ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

情報理論

索引 情報理論

情報理論(じょうほうりろん、Information theory)は、情報・通信を数学的に論じる学問である。応用数学の中でもデータの定量化に関する分野であり、可能な限り多くのデータを媒体に格納したり通信路で送ったりすることを目的としている。情報エントロピーとして知られるデータの尺度は、データの格納や通信に必要とされる平均ビット数で表現される。例えば、日々の天気が3ビットのエントロピーで表されるなら、十分な日数の観測を経て、日々の天気を表現するには「平均で」約3ビット/日(各ビットの値は 0 か 1)と言うことができる。 情報理論の基本的な応用としては、ZIP形式(可逆圧縮)、MP3(非可逆圧縮)、DSL(伝送路符号化)などがある。この分野は、数学、統計学、計算機科学、物理学、神経科学、電子工学などの交差する学際領域でもある。その影響は、ボイジャー計画の深宇宙探査の成功、CDの発明、携帯電話の実現、インターネットの開発、言語学や人間の知覚の研究、ブラックホールの理解など様々な事象に及んでいる。.

112 関係: 可逆圧縮同時分布天気学問定常過程定量的研究対数平文交差エントロピー人工知能二値エントロピー関数伝送路伝送路符号作曲応用数学ノイズノイズフロアチェスハリー・ナイキストバイオインフォマティクスメディア (媒体)ラルフ・ハートレーランダウアーの原理ルートヴィッヒ・ボルツマンボイジャー計画トレードオフブラックホールパラダイムビットデータデータ圧縮デジタル加入者線フィッシャー情報量ベル研究所アラン・チューリングインターネットイーサネットウィラード・ギブズエルゴード理論エンコードエンコーダカルバック・ライブラー情報量クロード・シャノングローバル・ポジショニング・システムコルモゴロフ複雑性コンパクトディスクコンピュータネットワークシャノンの通信路符号化定理シャノンの情報源符号化定理シャノン=ハートレーの定理...システム工学ジェームズ・テニースペクトラム拡散ステガノグラフィーサイバネティックス冗長性 (情報理論)知覚確率確率変数確率過程確率論神経科学積分法符号符号理論結合エントロピー統計統計力学統計学甘利俊一熱力学物理単位物理学独立 (確率論)相互情報量非可逆圧縮複雑系計算機科学言語学誤り検出訂正諜報活動論文賭博電子工学電話通信通信の数学的理論通信路容量MP3ZIP (ファイルフォーマット)暗号暗号理論暗号解読暗号文投資携帯電話条件付き確率機械学習情報情報学情報量情報検索情報源擬似乱数数学1924年1928年1940年1944年1948年2元対称通信路2元消失通信路 インデックスを展開 (62 もっと) »

可逆圧縮

可逆圧縮(かぎゃくあっしゅく)とは、圧縮前のデータと、圧縮・展開の処理を経たデータが完全に等しくなるデータ圧縮方法のこと。ロスレス圧縮とも呼ばれる。 アルゴリズムとしてはランレングス、ハフマン符号、LZWなどが有名。 コンピュータ上でよく扱われるLZH、ZIP、CABや、画像圧縮形式のPNG、GIF、動画圧縮形式のHuffyuv、音声圧縮形式のWindows Media Audio Lossless、Apple Lossless、ATRAC Advanced Lossless(AAL)、FLAC、TAK、TTA、Dolby TrueHD、DTS-HDマスターオーディオ、Meridian Lossless Packing、Monkey's Audio、Shorten、mp3HD、WavPack などが可逆圧縮である。.

新しい!!: 情報理論と可逆圧縮 · 続きを見る »

同時分布

率論において、同時分布(どうじぶんぷ)または結合分布(けつごうぶんぷ, joint distribution)とは、確率変数が複数個ある場合に、複数の確率変数がとる値の組に対して、その発生の度合いを確率を用いて記述するもので、確率分布の一種である。 日本工業規格では、2次元分布関数の定義において、多次元分布関数を説明し、同時分布を紹介している。 同時分布の表現方法として、離散型の確率変数にたいしては確率質量関数(確率関数ともいう)を用い、連続型の確率変数にたいしては確率密度関数を用いる。.

新しい!!: 情報理論と同時分布 · 続きを見る »

天気

天気(てんき、weather)は、ある場所における、ある時刻もしくは一定の期間の、地表に影響をもたらす大気の状態である。.

新しい!!: 情報理論と天気 · 続きを見る »

学問

学問(がくもん)とは、一定の理論に基づいて体系化された知識と方法であり、哲学や歴史学、心理学や言語学などの人文科学、政治学や法律学などの社会科学、物理学や化学などの自然科学などの総称。英語ではscience(s)であり、science(s)は普通、科学と訳す。なお、学問の専門家を一般に「学者」と呼ぶ。研究者、科学者と呼ばれる場合もある。.

新しい!!: 情報理論と学問 · 続きを見る »

定常過程

定常過程(ていじょうかてい、Stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均や分散も(もしあれば)時間や位置によって変化しない。 例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。 定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。 離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合をベルヌーイ系(Bernoulli scheme)と呼ぶ。N.

新しい!!: 情報理論と定常過程 · 続きを見る »

定量的研究

定量的研究(ていりょうてきけんきゅう、quantitative research)は、対象の量的な側面に注目し、数値を用いた記述、分析を伴う研究。対象の質的側面に注目した定性的研究の対概念である。.

新しい!!: 情報理論と定量的研究 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 情報理論と対数 · 続きを見る »

平文

暗号技術において、平文(ひらぶん、plaintext)とは、暗号化アルゴリズムに入力される情報の一つである。暗号化アルゴリズムの出力は暗号文(ciphertext)である。似た言葉にクリアテキスト(cleartext)があるが、完全に同一の言葉ではない。平文は「へいぶん」とよむこともある。.

新しい!!: 情報理論と平文 · 続きを見る »

交差エントロピー

交差エントロピーやクロスエントロピー(cross entropy)とは、情報理論において2つの確率分布の間に定義される尺度である。符号化方式が、真の確率分布 p ではなく、ある所定の確率分布 q に基づいている場合に、とりうる複数の事象の中からひとつの事象を特定するために必要となるビット数の平均値を表す。.

新しい!!: 情報理論と交差エントロピー · 続きを見る »

人工知能

250px 人工知能(じんこうちのう、artificial intelligence、AI)とは、「計算機(コンピュータ)による知的な情報処理システムの設計や実現に関する研究分野」を指す。.

新しい!!: 情報理論と人工知能 · 続きを見る »

二値エントロピー関数

情報理論において、二値エントロピー関数(にちエントロピーかんすう、binary entropy function)は \operatorname H(p) もしくは \operatorname H_\text(p) のように表記され、確率 p の1値または2値ベルヌーイ過程の情報エントロピーとして定義される。数学的には、ベルヌーイ試行は0か1の排他的な2値のみをとりうる確率変数 X \operatorname(X.

新しい!!: 情報理論と二値エントロピー関数 · 続きを見る »

伝送路

伝送路(でんそうろ)は、情報や電力の伝送のために使用される媒体(メディア)である。配線の一部として用いる場合には伝送線路ともいう。高周波信号を通す伝送線路は導波路とも呼ばれ、特性インピーダンスが規定され厳しく管理される(→伝送線路参照)。通信路(つうしんろ)または伝送路(英: Channel)とは、情報源(送信者)から受信者への情報伝達用媒体を指す。.

新しい!!: 情報理論と伝送路 · 続きを見る »

伝送路符号

伝送路符号(でんそうろふごう)またはライン符号(line code)とは、データ伝送路を介してデジタル信号を伝送する際に、デジタル信号をデータ伝送路の特性に適した電圧・電流または光子のパルス波形に変換するための符号である。伝送路符号は、デジタルデータ転送によく使用される。一部の伝送路符号は、デジタルベースバンド変調またはデジタルベースバンド送信であり、回線が直流成分を搬送できるときに使用されるベースバンド伝送路符号である。 伝送路符号の一般的なタイプは、・・マンチェスタ符号である。.

新しい!!: 情報理論と伝送路符号 · 続きを見る »

作曲

作曲(さっきょく)は、曲および音楽作品を作ること。作曲をした人を作曲者、作曲を業とする人を作曲家と呼ぶ。.

新しい!!: 情報理論と作曲 · 続きを見る »

応用数学

応用数学(おうようすうがく、英語:applied mathematics)とは、数学的知識を他分野に適用することを主眼とした数学の分野の総称である。 数学のさまざまな分野のどれが応用数学であるかというはっきりした合意があるわけではなく、しばしば純粋数学と対置されるものとして、大まかには他の科学や技術への応用に歴史的に密接に関連してきた分野がこう呼ばれている。なお、過去の高等学校学習指導要領において、科目「応用数学」が存在した。.

新しい!!: 情報理論と応用数学 · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: 情報理論とノイズ · 続きを見る »

ノイズフロア

ノイズフロアを示すスペクトラムアナライザによる測定 信号理論において、ノイズフロアとは測定システム内のすべてのノイズ源と不要な信号の合計から作成される信号の尺度である。このときのノイズはモニタしている信号以外の信号と定義する。 無線通信や電子機器においては、熱雑音、黒体、宇宙雑音、遠くの雷雨などの大気雑音と偶発的雑音と言われることのあるその他の不要な人口信号を含むおそれがある。主要なノイズが測定機器内(例えば、雑音指数の低いレシーバによるものなど)で生成された場合、これは物理ノイズフロアとは対照的な機器ノイズフロアの例である。これらの単語は必ずしも明確に定義されたものではなく、ときに混用される。 電気システム間の干渉を避けることは、電磁両立性の分野の別個の問題である。 地震計などの測定システムにおいては、物理的なノイズフロアは偶発的なノイズによって決定され、それには近くの歩行者の交通量や近くの道路を含んでいる場合がある。測定された振幅を平均したときにノイズフロアと同じくらいである可能性があるため、ノイズフロアは確実にとることのできる最小の測定値を制限するものである。 電子機器のシステムでノイズフロアを下げる一般的な方法は、主要なノイズ源となっているシステムを冷却して熱雑音を低減することである。特殊な状況下では、ディジタル信号処理の技術を使用してノイズフロアを人工的に下げることもできる。 ノイズフロアを下回る信号は異なるスペクトラム拡散通信を使用することで検出することができる。この通信は特定の情報帯域幅の信号を意図的に周波数領域に拡散することで、結果としてより広い占有帯域幅を持つ信号が得られるというものである。.

新しい!!: 情報理論とノイズフロア · 続きを見る »

チェス

チェスの駒 チェス(chess、شطرنج šaṭranj シャトランジ)は、2人で行うボードゲーム、マインドスポーツの一種である。先手・後手それぞれ6種類16個の駒を使って、敵のキングを追いつめるゲームである。その文化的背景などから、チェスプレイヤーの間では、チェスはゲームであると同時に「スポーツ」でも「芸術」でも「科学」でもあるとされ、ゲームに勝つためにはこれらのセンスを総合する能力が必要であると言われている。.

新しい!!: 情報理論とチェス · 続きを見る »

ハリー・ナイキスト

ハリー・ナイキスト(英語: Harry Nyquist, スウェーデン語: Harry Theodor Nyqvist, 1889年2月7日 - 1976年4月4日)はスウェーデン生まれの物理学者で自動制御理論および情報理論の発展に貢献した。スウェーデンでの名はハリー・テオドール・ニュークヴィスト。 スウェーデン・ヴェルムランド地方ヴェルムランド県シール市のNilsbyに生れた。1907年に一家でアメリカ合衆国に移住して帰化した。ノースダコタ大学とイェール大学で学んだ後、1917年から1934年までAT&T研究所に勤め、その後ベル研究所に移った。 ベル研究所では熱雑音、フィードバック増幅器の安定性などの研究を行った。ナイキストが研究した雑音は、同じくベル研究所で熱雑音の研究に取り組んだジョン・バートランド・ジョンソンに因み、ジョンソン-ナイキスト雑音と呼ばれる。 情報の伝送に必要な帯域の決定に関する理論は Certain factors affecting telegraph speed Nyquist (1924).として発表され、これは後にクロード・シャノンによって発展させられる情報理論の基になった。 1927年にナイキストはアナログ信号をデジタルサンプリングして、再現するのにアナログ信号の周波数の 2 倍が必要であることを Telegraph Transmission Theory Nyquist (1928).の中で示した。ナイキスト-シャノンの標本化定理と呼ばれる。 1960年にIRE栄誉賞(IEEE栄誉賞の前身)を受賞。 晩年はテキサス州で隠居し、1976年にハーリンジェンで死去した。.

新しい!!: 情報理論とハリー・ナイキスト · 続きを見る »

バイオインフォマティクス

バイオインフォマティクス(英語:bioinformatics)または生命情報科学(せいめいじょうほうかがく)は、生命科学と情報科学の融合分野のひとつで、DNAやRNA、タンパク質の構造などの生命が持っている「情報」といえるものを情報科学や統計学などのアルゴリズムを用いて分析することで生命について解き明かしていく学問である。機械学習による遺伝子領域予測や、タンパク質構造予測、次世代シーケンサーを利用したゲノム解析など、大きな計算能力を要求される課題が多く存在するため、スーパーコンピュータの重要な応用領域の一つとして認識されている。 主な研究対象分野に、遺伝子予測、遺伝子機能予測、遺伝子分類、配列アラインメント、ゲノムアセンブリ、タンパク質構造アラインメント、タンパク質構造予測、遺伝子発現解析、タンパク質間相互作用の予測、進化のモデリングなどがある。 近年多くの生物を対象に実施されているゲノムプロジェクトによって大量の情報が得られる一方、それらの情報から生物学的な意味を抽出することが困難であることが広く認識されるようになり、バイオインフォマティクスの重要性が注目されている。 この一方遺伝子情報は核酸の配列というデジタル情報に近い性格を持っているために、コンピュータとの親和性が高いことが本分野の発展の理由になっている。 さらにマイクロアレイなどの網羅的な解析技術の発展に伴って、遺伝子発現のプロファイリング、クラスタリング、アノテーション(注釈)、大量のデータを視覚的に表現する手法などが重要になってきている。こういった個別の遺伝子、タンパク質の解析等から更に一歩進み、生命を遺伝子やタンパク質のネットワークとして捉え、その総体をシステムとして理解しようとするシステム生物学という分野もある。.

新しい!!: 情報理論とバイオインフォマティクス · 続きを見る »

メディア (媒体)

メディア(media)とは、情報の記録、伝達、保管などに用いられる物や装置のことである。媒体(ばいたい)などと訳されることもある。記録・保管のための媒体とコミュニケーションのための媒体とに大別することができるが、両者には重なりがある。.

新しい!!: 情報理論とメディア (媒体) · 続きを見る »

ラルフ・ハートレー

ラルフ・ハートレー(Ralph Vinton Lyon Hartley、1888年11月30日 - 1970年5月1日)はアメリカの電子工学研究者。ハートレー発振回路やハートレー変換を発明し、情報理論の構築にも寄与した。.

新しい!!: 情報理論とラルフ・ハートレー · 続きを見る »

ランダウアーの原理

ランダウアーの原理(ランダウアーのげんり、Landauer's Principle)とは、情報の消去など論理的に非可逆な計算は熱力学的にも非可逆であり、環境での相応する熱力学的エントロピーの上昇を必要とすることを主張する原理である。1961年にIBMのによって始めに議論された。 定量的には、情報処理過程において1ビット(.

新しい!!: 情報理論とランダウアーの原理 · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

新しい!!: 情報理論とルートヴィッヒ・ボルツマン · 続きを見る »

ボイジャー計画

ボイジャー計画(ボイジャーけいかく、Voyager program)は、アメリカ航空宇宙局(NASA)による太陽系の外惑星および太陽系外の探査計画である。2機の無人惑星探査機ボイジャー(Voyager)を用いた探査計画であり、1977年に打ち上げられた。惑星配置の関係により、木星・土星・天王星・海王星を連続的に探査することが可能であった機会を利用して打ち上げられている。1号・2号とも外惑星の鮮明な映像撮影に成功し、新衛星など多数の発見に貢献した。 2機の探査機の仕様は双方とも重量721.9kg、出力420Wとほぼ同じであるが、2号がより容量の大きい電源を搭載している。当初の予定では打ち上げられる探査機の名称はマリナー11号・12号だった。.

新しい!!: 情報理論とボイジャー計画 · 続きを見る »

トレードオフ

トレードオフ()とは、一方を追求すれば他方を犠牲にせざるを得ないという状態・関係のことである。トレードオフのある状況では具体的な選択肢の長所と短所をすべて考慮したうえで決定を行うことが求められる。.

新しい!!: 情報理論とトレードオフ · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 情報理論とブラックホール · 続きを見る »

パラダイム

パラダイム (paradigm) とは、科学史家・科学哲学者のトーマス・クーンによって提唱された、科学史及び科学哲学上の概念。一般には「模範」「範」を意味する語だが、1962年に刊行されたクーンの『科学革命の構造(The structure of scientific revolutions)』で科学史の特別な用語として用いられたことで有名になった。しかし、同時に多くの誤解釈や誤解に基づく非難に直面したこと、また、概念の曖昧さなどの問題があったために、8年後の1970年に公刊された改訂版では撤回が宣言され、別の用語で問題意識を再定式化することが目指された。 本記事では、撤回の宣言を踏まえつつも、クーン本来の問題関心を明らかにするため、再定式化に用いられた専門図式(disciplinary matrix)の概念も含めて記述する。.

新しい!!: 情報理論とパラダイム · 続きを見る »

ビット

ビット (bit, b) は、ほとんどのデジタルコンピュータが扱うデータの最小単位。英語の binary digit (2進数字)の略であり、2進数の1けたのこと。量子情報科学においては古典ビットと呼ばれる。 1ビットを用いて2通りの状態を表現できる(二元符号)。これらの2状態は一般に"0"、"1"と表記される。 情報理論における選択情報およびエントロピーの単位も「ビット」と呼んでいるが、これらの単位は「シャノン」とも呼ばれる(詳細は情報量を参照)。 省略記法として、バイトの略記である大文字の B と区別するために、小文字の b と表記する。.

新しい!!: 情報理論とビット · 続きを見る »

データ

データ(data)とは、事実や資料をさす言葉。言語的には複数形であるため、厳密には複数の事象や数値の集まりのことを指し、単数形は datum(データム)である。.

新しい!!: 情報理論とデータ · 続きを見る »

データ圧縮

データ圧縮(データあっしゅく)とは、あるデータをそのデータの実質的な性質(専門用語では「情報量」)を保ったまま、データ量を減らした別のデータに変換すること。高効率符号化ともいう-->。アナログ技術を用いた通信技術においては通信路の帯域幅を削減する効果を得るための圧縮ということで帯域圧縮ともいわれた。デジタル技術では、情報を元の表現よりも少ないビット数で符号化することを意味する。 データ圧縮には大きく分けて可逆圧縮と非可逆圧縮がある。というより正確には非可逆圧縮はデータ圧縮ではない。可逆圧縮は統計的冗長性を特定・除去することでビット数を削減する。可逆圧縮では情報が失われない。非可逆圧縮は不必要な情報を特定・除去することでビット数を削減する。しかしここで「不必要な」とは、例えばMP3オーディオの場合「ヒトの聴覚では通常は識別できない」という意味であり、冒頭の「情報量を保ったまま」という定義を破っている。データファイルのサイズを小さくする処理は一般にデータ圧縮と呼ばれるが、データを記録または転送する前に符号化するという意味では情報源符号化である。 圧縮は、データ転送におけるトラフィックやデータ蓄積に必要な記憶容量の削減といった面で有効である。しかし圧縮されたデータは、利用する前に伸長(解凍)するという追加の処理を必要とする。つまりデータ圧縮は、空間計算量を時間計算量に変換することに他ならない。例えば映像の圧縮においては、それをスムースに再生するために高速に伸長(解凍)する高価なハードウェアが必要となるかもしれないが、圧縮しなければ大容量の記憶装置を必要とするかもしれない。データ圧縮方式の設計には様々な要因のトレードオフがからんでおり、圧縮率をどうするか、(非可逆圧縮の場合)歪みをどの程度許容するか、データの圧縮伸長に必要とされる計算リソースの量などを考慮する。 新たな代替技法として、圧縮センシングの原理を使ったリソース効率のよい技法が登場している。圧縮センシング技法は注意深くサンプリングすることでデータ圧縮の必要性を避けることができる。.

新しい!!: 情報理論とデータ圧縮 · 続きを見る »

デジタル加入者線

デジタル加入者線(でじたるかにゅうしゃせん、DSL:Digital Subscriber Line)とはツイストペアケーブル通信線路で高速デジタルデータ通信を行う技術、もしくは電気通信役務を指す。日本を含む先進国では、インフラストラクチャーとして既存のメタルケーブル加入者線が利用できるのが長所である。 上りと下りの速度の異なるADSL(Asymmetric DSL)、CDSL(Consumer DSL)、VDSL(Very high-bit-rate DSL)、長距離向きのReach DSL、同じ速度のHDSL(High-bit-rate DSL)、SDSL(Symmetric DSL)などがありxDSLとも総称する。.

新しい!!: 情報理論とデジタル加入者線 · 続きを見る »

フィッシャー情報量

フィッシャー情報量(フィッシャーじょうほうりょう、Fisher information) \mathcal_X(\theta)は統計学や情報理論で登場する量で、確率変数Xが母数\thetaに関して持つ「情報」の量を表す。統計学者のロナルド・フィッシャーに因んで名付けられた。.

新しい!!: 情報理論とフィッシャー情報量 · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: 情報理論とベル研究所 · 続きを見る »

アラン・チューリング

アラン・マシスン・チューリング(Alan Mathieson Turing、〔テュァリング〕, 1912年6月23日 - 1954年6月7日)はイギリスの数学者、論理学者、暗号解読者、コンピュータ科学者。.

新しい!!: 情報理論とアラン・チューリング · 続きを見る »

インターネット

インターネット(internet)は、インターネット・プロトコル・スイートを使用し、複数のコンピュータネットワークを相互接続した、グローバルな情報通信網のことである。 インターネットは、光ファイバーや無線を含む幅広い通信技術により結合された、地域からグローバルまでの範囲を持つ、個人・公共・教育機関・商用・政府などの各ネットワークから構成された「ネットワークのネットワーク」であり、ウェブのハイパーテキスト文書やアプリケーション、電子メール、音声通信、ファイル共有のピア・トゥ・ピアなどを含む、広範な情報とサービスの基盤となっている。.

新しい!!: 情報理論とインターネット · 続きを見る »

イーサネット

イーサネット (Ethernet) はコンピューターネットワークの規格の1つ。世界中のオフィスや家庭で一般的に使用されている有線のLAN (Local Area Network) で最も使用されている技術規格で、OSI参照モデルの下位2つの層である物理層とデータリンク層に関して規定している。 現代の有線LANは、OSI参照モデルの下位2層に相当するイーサネットとそれ以上の層を規定した「TCP/IPプロトコル」の組み合わせが一般的である。.

新しい!!: 情報理論とイーサネット · 続きを見る »

ウィラード・ギブズ

ョサイア・ウィラード・ギブズ ジョサイア・ウィラード・ギブズ(Josiah Willard Gibbs, 1839年2月11日 - 1903年4月28日)はアメリカコネチカット州ニューヘイブン出身の数学者・物理学者・物理化学者で、エール大学(イェール大学)教授。 熱力学分野で熱力学ポテンシャル、化学ポテンシャル概念を導入し、相平衡理論の確立、相律の発見など、今日の化学熱力学の基礎を築いた。統計力学の確立にも大きく貢献した。ギブズ自由エネルギーやギブズ-デュエムの式、ギブズ-ヘルムホルツの式等にその名を残している。 ベクトル解析の創始者の一人として数学にも寄与している。 ギブズの科学者としての経歴は、4つの時期に分けられる。1879年まで、ギブズは、熱力学理論を研究した。1880年から1884年までは、ベクトル解析分野の研究を行った。1882年から1889年までは、光学と光理論の研究をした。1889年以降は、統計力学の教科書作成に関わった。なお、彼の功績を称えて、小惑星(2937)ギブズが彼の名を取り命名されている。.

新しい!!: 情報理論とウィラード・ギブズ · 続きを見る »

エルゴード理論

ルゴード理論(エルゴードりろん、英語:ergodic theory)は、ある力学系がエルゴード的(ある物理量に対して、長時間平均とある不変測度による位相平均が等しい)であることを示す、すなわちエルゴード仮説の立証を目的とする理論。この仮説は、SinaiらのDynamical billiardsの例などで正しいという証明が与えられているが、統計力学の基礎とは無関係である。また、物理学でのエルゴード性を抽象化した、数学における保測変換の理論をそう呼ぶこともある。;長時間平均;位相平均 上記2つの平均が同じような値(あるいは関数)を得られるものについて、エルゴード的ということが出来る。.

新しい!!: 情報理論とエルゴード理論 · 続きを見る »

エンコード

ンコード(encode)、符号化(ふごうか)とは、アナログ信号やデジタルデータに特定の方法で、後に元の(あるいは類似の)信号またはデータに戻せるような変換を加えることである。 一般的には、エンコードするための機器・回路・プログラムをエンコーダ、デコード(記事内後述を参照)するための機器・回路・プログラムをデコーダと呼んでいる。 特にコンピュータ(特にパーソナルコンピュータ)分野では、エンコードとは、音声や動画などをコーデックを用いて圧縮する事を言う。一部では「エンコ」と略して呼ぶこともある。.

新しい!!: 情報理論とエンコード · 続きを見る »

エンコーダ

ンコーダ.

新しい!!: 情報理論とエンコーダ · 続きを見る »

カルバック・ライブラー情報量

ルバック・ライブラー情報量(カルバック・ライブラーじょうほうりょう、英: Kullback–Leibler divergence、カルバック・ライブラー・ダイバージェンス)とは、確率論と情報理論における2つの確率分布の差異を計る尺度である。情報ダイバージェンス(Information divergence)、情報利得(Information gain)、相対エントロピー(Relative entropy)とも呼ばれる。 2つの確率分布の差異を表す事から、カルバック・ライブラー距離 と呼ばれる事もあるが、距離の公理を満たさないので、数学的な意味での距離ではない。 応用上は、「真の」確率分布 P とそれ以外の任意の確率分布 Q に対するカルバック・ライブラー情報量が計算される事が多い。 例えばP はデータ、観測値、正確に計算で求められた確率分布などを表し、Q は理論値、モデル値、P の予測値などを表す。 この概念は1951年、ソロモン・カルバックとリチャード・ライブラーが2つの分布の間の directed divergence として用いたのが最初であり、ベクトル解析におけるダイバージェンスとは異なる概念である。 カルバック・ライブラー情報量は離散分布のみならず連続分布に対しても定義されており、連続分布に対するカルバック・ライブラー情報量は変数変換について不変である。従って、情報理論の他の量(自己情報量やエントロピー)よりも基本的であるとも言える。というのも、それらは離散的でない確率については未定義だったり、変数変換に対して不変ではなかったりするからである。.

新しい!!: 情報理論とカルバック・ライブラー情報量 · 続きを見る »

クロード・シャノン

ード・エルウッド・シャノン(Claude Elwood Shannon, 1916年4月30日 - 2001年2月24日)はアメリカ合衆国の電気工学者、数学者。20世紀科学史における、最も影響を与えた科学者の一人である。 情報理論の考案者であり、情報理論の父と呼ばれた。情報、通信、暗号、データ圧縮、符号化など今日の情報社会に必須の分野の先駆的研究を残した。アラン・チューリングやジョン・フォン・ノイマンらとともに今日のコンピュータ技術の基礎を作り上げた人物として、しばしば挙げられる。.

新しい!!: 情報理論とクロード・シャノン · 続きを見る »

グローバル・ポジショニング・システム

船舶用GPS受信機 グローバル・ポジショニング・システム(Global Positioning System, Global Positioning Satellite, GPS、全地球測位システム)とは、アメリカ合衆国によって運用される衛星測位システム(地球上の現在位置を測定するためのシステムのこと)を指す。 ロラン-C(Loran-C: Long Range Navigation C)システムなどの後継にあたる。.

新しい!!: 情報理論とグローバル・ポジショニング・システム · 続きを見る »

コルモゴロフ複雑性

ルモゴロフ複雑性(コルモゴロフふくざつせい、Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。 コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲーデルの不完全性定理と関連する深遠な内容をもつ。コルモゴロフ複雑性やその他の文字列やデータ構造の複雑性の計量を研究する計算機科学の分野はアルゴリズム情報理論と呼ばれており、1960 年代末にアンドレイ・コルモゴロフ、レイ・ソロモノフ、グレゴリー・チャイティンによって創始された。.

新しい!!: 情報理論とコルモゴロフ複雑性 · 続きを見る »

コンパクトディスク

ンパクトディスク(、CD(シーディー))とはデジタル情報を記録するためのメディアである。光ディスク規格の一つでレコードに代わり音楽を記録するため、ソニーとフィリップスが共同開発した。現在ではコンピュータ用のデータなど、派生規格の普及により音楽以外のデジタル情報収録(画像や動画など)にも用いられる。音楽CDについてはCD-DAも参照。.

新しい!!: 情報理論とコンパクトディスク · 続きを見る »

コンピュータネットワーク

ンピュータネットワーク(computer network)は、複数のコンピュータを接続する技術。または、接続されたシステム全体。コンピュータシステムにおける「通信インフラ」自体、あるいは通信インフラによって実現される接続や通信の総体が(コンピュータ)ネットワークである、とも言える。.

新しい!!: 情報理論とコンピュータネットワーク · 続きを見る »

シャノンの通信路符号化定理

情報理論において、シャノンの通信路符号化定理(シャノンのつうしんろふごうかていり、noisy-channel coding theorem)とは、通信路の雑音のレベルがどのように与えられたとしても、その通信路を介して計算上の最大値までほぼエラーのない離散データ(デジタル情報)を送信することが可能であるという定理である。この定理は、1948年にクロード・シャノンによって発表されたが、これはハリー・ナイキストとラルフ・ハートレーの初期の仕事とアイデアに一部基づいていた。シャノンの第一基本定理(情報源符号化定理)に対してシャノンの第二基本定理とも言い、単にシャノンの定理とも言う。 上記の「計算上の最大値」を通信路容量(またはシャノン限界、シャノン容量とも)といい、特定の雑音レベルについて、通信路の理論上の最大情報転送である。.

新しい!!: 情報理論とシャノンの通信路符号化定理 · 続きを見る »

シャノンの情報源符号化定理

情報理論において、シャノンの情報源符号化定理(シャノンのじょうほうげんふごうかていり、Shannon's source coding theorem, noiseless coding theorem)は、データ圧縮の可能な限界と情報量(シャノンエントロピー)の操作上の意味を確立する定理である。1948年のクロード・シャノンの論文『通信の数学的理論』で発表された。シャノンの第二基本定理(通信路符号化定理)に対してシャノンの第一基本定理とも言う。 情報源符号化定理によれば、(独立同分布(iid)の確率変数のデータの列の長さが無限大に近づくにつれて)、(記号1つ当たりの平均符号長)が情報源のシャノンエントロピーよりも小さいデータを、情報が失われることが事実上確実ではないように圧縮することは不可能である。しかし、損失の可能性が無視できる場合、符号化率を任意にシャノンエントロピーに近づけることは可能である。 シンボルコードの情報源符号化定理は、入力語(確率変数と見なされる)のエントロピーとターゲットアルファベットの大きさの関数として、符号語の可能な期待される長さに上限と下限を設定する。.

新しい!!: 情報理論とシャノンの情報源符号化定理 · 続きを見る »

シャノン=ハートレーの定理

ャノン・ハートレーの定理(Shannon–Hartley theorem)は、情報理論における定理であり、ガウスノイズを伴う理想的な連続アナログ通信路の通信路符号化を定式化したものである。この定理から、そのような通信路上で誤りなしで転送可能なデータ(すなわち情報)の最大量であるシャノンの通信路容量が求められる。このとき、ノイズの強さと信号の強さが与えられることで帯域幅が決定される。この定理の名称は、アメリカの2人の電子工学者クロード・シャノンとラルフ・ハートレーに由来している。.

新しい!!: 情報理論とシャノン=ハートレーの定理 · 続きを見る »

システム工学

テム工学(システムこうがく、systems engineering)とは、システムの設計、制御、および効率などを研究する学問(工学)である。ここでの「システム」の定義としては、システムの記事(システム#JIS Z 8115)などを参照のこと。工学として応用される実社会の具体例としては、工業プラントやロボットから、コンピュータを用いたシミュレーションゲームや人工補助脳(ロボットスーツに搭載されるもの)、会社組織や行政機関に至るまで、きわめて広範囲に及ぶ。システム工学は、個々の要素からシステムを合成するということと、複雑なシステムを解析するという、大きく分けて2つの目的がある。なおシステム科学も参照のこと。.

新しい!!: 情報理論とシステム工学 · 続きを見る »

ジェームズ・テニー

ェームズ・テニー ジェームズ・テニー(James Tenney, 1934年8月10日 - 2006年8月24日)は米国の現代音楽の作曲家・音楽理論家。.

新しい!!: 情報理論とジェームズ・テニー · 続きを見る »

スペクトラム拡散

無線LAN、Bluetoothのスペクトラム拡散 スペクトラム拡散(スペクトラムかくさん、spread spectrum、SS)は、通信の信号を本来よりも広い帯域に拡散して通信する技術。無線通信に多く用いられる。「スペクトル拡散」、「周波数拡散」とも言う。.

新しい!!: 情報理論とスペクトラム拡散 · 続きを見る »

ステガノグラフィー

テガノグラフィー(steganography)とは、データ隠蔽技術の一つであり、データを他のデータに埋め込む技術のこと、あるいはその研究を指す。クリプトグラフィー(cryptography)がメッセージの内容を読めなくする手段を提供するのに対して、ステガノグラフィーは存在自体を隠す点が異なる。.

新しい!!: 情報理論とステガノグラフィー · 続きを見る »

サイバネティックス

イバネティックス(cybernetics)または人工頭脳学(じんこうずのうがく)は、通信工学と制御工学を融合し、生理学、機械工学、システム工学を統一的に扱うことを意図して作られた学問。語源は、ギリシャ語で「(船の)舵を取る者」を意味するキベルネテス(Κυβερνήτης)。第二次世界大戦の後、ノーバート・ウィーナーによって提唱された。当時はまだ情報理論の発展する前であり、自動制御とフィードバックがそれぞれ発展しても、両方の関連を認識することにすら年数を要した、という時代であった。.

新しい!!: 情報理論とサイバネティックス · 続きを見る »

冗長性 (情報理論)

冗長性(じょうちょうせい、Redundancy)とは、情報理論において、あるメッセージを転送するのに使われているビット数からそのメッセージの実際の情報に必須なビット数を引いた値である。冗長度、冗長量とも。大まかに言えば、あるデータを転送する際に無駄に使われている部分の量に相当する。好ましくない冗長性を排除・削減する方法として、データ圧縮がある。逆にノイズのある通信路容量が有限な通信路で誤り検出訂正を行う目的で冗長性を付与するのが、チェックサムやハミング符号などである。.

新しい!!: 情報理論と冗長性 (情報理論) · 続きを見る »

知覚

知覚(ちかく、英: perception)とは、動物が外界からの刺激を感じ取り、意味づけすることである。 視覚、聴覚、嗅覚、味覚、体性感覚、平衡感覚などの感覚情報をもとに、「熱い」「重い」「固い」などという自覚的な体験として再構成する処理であると言える。.

新しい!!: 情報理論と知覚 · 続きを見る »

確率

率(かくりつ、)とは、偶然性を持つある現象について、その現象が起こることが期待される度合い、あるいは現れることが期待される割合のことをいう。確率そのものは偶然性を含まないひとつに定まった数値であり、発生の度合いを示す指標として使われる。.

新しい!!: 情報理論と確率 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 情報理論と確率変数 · 続きを見る »

確率過程

率論において、確率過程(かくりつかてい、stochastic process)は、時間とともに変化する確率変数のことである。 株価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(random process)とも言う。.

新しい!!: 情報理論と確率過程 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: 情報理論と確率論 · 続きを見る »

神経科学

経科学(しんけいかがく、)とは、神経系に関する研究を行う自然科学の一分野である。研究の対象として、神経系の構造、機能、発達、遺伝学、生化学、生理学、薬理学、栄養学および病理学などがある。この分野は生物学の一部門であるが、近年になって生物学のみならず心理学、コンピュータ科学、統計学、物理学、医学など多様な学問分野からの注目を集めるようになった。研究者数の増加も目覚しい。神経科学者の用いる研究手法は近年大幅に増加しており、単一の神経細胞やそれらを構成する物質の組成・動態を調べるものから、思考中の脳内の活動を可視化する技術まで多岐に渡る。 神経科学は脳と心の研究の最先端に位置する。神経系の研究は、人間がどのように外界を知覚し、またそれと相互作用するのかを理解するための基盤となりつつある。 ニューヨーク大学の心理学教授氏は「神経科学という学問には様々な方法論的課題が残っている」、「新聞で一面に大きく記載される様な研究はほとんど出鱈目であり、一流の神経科学者たちの研究は世間の注目を集めることはあまりない」と注意した。.

新しい!!: 情報理論と神経科学 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 情報理論と積分法 · 続きを見る »

符号

モールス符号 符号理論において、符号(ふごう)またはコード(code)とは、シンボルの集合S, Xがあるとき、Sに含まれるシンボルのあらゆる系列から、Xに含まれるシンボルの系列への写像のことである。Sを情報源アルファベット、Xを符号アルファベットという。すなわち符号とは、情報の断片(例えば、文字、語、句、ジェスチャーなど)を別の形態や表現へ(ある記号から別の記号へ)変換する規則であり、変換先は必ずしも同種のものとは限らない。 コミュニケーションや情報処理において符号化(エンコード)とは、情報源の情報を伝達のためのシンボル列に変換する処理である。復号(デコード)はその逆処理であり、符号化されたシンボル列を受信者が理解可能な情報に変換して戻してやることを指す。 符号化が行われるのは、通常の読み書きや会話などの言語によるコミュニケーションが不可能な場面でコミュニケーションを可能にするためである。例えば、手旗信号や腕木通信の符号も個々の文字や数字を表していることが多い。遠隔にいる人がその手旗や腕木を見て、本来の言葉などに戻して解釈することになる。.

新しい!!: 情報理論と符号 · 続きを見る »

符号理論

号理論(ふごうりろん、Coding theory)は、情報を符号化して通信を行う際の効率と信頼性についての理論である。符号は、データ圧縮・暗号化・誤り訂正・ネットワーキングのために使用される。符号理論は、効率的で信頼できるデータ伝送方法を設計するために、情報理論・電気工学・数学・言語学・計算機科学などの様々な分野で研究されている。通常、符号理論には、冗長性の除去と、送信されたデータの誤りの検出・訂正が含まれる。 符号化は、以下の4種類に分けられる。.

新しい!!: 情報理論と符号理論 · 続きを見る »

結合エントロピー

結合エントロピー(英: Joint entropy)とは、情報理論における情報量の一種。結合エントロピーは、2つの確率変数の結合した系でのエントロピーを表す。確率変数 X と Y があるとき、結合エントロピーは H(X,Y) と記される。他のエントロピーと同様、単位は対数の底によってビット (bit)、ナット (nat)、ディット (dit) が使われる。.

新しい!!: 情報理論と結合エントロピー · 続きを見る »

統計

統計(とうけい、)は、現象を調査することによって数量で把握すること、または、調査によって得られた数量データ(統計量)のことである。統計の性質を調べる学問は統計学である。.

新しい!!: 情報理論と統計 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 情報理論と統計力学 · 続きを見る »

統計学

統計学(とうけいがく、statistics、Statistik)とは、統計に関する研究を行う学問である。 統計学は、経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解釈を行う上での根拠を提供する学問であり、幅広い分野で応用されている。 現在では、医学(疫学、EBM)、薬学、経済学、社会学、心理学、言語学など、自然科学・社会科学・人文科学の実証分析を伴う分野について、必須の学問となっている。また、統計学は哲学の一分科である科学哲学においても重要な一つのトピックになっている。.

新しい!!: 情報理論と統計学 · 続きを見る »

甘利俊一

利 俊一(あまり しゅんいち、1936年1月3日 - )は、日本の神経科学者、計算論的神経科学研究者。情報幾何学の創始者でもある。 独立行政法人理化学研究所脳科学総合研究センター特別顧問・公立はこだて未来大学客員教授、東京大学名誉教授。.

新しい!!: 情報理論と甘利俊一 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 情報理論と熱力学 · 続きを見る »

物理単位

物理単位(ぶつりたんい)とは、種々の物理量を表すための単位である。.

新しい!!: 情報理論と物理単位 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 情報理論と物理学 · 続きを見る »

独立 (確率論)

立(どくりつ、independent)とは、確率論において、2つのが成立する確率がそれぞれの確率の積で表されることを言う。2つの確率変数が独立であるというのは、「ある確率変数の値が一定範囲に入る事象」と「別の確率変数の値が別の一定範囲に入る事象」が、考えられるどのような「一定範囲」(「考えられる」とは通常ボレル集合族を指す)を定めても事象として独立であることを言う。 確率論における独立は、他の分野における独立性の概念と区別する意味で、確率論的独立(かくりつろんてきどくりつ、stochastic independence)あるいは統計的独立(とうけいてきどくりつ、statistical independence)などとも呼ばれる。 2つの事象が独立といった場合は、片方の事象が起きたことが分かっても、もう片方の事象の起きる確率が変化しないことを意味する。2つの確率変数が独立といった場合は、片方の変数の値が分かっても、もう片方の変数の分布が変化しないことを意味する。.

新しい!!: 情報理論と独立 (確率論) · 続きを見る »

相互情報量

互情報量(そうごじょうほうりょう、Mutual information)または伝達情報量(でんたつじょうほうりょう、Transinformation)は、確率論および情報理論において、2つの確率変数の相互依存の尺度を表す量である。最も典型的な相互情報量の物理単位はビットであり、2 を底とする対数が使われることが多い。.

新しい!!: 情報理論と相互情報量 · 続きを見る »

非可逆圧縮

非可逆圧縮(ひかぎゃくあっしゅく)とは、圧縮前のデータと、圧縮・展開を経たデータとが完全には一致しないデータ圧縮方法のこと。不可逆圧縮(ふかぎゃくあっしゅく)とも呼ばれる。画像や音声、映像データに対して用いられる。静止画像ではJPEG、動画像ではMPEG-1、MPEG-2、MPEG-4(DivX、Xvid、3ivX)、MPEG-4 AVC/H.264、HEVC/H.265、WMV9、VP8、音声ではVorbis、WMA、AAC、MP3、ATRAC、Dolby Digital、DTS Digital Surround、Dolby Digital Plus、DTS-HD High Resolutionなどが代表的な非可逆圧縮方法にあたる。 圧縮に伴い、データは欠落・改変するものの、人間の視聴覚特性を利用して劣化を目立たなくしている。つまり、人間の感覚に伝わりにくい部分は情報を大幅に減らし、伝わりやすい部分の情報を多く残すように行う。その結果、すべてのデータを均一に扱う可逆圧縮と比較して圧倒的な圧縮率が得られ、利点である。また、圧縮率と品質の劣化を両天秤にかけることができ、目的や環境の制約に応じて適切なバランスを選ぶことができる。たとえば、低速な通信回線で音楽などを送信する場合や美術的な再現性を必要としない画像の表示・印刷の場合には圧縮率を高めてデータを小さくする。逆に高速な通信回線が使える場合や、より鮮明な画像の表現を求める場合は圧縮率を低くして大きなデータをやり取りする。.

新しい!!: 情報理論と非可逆圧縮 · 続きを見る »

複雑系

複雑系(ふくざつけい、complex system)とは、相互に関連する複数の要因が合わさって全体としてなんらかの性質(あるいはそういった性質から導かれる振る舞い)を見せる系であって、しかしその全体としての挙動は個々の要因や部分からは明らかでないようなものをいう。 これらは狭い範囲かつ短期の予測は経験的要素から不可能ではないが、その予測の裏付けをより基本的な法則に還元して理解する(還元主義)のは困難である。系の持つ複雑性には非組織的複雑性と組織的複雑性の二つの種類がある。これらの区別は本質的に、要因の多さに起因するものを「組織化されていない」(disorganized) といい、対象とする系が(場合によってはきわめて限定的な要因しか持たないかもしれないが)創発性を示すことを「組織化された」(organized) と言っているものである。 複雑系は決して珍しいシステムというわけではなく、実際に人間にとって興味深く有用な多くの系が複雑系である。系の複雑性を研究するモデルとしての複雑系には、蟻の巣、人間経済・社会、気象現象、神経系、細胞、人間を含む生物などや現代的なエネルギーインフラや通信インフラなどが挙げられる。 複雑系は自然科学、数学、社会科学などの多岐にわたる分野で研究されている。また、複雑系科学の記事も参照のこと。.

新しい!!: 情報理論と複雑系 · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

新しい!!: 情報理論と計算機科学 · 続きを見る »

言語学

言語学(げんごがく)は、ヒトが使用する言語の構造や意味を科学的に研究する学問である。.

新しい!!: 情報理論と言語学 · 続きを見る »

誤り検出訂正

誤り検出訂正(あやまりけんしゅつていせい)またはエラー検出訂正 (error detection and correction/error check and correct) とは、データに符号誤り(エラー)が発生した場合にそれを検出、あるいは検出し訂正(前方誤り訂正)することである。検出だけをする誤り検出またはエラー検出と、検出し訂正する誤り訂正またはエラー訂正を区別することもある。また改竄検出を含める場合も含めない場合もある。誤り検出訂正により、記憶装置やデジタル通信・信号処理の信頼性が確保されている。.

新しい!!: 情報理論と誤り検出訂正 · 続きを見る »

諜報活動

諜報活動(ちょうほうかつどう, )とは、もっぱら国家の安全保障にまつわる、収集をはじめとした情報に関する活動である。.

新しい!!: 情報理論と諜報活動 · 続きを見る »

論文

論文。.

新しい!!: 情報理論と論文 · 続きを見る »

賭博

賭博(とばく、gambling、Glücksspiel、jeu d'argent)とは、金銭や品物を賭けて勝負を争う遊戯のこと広辞苑第六版「賭博」。 賭(け)事、博打(ばくち)、博奕(ばくえき)、勝負事とも。日本語では和製英語で「ギャンブル」とも言う。.

新しい!!: 情報理論と賭博 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: 情報理論と電子工学 · 続きを見る »

電話

電話(でんわ、telephone)は、電気通信役務の一種で、電話機で音声を電気信号(アナログ式では電流の変化、デジタル式では加えて位相の変化)に変換し、電話回線を通じて離れた場所にいる相手方にこれを伝え、お互いに会話ができるようにした機構および、その手段のことをいう。 現代の電話回線は電話交換機で世界的に相互接続され電話網を形成している。また、技術の進歩に伴い、固定電話間の通話にとどまらず、携帯電話(自動車電話)・PHS・衛星電話・などの移動体通信、IP電話などとの相互間通話や、無線呼び出しへの発信も可能になっている。インターネットへのダイヤルアップ接続など、コンピュータ間のデータ通信にも応用されるようになり、社会における重要な通信手段の一つとなっている。 初期のアナログ電話は、電流の変化そのものをマイクやスピーカを使って音声に変換しているので、電流の変化そのものを情報として伝送している(ベースバンド伝送)。一方でデジタル式電話では、送電経路上の情報の送受信の効率を優先させるため、必ず変調や復調といった手順を含み経路上の回路は複雑になるが、情報の量や品質においてメリットが非常に大きい。多くは得られた情報からのベースバンドを、さらに伝送経路上で符号化する方式で伝送している(搬送帯域伝送)。.

新しい!!: 情報理論と電話 · 続きを見る »

通信

通信(つうしん)とは、情報の伝達を意味する言葉である。有史以前から徐々に発展し、近代における様々なそして急激な技術的発展によって、より多様で利便性の高い、大衆的なものに発展してきた。.

新しい!!: 情報理論と通信 · 続きを見る »

通信の数学的理論

『通信の数学的理論』(つうしんのすうがくてきりろん、A Mathematical Theory of Communication)は、1948年に数学者クロード・シャノンが発表した、影響力のある論文である。後に書籍化される時に"The Mathematical Theory of Communication"に改題された。"A"を"The"にするという小さな変更だが、この論文の一般性を表現する重要な変更である(英語の冠詞も参照)。.

新しい!!: 情報理論と通信の数学的理論 · 続きを見る »

通信路容量

通信路容量(つうしんろようりょう)または伝送路容量(でんそうろようりょう、Channel capacity)は、電気工学、計算機科学や情報理論において通信路に対して定義される量であり、通信路を介して確実に伝送できる情報の量の上限である。 通信路容量という概念は、その値の具体的な評価を可能にする数学モデルと併せて、クロード・シャノンが確立した情報理論において定義された。通信路容量は、通信路の入力と出力との間の相互情報量を、入力分布に関して最大化したときの最大値によって与えられる。通信路符号化定理によれば、ある通信路の通信路容量は、任意に小さい誤り率を要請した場合にその通信路を介して単位時間当たりに伝送可能な情報量の上限に等しい。.

新しい!!: 情報理論と通信路容量 · 続きを見る »

MP3

MP3(エムピースリー、MPEG-1 Audio Layer-3)は、音響データを圧縮する技術の1つであり、それから作られる音声ファイルフォーマットでもある。ファイルの拡張子は.mp3」である。.

新しい!!: 情報理論とMP3 · 続きを見る »

ZIP (ファイルフォーマット)

ZIP(ジップ)は、データ圧縮やアーカイブのフォーマット。Windowsでよく使用されるフォーマットである。.

新しい!!: 情報理論とZIP (ファイルフォーマット) · 続きを見る »

暗号

暗号とは、セキュア通信の手法の種類で、第三者が通信文を見ても特別な知識なしでは読めないように変換する、というような手法をおおまかには指す。いわゆる「通信」(telecommunications)に限らず、記録媒体への保存などにも適用できる。.

新しい!!: 情報理論と暗号 · 続きを見る »

暗号理論

暗号理論(あんごうりろん)の記事では暗号、特に暗号学に関係する理論について扱う。:Category:暗号技術も参照。.

新しい!!: 情報理論と暗号理論 · 続きを見る »

暗号解読

暗号解読(あんごうかいどく、Cryptanalysis)とは、暗号を解読すること、あるいは解読法に関する研究を指す。 暗号の解読とは、暗号文を作成するのに用いた秘密情報(秘密の表記法や秘密の鍵など)にアクセスすることなく、暗号文を平文に戻すことである。これに対して、秘密情報を用いて暗号文を平文に戻すことは復号といい、解読と復号は区別することが多い。但し英語の"decryption"は両者の意味を持ち区別されない(以下、秘密情報のことを"鍵"と記す)。 他人に知られたくない情報を秘匿する手段として暗号が生まれるのと同時に、秘密を暴くための暗号解読も生まれたと考えられる。 研究としての暗号解読には、暗号 (Cipher) の解読だけではなく、デジタル署名の偽造、ハッシュ関数のコリジョン探索、あるいは暗号プロトコルの解読なども含まれる。.

新しい!!: 情報理論と暗号解読 · 続きを見る »

暗号文

暗号文(あんごうぶん、ciphertext)とは、暗号化アルゴリズムの出力で、判読不能な状態になった情報のことである。復号するともとの平文になる。.

新しい!!: 情報理論と暗号文 · 続きを見る »

投資

投資(とうし、investment)とは、主に経済において、将来的に資本(生産能力)を増加させるために、現在の資本を投じる活動を指す(現代において、生産能力の増加しない商業活動はこれに含まない)。広義では、自己研鑽や人間関係においても使われる。 どのような形態の投資も、不確実性(リスク)が伴う。一般に、投資による期待収益率が高い場合、不確実性も高まる。この一般則に反する取引が可能な場合、裁定取引が行われ、収益率の低下またはリスクの増大が起こる。.

新しい!!: 情報理論と投資 · 続きを見る »

携帯電話

折りたたみ式の携帯電話 スライド式の携帯電話 携帯電話(けいたいでんわ、mobile phone)は、有線電話系通信事業者による電話機を携帯する形の移動体通信システム、電気通信役務。端末を携帯あるいはケータイと略称することがある。 有線通信の通信線路(電話線等)に接続する基地局・端末の間で電波による無線通信を利用する。無線電話(無線機、トランシーバー)とは異なる。マルチチャネルアクセス無線技術の一種でもある。.

新しい!!: 情報理論と携帯電話 · 続きを見る »

条件付き確率

条件付き確率(じょうけんつきかくりつ、conditional probability)は、ある が起こるという条件下での別の事象 の確率のことをいう。条件付き確率は または のように表される。条件付き確率 はしばしば「 が起こったときの の(条件付き)確率」「条件 の下での の確率」などと表現される。なお英文においては通例、 または と表現される。.

新しい!!: 情報理論と条件付き確率 · 続きを見る »

機械学習

機械学習(きかいがくしゅう、machine learning)とは、人工知能における研究課題の一つで、人間が自然に行っている学習能力と同様の機能をコンピュータで実現しようとする技術・手法のことである。.

新しい!!: 情報理論と機械学習 · 続きを見る »

情報

情報(じょうほう、英語: information、ラテン語: informatio インフォルマーティオー)とは、.

新しい!!: 情報理論と情報 · 続きを見る »

情報学

情報学(じょうほうがく)という語が指す学術分野は、基本的には情報に関する分野であるが、歴史的な事情により、特に英語と日本語の対応があいまいである。もともとは図書館学の一部である、書誌情報の管理・検索を由来とする情報や知識を扱う分野がコンピュータの発展などで大きくなったため、図書館情報学(Library and Information Science)と呼ぶようになった分野があり、その場合の「情報学」は「Information Science」である(Library and Information Scienceという成語に気付かず、「図書館と情報科学」と訳されている場合がある)。一方、社会情報学(social informatics)やバイオインフォマティクス(生命情報学)等といった「~informatics」=「~情報学」と呼ばれている分野もあるが、その場合の「情報学」は「Informatics」である(インフォマティクスも参照)。.

新しい!!: 情報理論と情報学 · 続きを見る »

情報量

情報量(じょうほうりょう)やエントロピー(entropy)は、情報理論の概念で、あるできごと(事象)が起きた際、それがどれほど起こりにくいかを表す尺度である。ありふれたできごと(たとえば「風の音」)が起こったことを知ってもそれはたいした「情報」にはならないが、逆に珍しいできごと(たとえば「曲の演奏」)が起これば、それはより多くの「情報」を含んでいると考えられる。情報量はそのできごとが本質的にどの程度の情報を持つかの尺度であるとみなすこともできる。 なおここでいう「情報」とは、あくまでそのできごとの起こりにくさ(確率)だけによって決まる数学的な量でしかなく、個人・社会における有用性とは無関係である。たとえば「自分が宝くじに当たった」と「見知らぬAさんが宝くじに当たった」は、前者の方が有用な情報に見えるが、両者の情報量は全く同じである(宝くじが当たる確率は所与条件一定のもとでは誰でも同じであるため)。.

新しい!!: 情報理論と情報量 · 続きを見る »

情報検索

情報検索(じょうほうけんさく)とは、コンピュータを用いて大量のデータ群から目的に合致したものを取り出すこと。検索の対象となるデータには文書や画像、音声、映像、その他さまざまなメディアやその組み合わせとして記録されたデータなどが含まれる。インターネットの発達により検索はインターネットを介して行われることも多いが、ここでは情報を検索するためのコンピュータ側における仕組みを記述している。 情報検索に対するコンピュータ側における技術は情報を人間が直接管理するのに比べ、データの量的な制約やデータの取り扱いの一貫性を保つ困難さという制約を受けることなく、高速で安定なシステムにより利用者に適切なデータを提供する機能と位置付けることができる。.

新しい!!: 情報理論と情報検索 · 続きを見る »

情報源

情報源(じょうほうげん)には主に次の2つの意味がある。.

新しい!!: 情報理論と情報源 · 続きを見る »

擬似乱数

擬似乱数(ぎじらんすう、pseudorandom numbers)は、乱数列のように見えるが、実際には確定的な計算によって求めている擬似乱数列による乱数。擬似乱数列を生成する機器を擬似乱数列生成器、生成アルゴリズムを擬似乱数列生成法と呼ぶ。 真の乱数列は本来、規則性も再現性もないものであるため、本来は確定的な計算によって求めることはできない(例:サイコロを振る時、今までに出た目から次に出る目を予測するのは不可能)。一方、擬似乱数列は確定的な計算によって作るので、その数列は確定的であるうえ、生成法と内部状態が既知であれば、予測可能でもある。 ある擬似乱数列を、真の乱数列とみなして良いかを確実に決定することはできない。シミュレーション等の一般的な用途には、対象とする乱数列の統計的な性質が、使用対象とする目的に合致しているかどうかを判断する。これを検定と言い、各種の方法が提案されている。 しかし、特に暗号に使用する擬似乱数列については注意が必要であり、シミュレーション等には十分な擬似乱数列生成法であっても、暗号にそのまま使用できるとは限らない。暗号で使用する擬似乱数列については暗号論的擬似乱数の節および暗号論的擬似乱数生成器の記事を参照。.

新しい!!: 情報理論と擬似乱数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 情報理論と数学 · 続きを見る »

1924年

記載なし。

新しい!!: 情報理論と1924年 · 続きを見る »

1928年

記載なし。

新しい!!: 情報理論と1928年 · 続きを見る »

1940年

記載なし。

新しい!!: 情報理論と1940年 · 続きを見る »

1944年

記載なし。

新しい!!: 情報理論と1944年 · 続きを見る »

1948年

記載なし。

新しい!!: 情報理論と1948年 · 続きを見る »

2元対称通信路

2元対称通信路(英: Binary symmetric channel、BSC)とは、符号理論や情報理論でよく使われる通信路モデルである。このモデルでは、送信者が1つのビット(0 か 1)を送信しようとし、受信者は1つのビットを受信しようとする。ビットは通常は正しく転送されるが、ある小さな確率(crossover probability)で反転したビットが受信されることがある。解析が最も容易な通信路であることから、情報理論で頻繁に使われる。.

新しい!!: 情報理論と2元対称通信路 · 続きを見る »

2元消失通信路

2元消失通信路のモデル。消失確率は ''P'' 2元消失通信路(英: Binary Erasure Channel、BEC)とは、符号理論および情報理論で使われる典型的な伝送路モデルの1つである。このモデルでは、送信側が0または1のビットを送信したとき、受信側はそのビットを受信する可能性もあるし、そのビットを含まない(消失した)メッセージを受信する可能性もある。解析が容易であるため、情報理論でよく使われる。.

新しい!!: 情報理論と2元消失通信路 · 続きを見る »

ここにリダイレクトされます:

シャノンの情報理論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »