ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スペクトル密度

索引 スペクトル密度

ペクトル密度(スペクトルみつど、Spectral density)は、定常過程に関する周波数値の正実数の関数または時間に関する決定的な関数である。パワースペクトル密度(電力スペクトル密度、Power spectral density)、エネルギースペクトル密度(Energy spectral density)とも。単に信号のスペクトルと言ったとき、スペクトル密度を指すこともある。直観的には、スペクトル密度は確率過程の周波数要素を捉えるもので、周期性を識別するのを助ける。.

54 関係: 偶関数と奇関数定常過程平均仕事率伝送路位相微分ナノメートルノンパラメトリック手法ノーバート・ウィーナーノイズワットボルト (単位)ヘルツパーセバルの定理ディラックのデルタ関数フーリエ変換分光測色法分散 (確率論)周波数周波数スペクトル周波数領域アレクサンドル・ヒンチンウィーナー=ヒンチンの定理ウェーブレット変換オームジュールスペクトラムアナライザスペクトルスペクトル漏れスペクトログラム国際単位系短時間フーリエ変換確率過程窓関数物理学特性インピーダンス相互相関関数音波複素共役角周波数自己共分散自己回帰モデル自己相関離散時間フーリエ変換電子工学電位電磁波...推論期待値最大エントロピー原理時系列 インデックスを展開 (4 もっと) »

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: スペクトル密度と偶関数と奇関数 · 続きを見る »

定常過程

定常過程(ていじょうかてい、Stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均や分散も(もしあれば)時間や位置によって変化しない。 例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。 定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。 離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合をベルヌーイ系(Bernoulli scheme)と呼ぶ。N.

新しい!!: スペクトル密度と定常過程 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: スペクトル密度と平均 · 続きを見る »

仕事率

仕事率(しごとりつ)とは工率(こうりつ)やパワー()とも呼び、単位時間内にどれだけのエネルギーが使われている(仕事が行われている)かを表す物理量である。「動力性能」という語があるが、その場合これを指すことが多い。.

新しい!!: スペクトル密度と仕事率 · 続きを見る »

伝送路

伝送路(でんそうろ)は、情報や電力の伝送のために使用される媒体(メディア)である。配線の一部として用いる場合には伝送線路ともいう。高周波信号を通す伝送線路は導波路とも呼ばれ、特性インピーダンスが規定され厳しく管理される(→伝送線路参照)。通信路(つうしんろ)または伝送路(英: Channel)とは、情報源(送信者)から受信者への情報伝達用媒体を指す。.

新しい!!: スペクトル密度と伝送路 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: スペクトル密度と位相 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: スペクトル密度と微分 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: スペクトル密度とナノメートル · 続きを見る »

ノンパラメトリック手法

統計学において、ノンパラメトリック (non-parametric) な手法はパラメータ(母数: 母集団を規定する量)について一切の前提を設けないものをいう。日本工業規格では、分布によらない検定 (distribution-free test) と定義している。.

新しい!!: スペクトル密度とノンパラメトリック手法 · 続きを見る »

ノーバート・ウィーナー

ノーバート・ウィーナー(Norbert Wiener, 1894年11月26日 - 1964年3月18日)はアメリカ合衆国の数学者。ミズーリ州コロンビア生まれ。サイバネティックスの提唱者として知られている。 父親はイディッシュ語研究などで知られるビャウィストク出身のポーランド系ユダヤ人言語学者レオ・ウィーナー(ヴィーネル、 Leo Wiener)。.

新しい!!: スペクトル密度とノーバート・ウィーナー · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: スペクトル密度とノイズ · 続きを見る »

ワット

ワット(watt, 記号: W)とは仕事率や電力、工率、放射束、をあらわすSIの単位(SI組立単位)であるJIS Z 8203:2000 国際単位系 (SI) 及びその使い方。.

新しい!!: スペクトル密度とワット · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: スペクトル密度とボルト (単位) · 続きを見る »

ヘルツ

ヘルツ(hertz、記号:Hz)は、国際単位系 (SI) における周波数・振動数の単位である。その名前は、ドイツの物理学者で、電磁気学の分野で重要な貢献をしたハインリヒ・ヘルツに因む。.

新しい!!: スペクトル密度とヘルツ · 続きを見る »

パーセバルの定理

パーセバルの定理(Parseval's theorem)とは、フーリエ変換がユニタリであるという結果を一般に指す。大まかに言えば、関数の平方の総和(あるいは積分)が、そのフーリエ変換の平方の総和(あるいは積分)と等しいということである。フランスの数学者の1799年の級数に関する定理が起源であり、この定理は後にフーリエ級数に応用されるようになった。レイリー卿ジョン・ウィリアム・ストラットに因んで、レイリーのエネルギー定理()とも呼ばれる。 また、特に物理学や工学分野では、任意のフーリエ変換のユニタリ性を指してパーセバルの定理と呼ぶことが多いが、この性質の最も一般的な形は正確にはプランシュレルの定理と呼ばれる。.

新しい!!: スペクトル密度とパーセバルの定理 · 続きを見る »

ディラックのデルタ関数

right 数学におけるディラックのデルタ関数(デルタかんすう、delta function)、制御工学におけるインパルス関数 (インパルスかんすう、impulse function) とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数は、デルタ超関数 (delta distribution) あるいは単にディラックデルタ (Dirac's delta) とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数 の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、 として実直線上常に一定の値 をとる関数をとり、デルタ関数をデルタ関数自身と との積であると見ることにより である。一方、積分値が の での値にしかよらないことから でなければならないが、その上で積分値が でない有限の値をとるためには が満たされなければならない。.

新しい!!: スペクトル密度とディラックのデルタ関数 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: スペクトル密度とフーリエ変換 · 続きを見る »

分光測色法

分光測色計 分光測色法(英: Spectrophotometry)とは、物理学における電磁スペクトルの定量的研究手法である。分光法よりも適用範囲が狭く、可視光線、近紫外線、近赤外線を扱う。また、時間分解分光技法も含まれない。 分光測色法では、分光測色計または分光測色器(spectrophotometer)を使う。分光測色計は光度計の一種で、色ごと(より正確に言えば光の波長ごと)の強さを測定する。分光測色計には様々な種類のものが存在する。分類上重要な差異としては、扱える波長の範囲、使用している測定技法の違い、光をスペクトルに分解する技法の違い、測定対象の種類などがある。また、スペクトルの帯域幅と線形な範囲も重要な特性である。 分光測色計の典型的な利用として吸光の測定(吸光光度計)があるが、散乱反射率や鏡面反射率も測定できるよう設計されている。 分光測色計の利用は物理学に限定されない。化学、生物化学、分子生物学などの分野でもよく使われている。.

新しい!!: スペクトル密度と分光測色法 · 続きを見る »

分散 (確率論)

率論および統計学において、分散(ぶんさん、variance)は、確率変数の2次の中心化モーメントのこと。これは確率変数の分布が期待値からどれだけ散らばっているかを示す非負の値である。 記述統計学においては標本が標本平均からどれだけ散らばっているかを示す指標として標本分散(ひょうほんぶんさん、sample variance)を、推測統計学においては不偏分散(ふへんぶんさん、unbiased (sample) variance)を用いる。 に近いほど散らばりは小さい。 日本工業規格では、「確率変数 からその母平均を引いた変数の二乗の期待値。 である。」と定義している。 英語の variance(バリアンス)という語はロナルド・フィッシャーが1918年に導入した。.

新しい!!: スペクトル密度と分散 (確率論) · 続きを見る »

周波数

周波数(しゅうはすう 英:frequency)とは、工学、特に電気工学・電波工学や音響工学などにおいて、電気振動(電磁波や振動電流)などの現象が、単位時間(ヘルツの場合は1秒)当たりに繰り返される回数のことである。.

新しい!!: スペクトル密度と周波数 · 続きを見る »

周波数スペクトル

鉄の輝線スペクトル 周波数スペクトル(しゅうはすうスペクトル、Frequency spectrum)とは、周波数、色、音声や電磁波の信号などと関係の深い概念である。光源は様々な色の混合であり、それぞれの色の強さは異なる。プリズムを使うと、光が周波数によって別々の方向に屈折し、虹のような色の帯が現れる。周波数を横軸として、それぞれの成分の強さをグラフに示したものが、光の周波数スペクトルである。可視光がどの周波数についても同じ強さであれば、その光は白く見え、スペクトルは平坦な線となる。 音源も同様に様々な周波数の成分の混合である。周波数が異なれば、人間の耳には違った音として聞こえ、特定の周波数の音だけが聞こえる場合、それが何らかの音符の音として識別される。雑音は一般に様々な周波数の音を含んでいる。このため、スペクトルが平坦な線となるノイズを(光の場合からのアナロジーで)ホワイトノイズと呼ぶ。ホワイトノイズという用語は、音声以外のスペクトルについても使用される。 ラジオやテレビの放送は、割り当てられた周波数の電磁波(チャンネル)を使用する。受信機のアンテナは、それらを周波数に関係なく受信し、チューナー部がそこから1つのチャンネルを選択する。アンテナの受信した全周波数について、周波数毎の強さをグラフに表せば、それが信号の周波数スペクトルとなる。.

新しい!!: スペクトル密度と周波数スペクトル · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: スペクトル密度と周波数領域 · 続きを見る »

アレクサンドル・ヒンチン

アレクサンドル・ヤコヴレヴィチ・ヒンチン(Алекса́ндр Я́ковлевич Хи́нчин、Aleksandr Yakovlevich Khinchin、1894年7月19日 - 1959年11月18日)は、ロシア人数学者であり、ソビエト連邦における確率論の大家。カルーガ州コンドロヴォ出身。1916年にモスクワ大学を卒業し、6年後に教授となり、亡くなるまで教授職を務め続けた。 当初、実解析を研究していたが、後に確率論や数論に測度論の手法を適用する研究を行った。1924年に重複対数の法則を発見し、極限定理についても重要な成果を挙げ、定常過程を定義してその理論的基盤も確立し、現代確率論の基礎を築いた。ディオファントス近似の測度論についても重要な貢献をし、単純な実連分数についても重要な成果を確立し、ヒンチンの定数と呼ばれる属性を発見した。統計力学においても確率論の手法を使った重要な業績を残しており、他にも情報理論、待ち行列理論、解析学にも業績を残している。 1939年、ヒンチンはロシア科学アカデミーの Correspondent Member に選ばれた。1941年にはソビエト連邦国家賞を受賞し、他にもレーニン勲章を含むいくつかの勲章やメダルを授与されている。.

新しい!!: スペクトル密度とアレクサンドル・ヒンチン · 続きを見る »

ウィーナー=ヒンチンの定理

ウィーナー=ヒンチンの定理(Wiener–Khinchin theorem)は、広義定常確率過程のパワースペクトル密度が、対応する自己相関関数のフーリエ変換であることを示した定理。ヒンチン=コルモゴロフの定理(Khinchine-Kolmogorov theorem)とも。.

新しい!!: スペクトル密度とウィーナー=ヒンチンの定理 · 続きを見る »

ウェーブレット変換

ウェーブレット変換(ウェーブレットへんかん、wavelet transformation)は、周波数解析の手法の一つ。基底関数として、ウェーブレット関数を用いる。フーリエ変換によって周波数特性を求める際に失われる時間領域の情報を、この変換においては残すことが可能である。フーリエ変換でも窓関数を用いる窓フーリエ変換で時間領域の情報は残せたが、窓幅を周波数に合わせて固定する必要があるため、広い周波数領域の解析には向かなかった。ウェーブレット変換では、基底関数の拡大縮小を行うので、広い周波数領域の解析が可能である。しかし、不確定性原理によって精度には限界がある。フーリエ変換では、N をデータのサイズとしたときに N logN のオーダーで計算量が増える(O(N logN))が、ウェーブレット変換では O(N) の計算量でできる利点がある。 VP6、JPEG 2000、信号解析、量子力学、フラクタル等の多くの分野に応用されている。.

新しい!!: スペクトル密度とウェーブレット変換 · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: スペクトル密度とオーム · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: スペクトル密度とジュール · 続きを見る »

スペクトラムアナライザ

ペクトラムアナライザ(Spectrum analyzer)は、横軸を周波数、縦軸を電力または電圧とする二次元のグラフを画面に表示する電気計測器である。略してスペアナと呼ばれることが多い。表示は、画面を左から右に周期的に掃引される光点によってなされる。高周波用と低周波用があり、原理・構造が異なるので分けて説明する。.

新しい!!: スペクトル密度とスペクトラムアナライザ · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: スペクトル密度とスペクトル · 続きを見る »

スペクトル漏れ

right スペクトル漏れ(英: Spectral leakage)とは、信号をスペクトル分析したとき、本来の信号には含まれていないはずの周波数成分でわずかなエネルギーが観測される現象。本来の信号スペクトルから周囲の周波数に漏れ出すようにエネルギーが観測されることから、このように言う。.

新しい!!: スペクトル密度とスペクトル漏れ · 続きを見る »

スペクトログラム

バイオリンのスペクトログラム(縦軸は線形周波数、横軸は時間)。色の線(すなわち輝点の連続)が周波数成分の経時変化を表す。色の明度は対数的(黒は −120dBFS) スペクトログラム(Spectrogram)とは、複合信号を窓関数に通して、周波数スペクトルを計算した結果を指す。3次元のグラフ(時間、周波数、信号成分の強さ)で表される。 スペクトログラムは声紋の鑑定、動物の鳴き声の分析、音楽、ソナー/レーダー、音声処理などに使われている。スペクトログラムを声紋と呼ぶこともある。スペクトログラムを生成する機器をソノグラフ(sonograph)という。.

新しい!!: スペクトル密度とスペクトログラム · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: スペクトル密度と光 · 続きを見る »

国際単位系

国際単位系(こくさいたんいけい、Système International d'unités、International System of Units、略称:SI)とは、メートル法の後継として国際的に定めた単位系である。略称の SI はフランス語に由来するが、これはメートル法がフランスの発案によるという歴史的経緯による。SI は国際単位系の略称であるため「SI 単位系」というのは誤り。(「SI 単位」は国際単位系の単位という意味で正しい。) なお以下の記述や表(番号を含む。)などは国際単位系の国際文書第 8 版日本語版による。 国際単位系 (SI) は、メートル条約に基づきメートル法のなかで広く使用されていたMKS単位系(長さの単位にメートル m、質量の単位にキログラム kg、時間の単位に秒 s を用い、この 3 つの単位の組み合わせでいろいろな量の単位を表現していたもの)を拡張したもので、1954年の第10回国際度量衡総会 (CGPM) で採択された。 現在では、世界のほとんどの国で合法的に使用でき、多くの国で使用することが義務づけられている。しかしアメリカなど一部の国では、それまで使用していた単位系の単位を使用することも認められている。 日本は、1885年(明治18年)にメートル条約に加入、1891年(明治24年)施行の度量衡法で尺貫法と併用することになり、1951年(昭和26年)施行の計量法で一部の例外を除きメートル法の使用が義務付けられた。 1991年(平成3年)には日本工業規格 (JIS) が完全に国際単位系準拠となり、JIS Z 8203「国際単位系 (SI) 及びその使い方」が規定された。 なお、国際単位系 (SI) はメートル法が発展したものであるが、メートル法系の単位系の亜流として「工学単位系(重力単位系)」「CGS単位系」などがあり、これらを区別する必要がある。 SI単位と非SI単位の分類.

新しい!!: スペクトル密度と国際単位系 · 続きを見る »

短時間フーリエ変換

短時間フーリエ変換(たんじかんフーリエへんかん、short-time Fourier transform、short-term Fourier transform、STFT)とは、関数に窓関数をずらしながら掛けて、それにフーリエ変換すること。音声など時間変化する信号の周波数と位相(の変化)を解析するためによく使われる。 理論上フーリエ係数を求めるには無限の区間に渡って積分を行わなければならないが、実験値等からフーリエ係数を求めるには範囲を区切らなければならない。そのために、ある範囲の実験値のフーリエ係数を求めるには、このある範囲の実験値が周期的に無限に繰り返されていると仮定して計算するのが一般的である。だがここで問題なのは、ある範囲の最初の値と最後の値を無理やりつなげることによって発生する不連続な要素である。これを解決するため、中央が 1 付近の値でその範囲外で 0 に収束する関数を掛けて、不連続な要素を極力排除することが行われる。これが短時間フーリエ変換である。このとき、この掛け合わせる関数を窓関数と言う。 STFTは以下のように数式表現できる(iは虚数単位): ここでw(t)\,は窓関数であり、普通t.

新しい!!: スペクトル密度と短時間フーリエ変換 · 続きを見る »

確率過程

率論において、確率過程(かくりつかてい、stochastic process)は、時間とともに変化する確率変数のことである。 株価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(random process)とも言う。.

新しい!!: スペクトル密度と確率過程 · 続きを見る »

窓関数

窓関数(まどかんすう、window function)とは、ある有限区間(台)以外で0となる関数である。 ある関数や信号(データ)に窓関数が掛け合わせられると、区間外は0になり、有限区間内だけが残るので、数値解析が容易になる。 窓関数は、スペクトル分析、フィルタ・デザインや、音声圧縮に応用される。 窓関数を単に窓 (window) ともいい、データに窓関数を掛け合わせることを窓を掛ける (windowing) という。実装可能な有限のタップ数を持つフィルタにおいて生じる制約の範囲内で周波数分解能とダイナミックレンジのバランスの調節を行うための関数である。.

新しい!!: スペクトル密度と窓関数 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: スペクトル密度と物理学 · 続きを見る »

特性インピーダンス

特性インピーダンス(とくせいインピーダンス、characteristic impedance、surge impedance)は、一様な伝播媒体を用いて交流電気エネルギーを伝達するときに伝播媒体中に発生する電圧と電流、あるいは電場と磁場の比である。一般には交流を伝送する分布定数線路および電磁波の媒体(真空及び誘電体)での概念である。 以下では、電気電子工学の慣例に従い、虚数単位として j を用いる。\omega.

新しい!!: スペクトル密度と特性インピーダンス · 続きを見る »

相互相関関数

互相関関数(そうごそうかんかんすう、)は、ふたつの信号、配列(ベクトル)の類似性を確認するために使われる。関数の配列の結果がすべて1であれば相関があり、すべてゼロであれば無相関であり、すべて であれば負の相関がある。しばしば、相関と略されることがあり、相関係数と似ているために混同することがある。 二つの信号を畳み込む畳み込みの式 のうち片方の関数の信号配列の順序をフリップ(逆順に)して畳み込むと、相互相関関数を求めることができる。 さらに、この二つの信号が、全く同じ場合、自己相関関数と呼び、関数の周期性を調べるのに用いられる。 自己相関関数の値がすべて1のときには、その離散関数の波形の周期性はその関数を表す配列と同じであることがわかる。.

新しい!!: スペクトル密度と相互相関関数 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: スペクトル密度と音波 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: スペクトル密度と複素共役 · 続きを見る »

角周波数

角周波数(かくしゅうはすう、角振動数、円振動数とも)は物理学(特に力学や電気工学)において、回転速度を表すスカラー量。角周波数は、ベクトル量である角速度の大きさにあたる(\omega.

新しい!!: スペクトル密度と角周波数 · 続きを見る »

自己共分散

自己共分散(英: Autocovariance)とは、統計学における確率過程での、自分自身の時間をずらしたバージョンとの共分散である。確率過程 X(t) が平均 E.

新しい!!: スペクトル密度と自己共分散 · 続きを見る »

自己回帰モデル

自己回帰モデル(じこかいきモデル、autoregressive model)とは、統計学と信号処理において、ある種の確率過程の表現の一つである。ARモデルとも呼ばれる。自己回帰モデルは、例えば自然科学や経済学において、時間について変動するある過程を描写している。自己回帰モデルは実現値となる変数がその変数の過去の値と確率項(確率、つまりその値を完全には予測できない項)に線形に依存している。ゆえに自己回帰モデルは一種の確率差分方程式の形状を取る。自己回帰モデルはより一般的な時系列の自己回帰移動平均モデル(ARMAモデル)の特別ケースの一つであり、自己回帰移動平均モデルはより複雑な確率的構造を持つ。また自己回帰モデルは(VARモデル)の特別ケースの一つでもあり、ベクトル自己回帰モデルは一つ以上の確率差分方程式からなるシステムとなっている。.

新しい!!: スペクトル密度と自己回帰モデル · 続きを見る »

自己相関

自己相関(じこそうかん、Autocorrelation)とは、信号処理において時間領域信号等の関数または数列を解析するためにしばしば用いられる数学的道具である。大雑把に言うと、自己相関とは、信号がそれ自身を時間シフトした信号とどれだけ良く整合するかを測る尺度であり、時間シフトの大きさの関数として表される。より正確に述べると、自己相関とは、ある信号のそれ自身との相互相関である。自己相関は、信号に含まれる繰り返しパターンを探すのに有用であり、例えば、ノイズに埋もれた周期的信号の存在を判定したり、 信号中の失われた基本周波数を倍音周波数による示唆に基づき同定するために用いられる。.

新しい!!: スペクトル密度と自己相関 · 続きを見る »

色(いろ、color)は、可視光の組成の差によって感覚質の差が認められる視知覚である色知覚、および、色知覚を起こす刺激である色刺激を指す『色彩学概説』 千々岩 英彰 東京大学出版会。 色覚は、目を受容器とする感覚である視覚の機能のひとつであり、色刺激に由来する知覚である色知覚を司る。色知覚は、質量や体積のような機械的な物理量ではなく、音の大きさのような心理物理量である。例えば、物理的な対応物が擬似的に存在しないのに色を知覚する例として、ベンハムの独楽がある。同一の色刺激であっても同一の色知覚が成立するとは限らず、前後の知覚や観測者の状態によって、結果は異なる。 類語に色彩(しきさい)があり、日本工業規格JIS Z 8105:2000「色に関する用語」日本規格協会、p.

新しい!!: スペクトル密度と色 · 続きを見る »

離散時間フーリエ変換

離散時間フーリエ変換(英: Discrete-time Fourier transform、DTFT)はフーリエ変換の一種。したがって、通常時間領域の関数を周波数領域に変換する。ただし、DTFTでは元の関数は離散的でなければならない。そのような入力は連続関数の標本化によって生成される。 DTFTの周波数領域の表現は常に周期的関数である。したがって1つの周期に必要な情報が全て含まれるため、DTFTを「有限な」周波数領域への変換であるということもある。.

新しい!!: スペクトル密度と離散時間フーリエ変換 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: スペクトル密度と電子工学 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: スペクトル密度と電位 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: スペクトル密度と電磁波 · 続きを見る »

推論

推論(すいろん、inference)とは、既知の事柄を元にして未知の事柄について予想し、論じる事である。.

新しい!!: スペクトル密度と推論 · 続きを見る »

期待値

率論において、期待値(きたいち、expected value)または平均は、確率変数の実現値を, 確率の重みで平均した値である。 例えば、ギャンブルでは、掛け金に対して戻ってくる「見込み」の金額をあらわしたものである。ただし、期待値ぴったりに掛け金が戻ることを意味するのではなく、各試行で期待値に等しい掛け金が戻るわけでもない。.

新しい!!: スペクトル密度と期待値 · 続きを見る »

最大エントロピー原理

最大エントロピー原理(さいだいエントロピーげんり、Principle of maximum entropy)は、認識確率分布を一意に定めるために利用可能な情報を分析する手法である。この原理を最初に提唱したのは E.T. Jaynes である。彼は1957年に統計力学のギブズ分布を持ち込んだ熱力学()を提唱した際に、この原理も提唱したものである。彼は、熱力学やエントロピーは、情報理論や推定の汎用ツールの応用例と見るべきだと示唆した。他のベイズ的手法と同様、最大エントロピー原理でも事前確率を明示的に利用する。これは古典的統計学における推定手法の代替である。.

新しい!!: スペクトル密度と最大エントロピー原理 · 続きを見る »

時系列

時系列(じけいれつ、Time Series)とは、ある現象の時間的な変化を、連続的に(または一定間隔をおいて不連続に)観測して得られた値の系列(一連の値)のこと。.

新しい!!: スペクトル密度と時系列 · 続きを見る »

ここにリダイレクトされます:

パワー・スペクトルパワースペクトルパワースペクトル密度エネルギースペクトルスペクトラム密度電力スペクトラム密度電力スペクトル密度

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »