号トンネルダイオード(tunnel diode)または江崎ダイオード(Esaki diode)は、量子トンネル効果を使った半導体によるダイオードの一種で、高速動作を特徴としマイクロ波レベルの高周波回路でよく使われている。.

新しい!!: ダイオードとトンネルダイオード · 続きを見る »

トーマス・エジソン

トーマス・アルバ・エジソン(Thomas Alva Edison, (トマス・アルヴァ・エディスン)トーマスではなくトマス・エジソンと表記することも多い。, 1847年2月11日 - 1931年10月18日)は、アメリカ合衆国の発明家、起業家。スポンサーのJPモルガン、配下のサミュエル・インサル、そしてメロン財閥と、電力系統を寡占した。 日本では長らく「エジソン」という表記が定着しているが、 "di"()を意識して「エディソン」「エディスン」と表記する場合もある。.

新しい!!: ダイオードとトーマス・エジソン · 続きを見る »

ヒ化ガリウム

ヒ化ガリウム(ヒかガリウム、gallium arsenide)はガリウムのヒ化物であり、組成式はGaAsである。化合物半導体であるため、その性質を利用して半導体素子の材料として多用されている。半導体分野ではガリウムヒ素(ガリウム砒素)という、さらにはそれを短縮したガリヒ素という呼称で呼ばれることも多い。.

新しい!!: ダイオードとヒ化ガリウム · 続きを見る »

ツェナーダイオード

ツェナーダイオード ツェナーダイオード(Zener diode)はダイオードの一種。別名を定電圧ダイオードともいい、その名の通り、一定の電圧(リファレンス)を得る目的で使用される素子である。 一般的な呼称はツェナーと省略されることが多く、文献によってはジーナーダイオードの記述もみられる。 通常のダイオードは、逆方向に電圧をかけても、ほとんど電流は流れないため、整流や検波などの用に供される。ところが、ある一定の電圧(降伏電圧もしくはツェナー電圧という)を上回ると、アバランシェ降伏と呼ばれる現象により、急激に電流が流れるようになる。 ツェナーダイオードが一般のダイオードと異なる点は、定電圧を得る目的で、降伏電圧が大幅に低くなるように設計されていることである。PN接合部に大量の不純物を添加し、P チャネルの価電子帯から N チャネルの伝導帯へ電子が移動しやすくなっている。この現象はトンネル効果によるもので、原子モデルでは共有結合のイオン化に該当する。 このツェナー効果は、物理学者のクラレンス・ツェナーにより発見された。逆バイアスを印加されたツェナーダイオードは、制御された降伏を示し、ダイオードにかかる電圧が降伏電圧に等しくなるように電流が流れる。ここから印加電圧を上げてもダイオードでの電圧降下はあまり変わらず電流量が増大してゆく。たとえば、ツェナー降伏電圧が3.2Vの素子に対してそれ以上の逆バイアス電圧を印加した場合は、電圧降下が3.2Vになる。しかし、いくらでも電流を流せるわけではないので、増幅段の基準電圧を発生させたり、あまり電流を必要としない場面での電圧を安定化させたりする素子として使われるのが一般的である。 この降伏電圧は、添加処理で極めて正確に調整することができる。このため、一般的に入手できるツェナーダイオードは種類が多く、1.2Vから200V程度まで販売されている。また、その誤差は、一般的なものでは5%や10%だが、0.05%以内といった超高精度の商品も存在する。 アバランシェダイオードにおけるアバランシェ現象も、これと類似している。実際には、同じ方法で2種類のダイオードが製造されているが、両方の現象の影響を受ける。約5.6Vまでのシリコンダイオードではツェナー現象による影響が支配的で、負の温度係数を示す。5.6V以上ではアバランシェ現象が支配的となり、正の温度係数を示す。 5.6Vのダイオードでは、この2つの現象が同時に起こり、各々の温度係数が丁度相殺される。このため、温度による影響を極力抑えたい用途には5.6Vのダイオードが適している。 最新の製造技術により、電圧が5.6V未満であれば温度係数を無視できる程度の素子を生産できるようになったが、電圧の高い素子では温度係数が劇的に大きくなる。たとえば、75Vのダイオードの温度係数は、12Vのダイオードの10倍にもなる。 通常、このようなダイオードはすべて、降伏電圧によらず「ツェナーダイオード」の総称で市場に出回っている。.

新しい!!: ダイオードとツェナーダイオード · 続きを見る »

テレビ受像機

テレビ受像機(テレビじゅぞうき)とは、テレビジョン放送の電波を受信し、映像と音声を表示(視聴)する為の受信機である。通称テレビ。 放送に合わせてモノクロ、カラー、ハイビジョンなどの種別がある。なお、日本では「テレビジョン受信機」として家庭用品品質表示法の適用対象となっており電気機械器具品質表示規程に定めがある。.

新しい!!: ダイオードとテレビ受像機 · 続きを見る »

フライホイール

フライホイール(flywheel)は、回転系の慣性モーメントを利用した機構に用いられる機械要素のひとつである。日本語では弾み車、勢車(いずれもよみは「はずみぐるま」)という。回転機構の回転速度を安定化させる用途や、回転の運動エネルギーを利用する用途、角加速度を与えた際の反力を利用する用途に用いられる。.

新しい!!: ダイオードとフライホイール · 続きを見る »

フリーホイール

フリーホイール()とは、自転車においてペダルを回し続けなくても惰性で進むような機構を組み込んだ駆動輪のことである。これにより、自転車の運転がより容易になった。固定ギア、トラックレーサーを除くほぼ全種の自転車に搭載されており、フリーホイールの発明は自転車の数ある技術革新の中でも画期的なもののひとつと言われる。.

新しい!!: ダイオードとフリーホイール · 続きを見る »

フェルディナント・ブラウン

1900年9月24日、無線実験局にて カール・フェルディナント・ブラウン(Karl Ferdinand Braun、1850年6月6日‐1918年4月20日)は、ドイツの物理学者、発明家。電位計やオシログラフ、そしてブラウン管の発明など電磁気学および無線通信の分野に多大な業績を残した。1909年には、ノーベル物理学賞をグリエルモ・マルコーニと共に受賞している。.

新しい!!: ダイオードとフェルディナント・ブラウン · 続きを見る »

フォトダイオード

フォトダイオード フォトダイオード フォトダイオード(Photodiode)は、光検出器として働く半導体のダイオードである。フォトダイオードにはデバイスの検出部に光を取り込むための窓や光ファイバーの接続部が存在している。真空紫外線やX線検出用のフォトダイオードは検出窓が存在しないものもある。 フォトトランジスタは、基本的にはバイポーラトランジスタで、バイポーラトランジスタのベース・コレクターのpn接合に光が到達するようなケースに封入している。フォトトランジスタはフォトダイオードの様に動作するが、光に対してはより高感度である。これは、光子によりベースコレクター間の接合に電子が生成され、それがベースに注入されるからで、この電流がトランジスター動作で増幅される。しかし、フォトトランジスタはフォトダイオードより応答時間が遅い。 ほとんどのフォトダイオードは右の写真の様な形状をしており、発光ダイオードと形状が似ている。2端子(もしくはワイヤー)がそこより出ている。端子の長さの短い方がカソードで、長い方がアノードである。下に回路図が示してあり、電流はアノードからカソードの方向に矢印の向きに流れる。.

新しい!!: ダイオードとフォトダイオード · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: ダイオードとドイツ · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: ダイオードとベル研究所 · 続きを見る »

アバランシェフォトダイオード

アバランシェフォトダイオード(avalanche photodiode)とは、アバランシェ増倍と呼ばれる現象を利用して受光感度を上昇させたフォトダイオードである。略称はAPD。 半導体中に大きな電界があると、光子の衝突によって発生する電子が加速され、他の半導体原子と衝突して複数の電子を弾き出す。ここで弾き出された電子は電界によって加速され、他の半導体原子に衝突してさらに電子を弾き出す。この連鎖によって、移動する電子が爆発的に増える現象をアバランシェ増倍と呼ぶ。 アバランシェ増倍によって微弱な光でも大きな電位変化を引き起こせるため、フォトダイオードの受光感度を大きく上昇させることが可能になる。 一般のフォトダイオードの価格が数百円~であるのに対し、従来100万円以上と非常に高価であったが最近になって1万円程度の物も販売されている(2007年4月)。 ちなみに、アバランシェとは雪崩のこと。 主要なメーカーには浜松ホトニクス、京セミ、松定プレシジョンなどが挙げられる。 Category:ダイオード.

新しい!!: ダイオードとアバランシェフォトダイオード · 続きを見る »

アバランシェダイオード

アバランシェダイオード(英語:avalanche breakdown diode、略称:ABD)は ダイオードの一種(通常シリコン(珪素)だが、他の半導体から作られることもある)で、特定の逆電圧にてアバランシェ降伏を起こすことにより、電圧リファレンスとして用いられるよう設計されたものである。 ツェナーダイオードは明らかに似た効果を持つが、こちらはツェナー降伏という別の動作メカニズムに依っている。実際にはどのダイオードにも両方の効果が存在するが、ふつうはどちらかが優勢である。典型的には、ツェナーダイオードは数十Vの最大電圧に限定されるが、シリコンアバランシェダイオードには4000Vを超える降伏電圧をもつものもある。 主な特徴としてはマイクロ波及びミリ波において発振や増幅が可能である、雑音が多い、10GHz以上で高出力が得られる、大きな熱損失を生じる、などの点がある。.

新しい!!: ダイオードとアバランシェダイオード · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: ダイオードとアンペア · 続きを見る »

アヴァランシェ・ブレークダウン

アヴァランシェ・ブレークダウン(Avalanche breakdown)は、自由電子が電界で加速され衝突電離を引き起こす過程が、繰り返し発生することで、大電流が流れる現象である。絶縁体や半導体材料の両者で発生する。電子が雪崩(アヴァランシェ)的に増倍していく現象から名づけられたものである。日本語では、雪崩降伏、アヴァランシェ降伏、アヴァランシェ崩壊と書かれる場合もある。.

新しい!!: ダイオードとアヴァランシェ・ブレークダウン · 続きを見る »

インド

インドは、南アジアに位置し、インド洋の大半とインド亜大陸を領有する連邦共和制国家である。ヒンディー語の正式名称भारत गणराज्य(ラテン文字転写: Bhārat Gaṇarājya、バーラト・ガナラージヤ、Republic of India)を日本語訳したインド共和国とも呼ばれる。 西から時計回りにパキスタン、中華人民共和国、ネパール、ブータン、バングラデシュ、ミャンマー、スリランカ、モルディブ、インドネシアに接しており、アラビア海とベンガル湾の二つの海湾に挟まれて、国内にガンジス川が流れている。首都はニューデリー、最大都市はムンバイ。 1947年にイギリスから独立。インダス文明に遡る古い歴史、世界第二位の人口を持つ。国花は蓮、国樹は印度菩提樹、国獣はベンガルトラ、国鳥はインドクジャク、国の遺産動物はインドゾウである。.

新しい!!: ダイオードとインド · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: ダイオードとイギリス · 続きを見る »

ウィリアム・ショックレー

ウィリアム・ブラッドフォード・ショックレー・ジュニア(William Bradford Shockley Jr.、1910年2月13日 - 1989年8月12日)は、アメリカの物理学者、発明家。ジョン・バーディーン、ウォルター・ブラッテンと共にトランジスタを発明し、3人で1956年のノーベル物理学賞を受賞。 ショックレーは1950年代から1960年代にかけてトランジスタの商業化を試み、そのために電子工学関連の技術革新が育まれ、カリフォルニアに「シリコンバレー」が生まれる出発点となった。晩年にはスタンフォード大学の教授となり、優生学の熱心な支持者となった。.

新しい!!: ダイオードとウィリアム・ショックレー · 続きを見る »

エレクトロルミネセンス

レクトロルミネセンス(Electroluminescence:EL)、あるいは電界発光(でんかいはっこう)とは主に半導体中において、電界を印加することによって得られるルミネセンスを指す。注入型と真性に区別される。 注入型ELは電界によって電子と正孔を注入し、その再結合によって発光をさせるものである。一方真性ELは電界によって加速した電子が何らかの発光中心に衝突し、その発光中心が励起されて発光するものである。 なお発光物が有機物か無機物かで区別され、前者は有機EL、後者は無機ELと呼ばれる。.

新しい!!: ダイオードとエレクトロルミネセンス · 続きを見る »

エジソン効果

ン効果(エジソンこうか、Edison effect)とは、白熱電球の中へ正電位にある金属板(プレート)をおくと加熱されたフィラメントとプレートの間に真空を通して電流が流れる現象をいう。このエジソン効果が熱電子放出(Thermionic emission)の研究の始まりとなった。 1883年にトーマス・エジソンが白熱電球のフィラメントの劣化の研究中にフィラメントを金属箔で覆うと金属箔とフィラメントの間に電流が流れるのを観測した。金属内の電子の熱エネルギーが仕事関数よりも大きくなって、金属表面を飛び出すことにより電流が流れることが、オーエン・リチャードソンによって示された(1910年)。 エジソンは特許をとっているが、それ以上の研究を行わなかった。のちにジョン・フレミングによって研究が行われ、真空管(2極管)の発明(1904年)の元になった。 強い電界を掛けることで、電子を放出しやすくなる現象があり、ショットキー効果という。.

新しい!!: ダイオードとエジソン効果 · 続きを見る »

ガン・ダイオード

ガン・ダイオード(Gunn diode)は、マイクロ波発振器などに使われるダイオードの一種。通常のダイオードがP型半導体とN型半導体から成るのに対し、ガン・ダイオードはN型半導体のみにより構成される。 素子に電圧をかけていくにつれて素子内部の電子の速度が増加するが、ある臨界値になると結晶格子により電子の速度エネルギーが吸収され、電子の速度が減少する。この臨界値より大きい電圧を結晶にかけると、結晶の中の負電極の近くに電界の高い領域が発生し、この領域が素子の内部を正電極に向けて移動する。この現象が高速で連続することによりマイクロ波が発生する。出力は小さく、主に通信用のマイクロ波発振器で利用される。 Category:ダイオード Category:マイクロ波.

新しい!!: ダイオードとガン・ダイオード · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: ダイオードとギリシア語 · 続きを見る »

グリーンリーフ・ホイッティア・ピカード

リーンリーフ・ホイッティア・ピカード(Greenleaf Whittier Pickard、1877年2月14日 - 1956年1月8日)は、アメリカ合衆国のラジオ研究先駆者である。.

新しい!!: ダイオードとグリーンリーフ・ホイッティア・ピカード · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: ダイオードとケイ素 · 続きを見る »

ゲルマニウムダイオード

ルマニウムダイオードは半導体であるゲルマニウムを主原料として用いた半導体ダイオードである。整流、検波用2極真空管(ダイオード)の代替であり、トランジスタを用いた電子回路に用いるべく、トランジスタの登場と、ほぼ同時に登場した。当初は、トランジスタも半導体ダイオードもその主原料はゲルマニウムであったが、ゲルマニウムは希少金属であり高価であること、ゲルマニウムを用いた半導体電子部品は、高温に弱いことから、半田付けによる実装に手間がかかる、熱暴走し易い、電流容量の大きなものは作りにくいなどの理由から、どちらもほどなく、そのほとんどが主原料としてシリコンを用いたものとなった。 しかし、半導体ダイオードの原料にゲルマニウムを用いた場合、そのダイオードの順方向降下電圧は、およそ0.2Vと低くなることから、小信号を扱うのに適し、特に初期の鉱石検波器の動作原理を研究して改良した点接触型のものは、これに加えて寄生容量(電子部品においては、主にその電子部品そのものが有する静電容量のことをいう。寄生容量が大きいと、その部品に不要なコンデンサを並列もしくは直列に接続したことと同じになる)が極めて小さいという特長により、近年までAM検波やミキサーなどの、寄生容量が問題となる高周波回路に多用されてきた。 近年、代替となるショットキーバリアダイオードが量産化、市場投入されるようになり、その活躍の場を譲った。ゲルマニウムそのものは、シリコンと組み合わせた最新の高速トランジスタなどとして用いられ続けているが、古典的なゲルマニウムダイオードについては、市場から無くなることも十分考えられる。しかし、ゲルマニウムダイオードは、透明なガラス管中に鉱石検波器の構造、すなわち半導体結晶に、細い金属針を接触させた構造が封じ込んであり、これを直接観察することができるものが多く、教材用、すなわち自由研究や個人の実験でゲルマニウムラジオ(鉱石ラジオ)を製作する場合などでは、依然として重要な電子部品である。 また、エレキギターの歪系エフェクターではシリコンダイオードとは異なる順方向特性による歪音が好まれ、未だに多くの製品に使われている。.

新しい!!: ダイオードとゲルマニウムダイオード · 続きを見る »

ゲートウェイ

ートウェイ は、コンピュータネットワークをプロトコルの異なるネットワークと接続するためのネットワークノードである。.

新しい!!: ダイオードとゲートウェイ · 続きを見る »

ショットキーバリアダイオード

ョットキーバリアダイオード(en:Schottky diode:SBD)は金属と半導体との接合によって生じるショットキー障壁を利用したダイオードである。 多数キャリアによる動作のためPN接合ダイオードに比べると順方向の電圧降下が低く、スイッチング速度が速いという特長を持つ。しかし、逆方向漏れ電流が大きく(20V印加時、25で数MΩ、125で数KΩ)、逆方向耐電圧が低いという欠点もある。 このダイオードはスイッチング特性が優れているため、トランジスタによる論理回路の高速化、スイッチング電源などの電源回路でよく使われており、検波用などの型番もある。 論理回路の高速化では、ロジックを構成するトランジスタの過飽和を防ぐことで高速化をはかる(ショットキークランプ)。よく使われているものに汎用ロジックICの74LSシリーズなど。スイッチング電源では高周波を扱うため、整流用ダイオードのスイッチング特性の良さは電源回路の効率を上げるための重要な要素である。さらに電圧降下の低さは効率を上げるだけでなくダイオードの発熱を抑えることにもつながっている。.

新しい!!: ダイオードとショットキーバリアダイオード · 続きを見る »

ショットキー接合

ョットキー接合(ショットキーせつごう、Schottky barrier junction)は、金属と半導体の間で整流作用を示す接合のことである。名称は発見者のヴァルター・ショットキーによる。 同様に整流作用を示すPN接合と比較すると、PN接合では電流の輸送が主に少数キャリアで行われるのに対し、ショットキー接合では、多数キャリアで行われるため、高速動作に優れるという利点がある。 PN接合に対してMS接合と呼ぶこともある。.

新しい!!: ダイオードとショットキー接合 · 続きを見る »

ジャガディッシュ・チャンドラ・ボース

ャガディッシュ・チャンドラ・ボース(英語:Sir Jagadish Chandra Bose 、ベンガル語:স্যার জগদীশ চন্দ্র বসু 、1858年11月30日 - 1937年11月23日)はインドの物理学者、SF作家である。.

新しい!!: ダイオードとジャガディッシュ・チャンドラ・ボース · 続きを見る »

ジョン・フレミング

ョン・アンブローズ・フレミング(Sir John Ambrose Fleming, 1849年11月29日 - 1945年4月18日)はイギリスの電気技術者、物理学者。1904年、熱イオン管または真空管(二極管)「ケノトロン (kenotron)」を発明したことで知られている。また、数学や電子工学で使われるフレミングの法則を考案した。 敬虔なキリスト教徒で、ロンドンの教会(St Martin-in-the-Fields)で復活の証拠について説教したことがある。1932年、 Evolution Protest Movement の確立に関与している。子ができなかったため、遺産の多くを教会に遺贈した。写真家としてもかなりの腕前で、水彩画やアルプス登山を趣味とした。.

新しい!!: ダイオードとジョン・フレミング · 続きを見る »

スイッチング電源

イッチング電源(スイッチングでんげん、英語:switched-mode power supply、略称:SMPS)あるいはスイッチング方式直流安定化電源とは、商用電源の電力変換装置などとして広く利用されており、フィードバック回路によって半導体スイッチ素子のオン・オフ時間比率(デューティ比)をコントロールする事により出力を安定化させる電源装置である。高速にスイッチングを行う事からEMIが発生しやすい。 スイッチングトランジスタなどを用い、交流電源を直流電源に変換する装置。スイッチング式直流安定化電源とも呼ぶ。小型、軽量で、電力変換効率も高いものである。 交流は直流に整流され、スイッチングレギュレータと呼ぶ電力調整部分は、起動回路、平滑回路、過電流・過電圧保護回路、ノイズフィルタ回路等を付加したものである。 シリーズレギュレータのように、高い入力電圧から低い電圧を得るために電圧降下分を半導体素子の能動領域や抵抗に合わせジュール熱として放出する方式とは異なり、半導体素子の飽和領域と遮断領域における動作のみで所望する電圧を得ることができるため、半導体素子の電力損失を少なくでき、電力変換効率を高くすることができる。 スイッチング電源には「降圧(ステップダウン)、昇圧(ステップアップ)、昇降圧」という分類と「定電圧、定電流、定電力」という分類がある。出力電圧制御は、スイッチングレギュレータ部のデューティ比で行う。デューティ比の設定は、出力電圧の検出電圧と基準電圧を誤差増幅器によって比較しスイッチングレギュレータ部に帰還をかけることで行う。入力・出力間を絶縁する場合は、誤差増幅信号をフォトカプラでスイッチングレギュレータ部に伝達する。スイッチングレギュレータ部のオン・オフ周波数は高いほど電圧の変動(リップル)が小さくなり高速な応答が可能であり、使用するトランス、平滑リアクトル、コンデンサ等の小型化も可能となり、電源全体の小型化、軽量化を図ることができる。回路設計においては、伝導ノイズや不要輻射も考慮される。LED点灯回路など電圧による制御が困難・非効率な場合には定電流型を使用する。.

新しい!!: ダイオードとスイッチング電源 · 続きを見る »

セレン

レン(selenium 、Selen )は原子番号34の元素。元素記号は Se。カルコゲン元素の一つ。セレニウムとも呼ばれる。.

新しい!!: ダイオードとセレン · 続きを見る »

セレン整流器

レン整流器(セレンせいりゅうき)とは、セレンの半導体としての性質を利用した整流器のことである。 セレン自体はp型半導体としての性質を持つため、基板上にセレン多結晶膜を形成し、さらに適当なカドミウムやビスマスなどからなる易熔合金を貼り付けたものには、金属と半導体の接合によって生じるショットキー障壁が形成され、これを整流器として用いることができる。 セレン整流器の特性は現在スイッチング電源に良く用いられるショットキーバリアダイオードと良く似ており、逆耐圧が低く(30V程度)、逆回復時間が無いため高速に動作する(容量成分はショットキーバリアダイオードよりもかなり大きい)。 逆耐圧が低いため、通常、多数の素子を直列に接続して使用する。.

新しい!!: ダイオードとセレン整流器 · 続きを見る »

ゼネラル・エレクトリック

ネラル・エレクトリック(General Electric Company、略称: GE)は、アメリカ合衆国コネチカット州に本社を置く、多国籍コングロマリット企業である。.

新しい!!: ダイオードとゼネラル・エレクトリック · 続きを見る »

サージ電流

ージ電流(サージでんりゅう、surge current)とは、電気回路などに瞬間的に定常状態を超えて発生する「大波電流」のことである。.

新しい!!: ダイオードとサージ電流 · 続きを見る »

サイリスタ

イリスタ(Thyristor)とは、主にゲート (G) からカソード (C) へゲート電流を流すことにより、アノード (A) とカソード (C) 間を導通させることが出来る3端子の半導体素子である。SCR(Silicon Controlled Rectifier: シリコン制御整流子)とも呼ばれる。 近年はスイッチング周波数を高く採ることが容易なトランジスタが台頭しているが、トランジスタに匹敵するスイッチング周波数をもったものや、サイリスタの持ち味である大電力にも耐えられる性能、そして新しい半導体材料やPIN接合で設計できるなど、サイリスタの魅力は十分にある。.

新しい!!: ダイオードとサイリスタ · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: ダイオードと光 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ダイオードと光子 · 続きを見る »

光起電力効果

光起電力効果(ひかりきでんりょくこうか、Photovoltaic effect)は、物質に光を照射することで起電力が発生する現象である。光電効果の一種にも分類される。.

新しい!!: ダイオードと光起電力効果 · 続きを見る »

光検出器

光検出器(ひかりけんしゅつき、Photodetector)とは、光などの電磁気的エネルギーを検出するセンサである。光センサ(Photosensor)とも、受光素子ともいう。.

新しい!!: ダイオードと光検出器 · 続きを見る »

回生ブレーキ

回生ブレーキ(かいせいブレーキ)は、通常は電源入力を変換して駆動回転力として出力している電動機(モーター)に対して、逆に軸回転を入力して発電機として作動させ、運動エネルギーを電気エネルギーに変換して回収または消費することで制動として利用する電気ブレーキの一手法。発電時の回転抵抗を制動力として利用するもので、電力回生ブレーキ、回生制動とも呼ばれる。電動機を動力とするエレベーター、鉄道車両、自動車他、広く用いられる。.

新しい!!: ダイオードと回生ブレーキ · 続きを見る »

空乏層

乏層(くうぼうそう、depletion layer)とは、半導体のPN接合などでみられる、キャリアがほとんどなく、電気的に絶縁された領域のこと。欠乏層とも言う。.

新しい!!: ダイオードと空乏層 · 続きを見る »

真空管

5球スーパーラジオに使われる代表的な真空管(mT管) 左から6BE6、6BA6、6AV6、6AR5、5MK9 ここでは真空管(しんくうかん、vacuum tube、vacuum valve)電子管あるいは熱電子管などと呼ばれるものについて解説する。.

新しい!!: ダイオードと真空管 · 続きを見る »

炭化ケイ素

炭化ケイ素(Silicon Carbide、化学式SiC)は、炭素(C)とケイ素(Si)の1:1 の化合物で、天然では、隕石中にわずかに存在が確認される。鉱物学上「モアッサン石」(Moissanite)と呼ばれ、また、19世紀末に工業化した会社の商品名から「カーボランダム」と呼ばれることもある。 ダイヤモンドの弟分、あるいはダイヤモンドとシリコンの中間的な性質を持ち、硬度、耐熱性、化学的安定性に優れることから、研磨材、耐火物、発熱体などに使われ、また半導体でもあることから電子素子の素材にもなる。結晶の光沢を持つ、黒色あるいは緑色の粉粒体として、市場に出る。.

新しい!!: ダイオードと炭化ケイ素 · 続きを見る »

点接触型トランジスタ

点接触トランジスタ 点接触トランジスタの模式図 点接触型トランジスタ(てんせっしょくがたトランジスタ、)は、最初期に製造されたトランジスタ。.

新しい!!: ダイオードと点接触型トランジスタ · 続きを見る »

無線

無線(むせん、wireless)とは、線を使わない方法・方式のこと。 接頭辞などとして被修飾語に附加され、複合語を構成する。そのうち特に「無線電気通信」(あるいは「無線通信」)は頻繁に短縮され単に「無線」と呼ばれるので、結果として「無線」は無線電気通信を指していることが多い。.

新しい!!: ダイオードと無線 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: ダイオードと熱力学温度 · 続きを見る »

熱電子

熱電子(ねつでんし、Thermo electron)は、熱電子放出により飛び出してくる電子のこと。 熱電子放出は、金属などの表面を加熱した際に、表面から熱励起された電子が飛び出してくる現象で、この時熱励起は、その対象となる表面の持つ仕事関数(物質の種類、表面の面方位、表面の状態などによって値は異なる)より大きくなければならない。 熱電子を利用したものとして、真空管や蛍光灯がある。.

新しい!!: ダイオードと熱電子 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: ダイオードと物理学者 · 続きを見る »

発光

光(はっこう)は、光を発すること。 主に、熱放射(黒体放射) (恒星、炎、白熱灯などの光)やルミネセンス(冷光)が知られる。その他、荷電粒子線の制動放射による発光、 チェレンコフ光などがある。.

新しい!!: ダイオードと発光 · 続きを見る »

発光ダイオード

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。.

新しい!!: ダイオードと発光ダイオード · 続きを見る »

発振回路

振回路(はっしんかいろ、electronic oscillator)は、持続した交流を作る電気回路である。その原理により、帰還型(きかんがた)と弛張型(しちょうがた)に分類できる。電波の放射や、ディジタル回路におけるクロックパルス(コンピュータ(またはデジタル回路)が動作する時に、タイミングを取る(同期を取る)ための周期的な信号)の発生が代表的な用途であるが、それ以外にも、電子回路の動作の基準となる重要な回路である。.

新しい!!: ダイオードと発振回路 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: ダイオードと金属 · 続きを見る »

酸化銅(I)

酸化銅(I)(さんかどう いち、copper(I) oxide)は化学式 Cu2O で表される銅の酸化物で、赤色ないし赤褐色の結晶または結晶性粉末。CAS登録番号は 。水にほとんど溶けない。希塩酸及び希硫酸、塩化アンモニウム溶液、アンモニア水に可溶。有機溶媒に不溶。融点は1232 で、1800 で分解して酸素を失う。乾燥空気中で安定であるが湿った空気中では徐々に酸化され酸化銅(II)に変わる。フェーリング反応に陽性の物質は、フェーリング液を還元し酸化銅(I)を沈殿させる。類似した用途に使われるベネジクト液も、同様の反応を起こす。濃塩酸に溶けて HCuCl2 を生成する。 酸化銅(I)は整流作用を持つ物質であり、シリコンが標準となるよりかなり前の1924年に、酸化銅(I)を使用した整流ダイオードが作られ、産業的に利用されていた。天然では赤銅鉱として産出する。赤銅鉱は宝石にも利用される鉱物である。 航行中の摩擦抵抗の増加による燃費の悪化を招くフジツボの付着を防止する作用があり、有機スズ化合物に比べ毒性が低いため船底塗料に使用されるが、異種金属間のが生じるため、アルミニウム艇や繊維強化プラスチック、木製の船底には、これに代わり酸化亜鉛が採用される。.

新しい!!: ダイオードと酸化銅(I) · 続きを見る »

鉱石

鉱石(こうせき、ore)は、人間の経済活動にとって有用な資源となる鉱物、またはそれを含有する岩石のことである。 資源として有用な鉱物は、コレクターが収集したり、博物館で展示されるような、その種類だけ顕著に集まった状態で埋蔵されていることはほとんどなく、他のさまざまな鉱物と混在した岩石の状態で産することがほとんどである。こうした岩石を鉱石と呼ぶ。鉱石に有用鉱物が充分な密度で含まれているか、またひとつの鉱山に鉱石が充分な量埋蔵されているかが、経済的な資源採掘に値する鉱山か否かを判断する上で重要である。鉱物資源として有用な鉱物がいくら高密度で鉱石の中に存在しても、十分な利益が得られるほどの埋蔵量がないと鉱山は運営できない。 金山では、菱刈金山の金鉱石が世界有数の金含有量を有する鉱石と、大きな埋蔵量で著名である。.

新しい!!: ダイオードと鉱石 · 続きを見る »

鉱石ラジオ

鉱石ラジオ(こうせきラジオ、)は、鉱石検波器により復調(検波)を行うラジオ受信機で、特に真空管やトランジスタなどのいわゆる能動素子による増幅等を行わない無電源のラジオ(受信機)を指す。半導体エレクトロニクスの発達後は、点接触ゲルマニウムダイオードなど鉱石検波器に特性が似ており、扱いがより容易な素子なども使われている。 電源を特に使わず、空中の電波を受信したエネルギーだけでイヤホンが鳴る点など科学実験の素材として人気がある。ただし、実際にはごくわずかな音量で聞こえるものであることや、放送局から遠い場合などには良いアンテナとアースの入念な準備と、コイルから適切なタップの選択といった細かい調整が必要で、場合によってはディップメータ等の測定器の活用や、適宜RF乃至AFのアンプを併用する等の必要もあり、子供向け教材としてはマニュアルだけでは不十分になり易く無線技術を良く理解している指導者が必要である。.

新しい!!: ダイオードと鉱石ラジオ · 続きを見る »

鉱石検波器

鉱石検波器。 1960年代からの商業品種の結晶検波器。 360px 点接触型の構造がよく見える1N60ゲルマニウムダイオード。ゲルマニウム結晶にタングステンの細針を接触させ、ガラス管中に封止してある。ガラス管長約7mm 鉱石検波器(こうせきけんぱき)は、半導体の性質を有する鉱石に金属針を接触させ、ショットキー障壁による整流作用を利用する、一種のダイオードである。世界最初の半導体素子の実用化であり、点接触型ダイオード、ショットキーバリアダイオードの遠い先祖とも言える。金属針を用いず、異なる鉱石同士を接触させることでも同様に働くこともあるため、そのような構成のものもある。 1874年、ブラウンによって金属硫化物に金属針を接触させることにより整流作用が生じることが発見され、1904年、ボースが方鉛鉱に金属針を接触させたもので、検波器としての最初の特許を取得している。1906年、ピカードがシリコン結晶に金属針を接触させて使うことで特許を取得した。単結晶に金属針を接触させることにより比較的その特性が安定、ピカードの発明は広く実用に供されることになった。日本では、逓信省電気試験所の鳥潟右一がほぼ同時期に発明している。鉱石検波器は、世界中でほぼ同時期に少しずつタイプの異なるものがそれぞれ発明されているため、最初の発明者が誰なのかについてははっきりしていない。結晶により検波ができることが見出されたことにより、以降、鉱石検波器はクリスタル検波器ともよばれるようになった。 初期の鉱石検波器は、方鉛鉱や黄鉄鉱などの天然鉱石に金属針を接触させ、ほぼ毎回、感度の良い部分を金属針を動かし探って用いる方式のものであり、不安定で調整の難しいものであった。現代の観点からすると、方鉛鉱や黄鉄鉱などの天然鉱石は、結晶方位不定の多結晶体であり、微視的には、粗い表面を持つ多結晶面に、粗い表面を持つ金属面を接触させていることになるため、不安定きわまりなくわずかな変化により桁違いに変化する。そのために、懸命に感度の良い部分を探すことになる。 また一度、感度の良い部分を見つけても、空気中に置かれている鉱石の表面、そして金属針の表面は容易に酸化や水酸化される。従って使用のたびに、金属針により鉱石の表面を引っかき、金属と半導体の界面を再生させて使わなければならないのである(巨視的にはそのように説明できるが、「ガリガリ引っ掻く」という操作は微視的には結晶に多数の欠陥を導入する、という操作でもあり完全な解明は研究途上である)。 従来のコヒーラとは異なり、無線電波を検出するだけではなく、整流作用により振幅変調の復調が可能であるため、無線電話の受信機に、さらには世界的にラジオ放送が始まるとラジオ受信機に多用された。 最初に発明された真空管である二極管により、BC帯や短波帯のラジオ用では置き換えられたが、真空管には電力を必要とする点から、電力を必要としない鉱石検波器は簡易なラジオ(鉱石ラジオ)に、あるいは周波数特性の点では当時の二極管よりも優れていたことから超短波以上の帯域の研究用などといった用途では併用されていた。 戦後は、トランジスタの発明により半導体工学・半導体技術が発展し、半導体ダイオードにより、従来技術の真空管や鉱石検波器やセレン整流器は置き換えられていった。しかし検波用には、鉱石検波器に構造が近い点接触ダイオードが長く使われてきたのは点接触ならではの、逆方向の静電容量が小さいという特性のためである。 鉱石検波器はショットキーによるショットキー障壁の発見により、その動作の一端は解明された。しかしながら、ショットキー障壁の原理は未だ不明であり、安定したショットキー障壁の製造は難しく、工業的製造面においては現在に至るも未完成の部分がある。工業的に安定したショットキー障壁の製造が容易となれば、低電圧化を主に、半導体部品の能力の向上や、新たな半導体素子の発明につながることが期待できるため、その研究は現在も半導体の最先端分野として進められている。.

新しい!!: ダイオードと鉱石検波器 · 続きを見る »

鉄道

鉄道(てつどう、railway railroad)とは、等間隔に設置された2本の鉄製の軌条(レール)またはそれに代わる物を案内路として車輪を有する車両が走行する交通機関である。線路・停車場などの施設、旅客や貨物を輸送する列車、運行管理や信号保安まで様々な要素で構成される一連の体系である。 広い意味では、レール、案内軌条などの案内路に誘導されて走行する車両を用いた交通機関を指し、懸垂式・跨座式のモノレール、案内軌条式のAGT(新交通システム)、鋼索鉄道(ケーブルカー)、浮上式鉄道を含む。日本では鉄道事業法の許可、または、軌道法の特許を得て敷設される。トロリーバス(無軌条電車)は、架線が張られたルートを集電装置(トロリー)により集電した電気を動力として走行するバスであるが、鉄道事業法に基づく鉄道、または、軌道法上の「軌道に準ずる」軌道として扱われる。ロープウェイも鉄道事業法、または、軌道法の対象であるが、索道という扱いとなる。 なお、本項では鉄製レールの案内路を有する鉄道について解説する。.

新しい!!: ダイオードと鉄道 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: ダイオードと英語 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: ダイオードと電場 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ダイオードと電子 · 続きを見る »

電子回路

I/Oが1つのチップに集積されている。 プリント基板を使った電子回路 電子回路(でんしかいろ、electronic circuit)は、電気回路の一種であるが、その対象が専ら電子工学的(弱電)であるものを特に指して言う。構成要素は良導体による配線の他、主として電子部品である。組み合わせにより、単純なものから複雑なものまで様々な動作が可能である。信号を増幅したり、計算したり、データを転送したりといったことができる。回路は個々の電子部品を電気伝導体のワイヤで相互接続することで構築できるが、近年では一般にプリント基板にフォトリソグラフィで配線を作り、そこにはんだで電子部品を固定することで回路を構築する。 集積回路では、ケイ素などの半導体でできた基板上に素子と配線を形成する。集積回路も電子回路の一種だが、この記事ではもっぱら集積回路は不可分な一個部品として扱う。集積回路の内部の電子回路については集積回路の記事を参照のこと。 プリント基板は試作には向いていないため、新規設計の評価にはブレッドボード、ユニバーサル基板などを一般に使用する。それらは開発途中で素早く回路に変更を加えることができる。 プリント基板が多用されるようになる以前は、ワイヤラッピング配線や、ラグ板などを利用した空中配線により、電子回路は作られていた。 大きくアナログ回路・デジタル回路(論理回路)・アナログとデジタルの混合信号回路(アナログ-デジタル変換回路、デジタル-アナログ変換回路など)に分けられる。取り扱う周波数により、低周波回路・高周波回路という分け方をする場合もある。.

新しい!!: ダイオードと電子回路 · 続きを見る »

電子部品

電子部品(でんしぶひん、electronic component)とは、電子回路の部品のことである。.

新しい!!: ダイオードと電子部品 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: ダイオードと電位 · 続きを見る »

電圧制御発振器

電圧制御発振器(でんあつせいぎょはっしんき、Voltage-controlled oscillator、VCO)は、電圧(制御電圧)で発振周波数を制御する発振器である。.

新しい!!: ダイオードと電圧制御発振器 · 続きを見る »

電圧源

内部抵抗を含む電圧源 電圧源(でんあつげん)は、内部抵抗が小さく、定電圧電気回路として動作するものである。短絡時に大電流が流れるため、その保安装置が必要である。 電源の起電力を ES 、内部抵抗を RS 、負荷を R 、かかる電圧を V0 、電流を I とすると、 ここで、 R >> RS とすると、 V0 ≒ ES.

新しい!!: ダイオードと電圧源 · 続きを見る »

電動機

様々な電動機。006P型電池との比較。 電動機(でんどうき、Electric motor)とは、電気エネルギーを力学的エネルギーに変換する電力機器、原動機の総称。モーター、電気モーターとも呼ばれる「モーター」というカタカナ表記に関して、電気学会に於いては「モータ」という表記方を定めている他、電動機メーカーによっては「モーター」のドイツ語表記“Motor”の20世紀前半までドイツ語発音の模範とされた「舞台発音」に基づいた発音方に倣って「モートル」(或いは「モトール」)という表記方を用いているところが見られる《日本電産Webサイト内『』ページ後半に掲載されているコラム『モーターの語源』より;なお「モートル」という表記は、現在、少なくとも日立系列の日立産機システムと東芝系列の東芝産業機器システムに於いて、主にブランド名の中で用いられている》。 一般に、磁場(磁界)と電流の相互作用(ローレンツ力)による力を利用して回転運動を出力するものが多いが、直線運動を得るリニアモーターや磁場を用いず超音波振動を利用する超音波モータなども実用化されている。静電気力を利用した静電モーターも古くから知られている。 なお、本来、「モータ(ー)」("motor")という言葉は「動力」を意味し、特に電動機に限定した用語ではない。それゆえ、何らかの動力の役割を果たす装置は、モーターと形容されることもよくある(ロケットモーターなど)。 以下では、電磁力により回転力を生み出す一般的な電動機を中心に説明し、それ以外のリニアモーターや超音波モータは末尾で簡単に説明する。.

新しい!!: ダイオードと電動機 · 続きを見る »

電界効果トランジスタ

回路基板上に実装された状態の高出力N型チャネルMOSFET 電界効果トランジスタ(でんかいこうかトランジスタ、, FET)は、ゲート電極に電圧をかけることでチャネル領域に生じる電界によって電子または正孔の濃度を制御し、ソース・ドレイン電極間の電流を制御するトランジスタである。電子と正孔の2種類のキャリアの働きによるバイポーラトランジスタに対し、いずれか1種類のキャリアだけを用いるユニポーラトランジスタである。FETの動作原理は電界を使って電流を制御する点で真空管に類似している。 FETは主に接合型FET(ジャンクションFET, JFET)とMOSFETに大別される。他にも、MESFETなどの種類がある。また、それぞれの種別でチャネルの種類によりさらにn型のものとp型のものに分類される。 このページでは主にSiなどの無機半導体について述べる。有機半導体を用いたものについては有機電界効果トランジスタを参照。.

新しい!!: ダイオードと電界効果トランジスタ · 続きを見る »

電機子チョッパ制御

国鉄201系電車 電機子チョッパ制御(でんきしチョッパせいぎょ)とは、鉄道車両において、直流電動機の制御を行う方式の一つで、直流電流を高速度でスイッチングして切り刻む(チョップする)「チョッパ回路」を主回路(主電動機の電機子回路)に接続して電圧制御を行うもので、主回路チョッパ制御といわれることもある。単にチョッパ制御、もしくはサイリスタチョッパ制御というと、通常この方式をいう場合が多い。チョッパ回路、採用車両についてはチョッパ制御の項を参照のこと。なお、電機子電流と界磁電流を独立して制御する方式を、「高周波分巻チョッパ制御」(4象限チョッパ制御)と区別する場合もある。本項ではそれについても解説する。.

新しい!!: ダイオードと電機子チョッパ制御 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

新しい!!: ダイオードと電気素量 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

新しい!!: ダイオードと電気抵抗 · 続きを見る »

Pn接合

pn接合(ぴーえぬせつごう、pn junction)とは、半導体中でp型の領域とn型の領域が接している部分を言う。整流性、エレクトロルミネセンス、光起電力効果などの現象を示すほか、接合部には電子や正孔の不足する空乏層が発生する。これらの性質がダイオードやトランジスタを始めとする各種の半導体素子で様々な形で応用されている。またショットキー接合の示す整流性も、pn接合と原理的に良く似る。.

新しい!!: ダイオードとPn接合 · 続きを見る »

SPICE (ソフトウェア)

SPICE (Simulation Program with Integrated Circuit Emphasis, スパイス) は電子回路のアナログ動作をシミュレーションするソフトウェアである。 カリフォルニア大学バークレー校で1973年に開発された。 集積回路に使用する電子回路の設計主眼として開発されたが、次第にプリント基板などの電子回路の検証にも普及した。 シミュレーション対象となる回路は一般的な受動素子(抵抗、コンデンサーなど)と能動素子(ダイオード、トランジスタなど)と伝送線路、各種電源を組み合わせたものである。 解析手法としては過渡解析、直流解析、小信号交流解析、雑音解析などが可能である。 現在使われている回路シミュレータの多くはこのバークレー校のものを元に改良、機能付加したものである。名称にSPICEの語を含む場合も多く、それらを含めてSPICEと呼ばれることもある。.

新しい!!: ダイオードとSPICE (ソフトウェア) · 続きを見る »

携帯電話

折りたたみ式の携帯電話 スライド式の携帯電話 携帯電話(けいたいでんわ、mobile phone)は、有線電話系通信事業者による電話機を携帯する形の移動体通信システム、電気通信役務。端末を携帯あるいはケータイと略称することがある。 有線通信の通信線路(電話線等)に接続する基地局・端末の間で電波による無線通信を利用する。無線電話(無線機、トランシーバー)とは異なる。マルチチャネルアクセス無線技術の一種でもある。.

新しい!!: ダイオードと携帯電話 · 続きを見る »

正孔

正孔(せいこう)は、ホール(Electron hole または単にhole)ともいい、物性物理学の用語。半導体(または絶縁体)において、(本来は電子で満たされているべき)価電子帯の電子が不足した状態を表す。たとえば光や熱などで価電子が伝導帯側に遷移することによって、価電子帯の電子が不足した状態ができる。この電子の不足によってできた孔(相対的に正の電荷を持っているように見える)が正孔(ホール)である。 半導体結晶中においては、周囲の価電子が次々と正孔に落ち込み別の場所に新たな正孔が生じる、という過程を順次繰り返すことで結晶内を動き回ることができ、あたかも「正の電荷をもった電子」のように振舞うとともに電気伝導性に寄与する。なお、周囲の価電子ではなく、伝導電子(自由電子)が正孔に落ち込む場合には、伝導電子と価電子の間のエネルギー準位の差に相当するエネルギーを熱や光として放出し、電流の担体(通常キャリアと呼ぶ)としての存在は消滅する。このことをキャリアの再結合と呼ぶ。 正孔は、伝導電子と同様に、電荷担体として振舞うことができる。正孔による電気伝導性をp型という。半導体にアクセプターをドーピングすると、価電子が熱エネルギーによってアクセプタ準位に遷移し、正孔の濃度が大きくなる。また伝導電子の濃度に対して正孔の濃度が優越する半導体をp型半導体と呼ぶ。 一般に正孔のドリフト移動度(あるいは単に移動度)は自由電子のそれより小さく、シリコン結晶中では電子のおよそ1/3になる。なお、これによって決まるドリフト速度は個々の電子や正孔の持つ速度ではなく、平均の速度であることに注意が必要である。 価電子帯の頂上ではE-k空間上で形状の異なる複数のバンドが縮退しており、それに対応して正孔のバンドも有効質量の異なる重い正孔(heavy hole)と軽い正孔(light hole)のバンドに分かれる。またシリコンなどスピン軌道相互作用が小さい元素においてはスピン軌道スプリットオフバンド(スピン分裂バンド)もエネルギー的に近く(Δ.

新しい!!: ダイオードと正孔 · 続きを見る »

江崎玲於奈

江崎 玲於奈(えさき れおな、「崎」は清音、1925年(大正14年)3月12日 - )は、日本の物理学者である。国外においてはレオ・エサキ()の名で知られる。1973年(昭和48年)に日本人としては4人目となるノーベル賞(ノーベル物理学賞)を受賞した。文化勲章受章者、勲一等旭日大綬章受章者。.

新しい!!: ダイオードと江崎玲於奈 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: ダイオードと指数関数 · 続きを見る »

方鉛鉱

方鉛鉱(ほうえんこう、)は、鉱物(硫化鉱物)の一種。化学組成は PbS、結晶系は等軸晶系。.

新しい!!: ダイオードと方鉛鉱 · 続きを見る »

整流器

整流器(せいりゅうき、英語:rectifier)は、電流を一方向にだけ流す(整流)作用を有する素子電気用語辞典編集委員会編 『新版 電気用語辞典』 コロナ社、1982年 「整流」「整流器」「整流素子」岡村総吾監訳 『IEEE電気・電子用語辞典』 丸善、1989年 「整流」「整流器」「整流素子」。交流を直流に変換する素子の総称であり、実際の素子としては、陰極(カソード)と陽極(アノード)の2端子、あるいは、さらに制御端子を加えた3端子のものがある。 順変換装置、またはAC-DCコンバータともいう。 また、整流器を用いて交流を直流に変換する回路を整流回路(順変換回路)という。.

新しい!!: ダイオードと整流器 · 続きを見る »

1874年

記載なし。

新しい!!: ダイオードと1874年 · 続きを見る »

1894年

記載なし。

新しい!!: ダイオードと1894年 · 続きを見る »

1899年

記載なし。

新しい!!: ダイオードと1899年 · 続きを見る »

1900年代

1900年代(せんきゅうひゃくねんだい)は、.

新しい!!: ダイオードと1900年代 · 続きを見る »

1903年

記載なし。

新しい!!: ダイオードと1903年 · 続きを見る »

1906年

記載なし。

新しい!!: ダイオードと1906年 · 続きを見る »

1919年

記載なし。

新しい!!: ダイオードと1919年 · 続きを見る »

1920年代

1920年代(せんきゅうひゃくにじゅうねんだい)は、西暦(グレゴリオ暦)1920年から1929年までの10年間を指す十年紀。.

新しい!!: ダイオードと1920年代 · 続きを見る »

1930年代

1930年代(せんきゅうひゃくさんじゅうねんだい)は、西暦(グレゴリオ暦)1930年から1939年までの10年間を指す十年紀。.

新しい!!: ダイオードと1930年代 · 続きを見る »

1950年代

1950年代(せんきゅうひゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1950年から1959年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1950年代について記載する。.

新しい!!: ダイオードと1950年代 · 続きを見る »

1957年

記載なし。

新しい!!: ダイオードと1957年 · 続きを見る »

ここにリダイレクトされます:

PINダイオードPin構造ダイアック逆バイアス

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »