ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

LTIシステム理論

索引 LTIシステム理論

LTIシステム理論(LTI system theory)は、電気工学、特に電気回路、信号処理、制御理論といった分野で、線型時不変系(linear time-invariant system)に任意の入力信号を与えたときの応答を求める理論である。通常、独立変数は時間だが、空間(画像処理や場の古典論など)やその他の座標にも容易に適用可能である。そのため、線型並進不変(linear translation-invariant)という用語も使われる。離散時間(標本化)系では対応する概念として線型シフト不変(linear shift-invariant)がある。.

63 関係: 基底関数収束半径場の古典論媒介変数巡回行列伝達関数法位相微分法微分方程式信号処理応答関数ノルムラプラス変換ラウス・フルビッツの安定判別法ローパスフィルタディラックのデルタ関数デジタイズフーリエ変換フィルタバンク制御理論周波数特性周波数領域アナログ-デジタル変換回路インパルス応答ウィーナー=ヒンチンの定理コンデンサコイルシステム解析サンプリング周波数固有多項式固有値固有関数線型写像線型性線形システム論画像処理無限インパルス応答畳み込み遮断周波数非線形システム論複素数配列離散信号離散時間フーリエ変換電気工学電気回路Lp空間MIMORLC回路Sinc関数...Z変換折り返し雑音抵抗器標本化標本化定理正弦波振幅指数関数有理数有界入力有界出力安定性有限インパルス応答時不変系時間領域 インデックスを展開 (13 もっと) »

基底関数

基底関数(きていかんすう、basis function)とは、関数空間の基底ベクトルのことである。すなわち対象となる空間に属する全ての元(関数)は、この基底関数の線型結合で表される。 線形基底展開(linear basis expansion)とは、h_m(X) を基底関数として、下記の形で展開する事。 例えば、実数値関数のフーリエ変換(コサイン変換・サイン変換)ではコサイン関数もしくはサイン関数、ウェーブレット変換ではウェーブレット関数とスケーリング関数、スプライン曲線では区分的多項式が基底関数として用いられる。.

新しい!!: LTIシステム理論と基底関数 · 続きを見る »

収束半径

収束半径(しゅうそくはんけい、radius of convergence) とは、冪級数が収束する定義域を与える非負量(実数あるいは∞)である。 次の冪級数を考える。 ただし、中心 a や係数 cn は複素数(特に実数)とする。次の条件が成立するとき、r をこの級数の収束半径という。 であるとき、級数は収束し、 であるとき、級数は発散する。 もし、級数が全ての複素数 z に関して収束するならば、収束半径は ∞ となる。.

新しい!!: LTIシステム理論と収束半径 · 続きを見る »

場の古典論

場の古典論、もしくは古典場の理論(classical field theory)は、(物理的な)場がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。 物理的な場は各々の空間と時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル((covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気と重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。 物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。.

新しい!!: LTIシステム理論と場の古典論 · 続きを見る »

媒介変数

数学において媒介変数(ばいかいへんすう、パラメータ、パラメタ、parameter)とは、主たる変数(自変数)あるいは関数に対して補助的に用いられる変数のことである。なおこの意味でのパラメータは助変数(じょへんすう)とも呼び、また古くは径数(けいすう)とも訳された(後者はリー群の一径数部分群(1-パラメータ部分群)などに残る)。母数と呼ぶこともある。 媒介変数の役割にはいくつかあるがその主なものとして、主たる変数たちの間に陰に存在する関係を記述すること、あるいはいくつもの対象をひとまとまりのものとして扱うことなどがある。前者では関数の媒介変数表示とか陰関数などとよばれるもの、後者では集合族とか数列などが一つの例である。後者の意味を持つ媒介変数はしばしば文字の肩や斜め下に本文より少し小さな文字 (script style) で書かれ、添字 (index) と呼ばれる。.

新しい!!: LTIシステム理論と媒介変数 · 続きを見る »

巡回行列

巡回行列(じゅんかいぎょうれつ)または循環行列(じゅんかんぎょうれつ、Circulant matrix)は、テプリッツ行列の特殊なものであり、各行ベクトルが1つ前の行ベクトルの要素を1つずらして配置した形になっているものである。数値解析において、巡回行列は離散フーリエ変換によって対角化されるため、それを含む線型方程式系は高速フーリエ変換で高速に解くことができる。.

新しい!!: LTIシステム理論と巡回行列 · 続きを見る »

伝達関数法

伝達関数法(でんたつかんすうほう)とは、複素関数論(ラプラス変換など)を用いた制御系の解析法である。.

新しい!!: LTIシステム理論と伝達関数法 · 続きを見る »

位相

位相(いそう、)は、波動などの周期的な現象において、ひとつの周期中の位置を示す無次元量で、通常は角度(単位は「度」または「ラジアン」)で表される。 たとえば、時間領域における正弦波を とすると、(ωt + &alpha) のことを位相と言う。特に t.

新しい!!: LTIシステム理論と位相 · 続きを見る »

微分法

数学における微分法(びぶんほう、differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。.

新しい!!: LTIシステム理論と微分法 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: LTIシステム理論と微分方程式 · 続きを見る »

信号処理

信号処理(しんごうしょり、signal processing)とは、光学信号、音声信号、電磁気信号などの様々な信号を数学的に加工するための学問・技術である。 アナログ信号処理とデジタル信号処理に分けられる。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 さまざまな応.

新しい!!: LTIシステム理論と信号処理 · 続きを見る »

応答関数

応答関数(おうとうかんすう)とは、ある入力が来たときにそれに対応して決まった出力を出すような物理系があるとき、一定の規格を持つ時間の関数である入力に対して出力される時間の関数のことである。また以下に示すインパルス応答関数のことを応答関数と呼ぶ場合もある。電気回路、粘弾性体、誘電体、光学系、制御工学などの分野で用いられる。.

新しい!!: LTIシステム理論と応答関数 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: LTIシステム理論とノルム · 続きを見る »

ラプラス変換

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。.

新しい!!: LTIシステム理論とラプラス変換 · 続きを見る »

ラウス・フルビッツの安定判別法

ラウス・フルビッツの安定判別法(-あんていはんべつほう、Routh–Hurwitz stability criterion)は、連続時間の制御系が安定か不安定かを調べるための判別法の1つである。離散系におけるジュリーの安定判別法と対応する。.

新しい!!: LTIシステム理論とラウス・フルビッツの安定判別法 · 続きを見る »

ローパスフィルタ

想的なフィルタ回路の周波数特性(実際にはこのような周波数特性は取れない) ローパスフィルタ(、低域通過濾波器)とは、フィルタの一種で、なんらかの信号のうち、遮断周波数より低い周波数の成分はほとんど減衰させず、遮断周波数より高い周波数の成分を逓減させるフィルタである。ハイカットフィルタ等と呼ぶ場合もある。電気回路・電子回路では、フィルタ回路の一種である。 ローパスフィルタはハイパスフィルタと対称の関係にある。こういったフィルタには他にバンドパスフィルタとバンドストップフィルタがある。.

新しい!!: LTIシステム理論とローパスフィルタ · 続きを見る »

ディラックのデルタ関数

right 数学におけるディラックのデルタ関数(デルタかんすう、delta function)、制御工学におけるインパルス関数 (インパルスかんすう、impulse function) とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数は、デルタ超関数 (delta distribution) あるいは単にディラックデルタ (Dirac's delta) とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数 の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、 として実直線上常に一定の値 をとる関数をとり、デルタ関数をデルタ関数自身と との積であると見ることにより である。一方、積分値が の での値にしかよらないことから でなければならないが、その上で積分値が でない有限の値をとるためには が満たされなければならない。.

新しい!!: LTIシステム理論とディラックのデルタ関数 · 続きを見る »

デジタイズ

デジタイズ(digitize)は連続的な値を離散的な値に変換すること。その手法全般を含めてデジタイゼーション (digitaization)ともいう。離散値をデジタル値(digital value)といい、コンピュータを用いた手法では2値のビット(bit)を使った量子化が主流となっている。発展した情報理論を応用して、既存のオブジェクト・画像・信号(通常アナログ信号)などの情報をデジタイズすることを電子化 、またはデジタル化(digitalize)という。デジタイズの結果で得られた情報は、元の情報との対比として「デジタル表現」あるいは「デジタル形式」、画像であれば「デジタル画像」などと呼ぶ。 デジタル化された情報はビット量子化された単なる数列であるため、人間が知覚や認識ができるようにデータを画像としてディスプレイで表示させたり、文字列を割り当てて印字したり、電気信号へ変換してスピーカーから発音させたりなどの加工を行う。これをレンダリング(rendering)といい、レンダリングを行う仕組みや装置をレンダラー(renderer)という。 近年では、非デジタルの情報をデジタイズするだけでなく、情報そのものが作成された時点ですでにデジタル化されている場合が増えた。このような情報やコンテンツをボーン・デジタル (born-digital)という。書籍や出版では文章をワープロ、図版をデジタイザ (digitaizer)などで入力し、紙媒体への印刷を後から行う(デジタルファースト - digital-first、ペーパーレイター - paper-later) ことも一般化してきている。 以下ではデジタイズ、電子化の両方について述べる。.

新しい!!: LTIシステム理論とデジタイズ · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: LTIシステム理論とフーリエ変換 · 続きを見る »

フィルタバンク

フィルタバンク(英: Filter bank)とは、バンドパスフィルタのアレイであり、入力信号を複数のコンポーネントに分割する回路である。各コンポーネントは元の信号の特定の周波数帯域成分を含む。フィルタバンクの設計に当たっては、そのように分割したコンポーネントを再統合して元の信号が再現できるようにするのが好ましい。分割プロセスを分析(analysis)と呼び、統合プロセスを合成(synthesis)と呼ぶ。分析の出力はフィルタバンク内のフィルタの個数、すなわち部分帯域(サブバンド)の個数だけ存在し、サブバンド信号と呼ぶ。 フィルタバンクは信号を個々の周波数コンポーネントに分離する。多くの応用では、一部の周波数が他の周波数よりも重要であることが多いため、フィルタバンクが便利である。例えば、そのような重要な周波数は高解像度で符号化(デジタイズ)したい。それら周波数の小さな差異は重大であり、そのような差異を保持するような符号体系を使わなければならない。一方、重要でない周波数はそれほど正確である必要は無いので、比較的大雑把な符号体系を使い、細部が失われてもかまわない。 ヴォコーダーはフィルタバンクを使っており、入力信号(声など)のサブバンドの振幅を調べ、出力信号(ギターやシンセサイザーの出力)のサブバンドの振幅の制御に使う。これにより、入力信号の動的特性を出力信号に与える。 ダウンサンプリングやアップサンプリングとフィルタバンクを組み合わせたものは、ポリフェーズ行列で表される。ポリフェーズ行列が与えられると、そのフィルタバンクが完全再構成特性を持つかどうかが容易に分かる。.

新しい!!: LTIシステム理論とフィルタバンク · 続きを見る »

制御理論

制御理論(せいぎょりろん、control theory)とは、制御工学の一分野で、数理モデルを対象とした、主に数学を用いた制御に関係する理論である。いずれの理論も「モデル表現方法」「解析手法」「制御系設計手法」を与える。.

新しい!!: LTIシステム理論と制御理論 · 続きを見る »

周波数特性

周波数特性(しゅうはすうとくせい)とは、周波数と何らかの物理量との関係を表したものである。英語で"frequency response"となることからf特、f特性と呼ばれることもある。.

新しい!!: LTIシステム理論と周波数特性 · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: LTIシステム理論と周波数領域 · 続きを見る »

アナログ-デジタル変換回路

アナログ-デジタル変換回路(アナログ-デジタルへんかんかいろ、A/D変換回路)は、アナログ電気信号をデジタル電気信号に変換する電子回路である。A/Dコンバーター(ADC(エーディーシー)、)とも言う。 また、アナログ-デジタル変換(アナログ-デジタルへんかん、A/D変換)は、アナログ信号をデジタル信号に変換することをいう。 逆はデジタル-アナログ変換回路である。 変調方式の一種として見た場合は、A/D変換はパルス符号変調である。A/D変換のような操作をデジタイズということがある。 基本的なA/D変換の操作は、まずサンプリング周波数で入力を標本化し、それを量子化することでおこなう。標本化にともなう折り返し雑音は、重要な問題である。また、量子化にともなう量子化誤差による量子化雑音もある。.

新しい!!: LTIシステム理論とアナログ-デジタル変換回路 · 続きを見る »

インパルス応答

単純な音響システムのインパルス応答の例。上から、元のインパルス、高周波をブーストした場合、低周波をブーストした場合 インパルス応答()とは、インパルスと呼ばれる非常に短い信号を入力したときのシステムの出力である。インパルス反応とも。インパルスとは、時間的幅が無限小で高さが無限大のパルスである。実際のシステムではこのような信号は生成できないが、理想化としては有益な概念である。 LTIシステム(線形時不変系)と呼ばれるシステムは、そのインパルス応答によって完全に特徴付けられる。.

新しい!!: LTIシステム理論とインパルス応答 · 続きを見る »

ウィーナー=ヒンチンの定理

ウィーナー=ヒンチンの定理(Wiener–Khinchin theorem)は、広義定常確率過程のパワースペクトル密度が、対応する自己相関関数のフーリエ変換であることを示した定理。ヒンチン=コルモゴロフの定理(Khinchine-Kolmogorov theorem)とも。.

新しい!!: LTIシステム理論とウィーナー=ヒンチンの定理 · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: LTIシステム理論とコンデンサ · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: LTIシステム理論とコイル · 続きを見る »

システム解析

テム解析(システムかいせき)とは、コンピュータシステムの分析など、相互作用する物を対象に調査、分析を行うことである。要求分析やオペレーションズ・リサーチと密接な分野である。 「仮に行わなかった場合と比較して、より良い事業計画や意思決定へと導くために行われる、明示的に体系化された調査である。.

新しい!!: LTIシステム理論とシステム解析 · 続きを見る »

サンプリング周波数

ンプリング周波数(サンプリングしゅうはすう)は、音声等のアナログ波形を、デジタルデータにするために必要な処理である標本化(サンプリング)で、単位時間あたりに標本を採る頻度。単位はHzが一般に使われるが、sps (sample per second) を使うこともある。 サンプリングレート、サンプルレートとも呼ばれる。.

新しい!!: LTIシステム理論とサンプリング周波数 · 続きを見る »

固有多項式

線型代数学において、固有多項式(こゆうたこうしき、characteristic polynomial)あるいは特性多項式(とくせいたこうしき)とは、正方行列に付随して得られるある多項式を指し、その行列の固有値、行列式、トレース、最小多項式といった重要な量と関連している。相似な行列に対しては同じ固有多項式が定まる。 またグラフ理論において、グラフの固有多項式とは、グラフの隣接行列の固有多項式のことを指す。この多項式はグラフの不変量となっている。すなわち同型なグラフは同じ固有多項式を持つ。.

新しい!!: LTIシステム理論と固有多項式 · 続きを見る »

固有値

線型代数学において、線型変換の特徴を表す指標として固有値 (eigenvalue) や固有ベクトル (eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。.

新しい!!: LTIシステム理論と固有値 · 続きを見る »

固有関数

波動関数\left.

新しい!!: LTIシステム理論と固有関数 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: LTIシステム理論と線型写像 · 続きを見る »

線型性

線型性(せんけいせい、英語: linearity)あるいは線型、線形、線状、リニア(せんけい、英語: linear、ラテン語: linearis)とは、直線そのもの、または直線のようにまっすぐな図形やそれに似た性質をもつ対象および、そのような性質を保つ変換などを指して用いられている術語である。対義語は非線型性(英語:Non-Linearity)である。 英語の数学用語のlinear にあてる日本語訳としては、線型が本来の表記であると指摘されることもあるが、他にも線形、線状などといった表記もしばしば用いられている。また一次という表記・表現もしばしば用いられている。というのはlinearは、(多変数の)斉一次函数を指していると考えて間違っていない場合も多いためである。.

新しい!!: LTIシステム理論と線型性 · 続きを見る »

線形システム論

線形システム論(せんけいシステムろん、英語:linear system theory)は一階連立線形微分方程式で表された状態方程式を対象とした制御理論である。状態方程式が行列を用いて表現できることから、行列代数の多くの知見が適用され、現代制御論の多くの主要な結果が得られた。そのため、現代制御論と言えば線形システム論を指すことが多い。非線形システムであっても、平衡点近傍で線形近似したものを対象に制御系を設計することでうまく行くことが多く、応用範囲は非常に広い。.

新しい!!: LTIシステム理論と線形システム論 · 続きを見る »

画像処理

画像処理(がぞうしょり、Image processing)とは、電子工学的(主に情報工学的)に画像を処理して、別の画像に変形したり、画像から何らかの情報を取り出すために行われる処理全般を指す。まれにコンピュータグラフィックスによる描画全般を指して使われることがあるが、あまり適切ではない。歴史上CGアプリケーションはCADが先行し、そのころのCGは「図形処理」と呼ばれていて、実際図形処理情報センターという出版メディアも存在した。画像処理は本来CGとは無関係にテレビジョン技術の発達とともに、産業界では早くから注目を浴びていたテクノロジーであり、当初からビデオカメラの映像信号を直接アナログ-デジタル変換回路へ通すという方法が試みられた。その成果の一部(輪郭強調によるシャープネスなど)が現在のCGアプリケーションに生かされている。.

新しい!!: LTIシステム理論と画像処理 · 続きを見る »

無限インパルス応答

無限インパルス応答(むげんインパルスおうとう、Infinite impulse response, IIR)は、信号処理システムの属性の一種。この属性を持つシステムをIIRシステムと呼び、フィルタ回路の場合はIIRフィルタと呼ぶ。これらシステムは、無限長の時間においてゼロでない値を返すインパルス応答関数を持つ。対照的に、有限の時間についてのインパルス応答があるものを有限インパルス応答 (FIR) と呼ぶ。最も単純なアナログIIRフィルタとしてRCフィルタがあり、1つの抵抗器 (R) と1つのコンデンサ (C) で形成される。このフィルタは、RC時定数で決定される指数関数的インパルス応答の特性を持つ。 IIRフィルタはアナログフィルタだけでなく、デジタルフィルタとしても実装される。デジタルIIRフィルタでは、出力フィードバックは出力を定義する方程式から即座に求められる。FIRフィルタとは異なり、IIRフィルタ設計では、フィルタの出力が明確に定義されない「時刻ゼロ」の場合を注意深く扱う必要がある。 デジタルIIRフィルタの設計は、アナログIIRフィルタに基づいてなされてきた。多くの場合、デジタルIIRフィルタを設計するにあたってまずアナログIIRフィルタ(例えば、チェビシェフフィルタ、バターワースフィルタ、楕円フィルタ)を設計し、インパルス不変法や双一次変換といった離散化技法を適用してデジタルに変換する。 IIRフィルタは一般に、FIRフィルタに比較して高速で安価だが、バンドパスフィルタとしての性能や安定性が劣る。 IIRフィルタとしては、チェビシェフフィルタ、バターワースフィルタ、ベッセルフィルタなどがある。 以下では、デジタルシグナルプロセッサで実装できる離散時間IIRフィルタについて解説する。.

新しい!!: LTIシステム理論と無限インパルス応答 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: LTIシステム理論と畳み込み · 続きを見る »

遮断周波数

バターワースフィルタの周波数特性を表したボーデ図。遮断周波数が示してある。 遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超える周波数を持つ入力エネルギーは減衰または反射する。典型例として次のような定義がある。.

新しい!!: LTIシステム理論と遮断周波数 · 続きを見る »

非線形システム論

非線形システム論(ひせんけいしすてむろん、nonlinear system theory)とは、線形システムでないシステム、特に非線形の常微分方程式で表された系を対象とした制御理論であり、その対象は実に多岐に渡る。 その中でも、状態方程式が無限回微分可能であるものについて集中的に研究され、線形システム論の概念の拡張を初め、微分幾何学の概念を応用して多くの成果が出始めている。その流れは大きく分けて.

新しい!!: LTIシステム理論と非線形システム論 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: LTIシステム理論と複素数 · 続きを見る »

配列

この記事では、コンピュータ・プログラムにおいて配列(はいれつ、array)と呼ばれているデータ構造およびデータ型について説明する。計算科学方面ではベクトルという場合もある。また、リストも参照。一般に、添え字で個々の要素を区別する。.

新しい!!: LTIシステム理論と配列 · 続きを見る »

離散信号

離散信号(Discrete signal)もしくは離散時間信号(Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。 離散信号が均一に間隔を置かれた回に対応する系列である場合、それは関連する標本化周波数を持っている、標本化周波数はデータ系列ではわからないので、別のデータ項目として関連付けられるかもしれない。.

新しい!!: LTIシステム理論と離散信号 · 続きを見る »

離散時間フーリエ変換

離散時間フーリエ変換(英: Discrete-time Fourier transform、DTFT)はフーリエ変換の一種。したがって、通常時間領域の関数を周波数領域に変換する。ただし、DTFTでは元の関数は離散的でなければならない。そのような入力は連続関数の標本化によって生成される。 DTFTの周波数領域の表現は常に周期的関数である。したがって1つの周期に必要な情報が全て含まれるため、DTFTを「有限な」周波数領域への変換であるということもある。.

新しい!!: LTIシステム理論と離散時間フーリエ変換 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: LTIシステム理論と電気工学 · 続きを見る »

電気回路

電気回路(でんきかいろ、electric(al) circuit)は、抵抗器(抵抗)、インダクタ、コンデンサ、スイッチなどの電気的素子が電気伝導体でつながった電流のループ(回路)である。 電気回路は、電流の流れのための閉ループを持っていて、2つ以上の電気的素子が接続されている。 「回路」の語義的にはループになっているものだけであり、また電流は基本的にはその性質として、ループになっていなければ流れないものであるが、アンテナやアースのように開放端になっている部分も通例として含めている。対象が電子工学的(弱電)であるものは電子回路と言う。 例外的な分野の例ではあるが、主に数ギガヘルツの電磁波(電波)を伝播させる給電線である導波管をコンポーネント単位で、加工・細工するなどして、中空の導波管内を伝播する電磁波に直接作用させる形で構成した電気回路を立体回路と言う。これらは、基本的にループを構成せず、電気伝導体を介さない上記の電気回路の概念とは少し異なるものだが、電気回路の延長線上としてマイクロ波などの高周波領域であつかわれている。 導波管は金属の管であり、加工により通常の電気回路にあるような電気的素子である容量性(コンデンサ)、誘導性(インダクタ)、短絡(ショート)、抵抗減衰、分岐などを高周波領域で実現することが出来る。 これらは衛星通信やマイクロ波加熱、プラズマ生成など用途に応じて高出力(電力)で、かつ高周波の無線電波分野で用いられ、立体回路が構成される導波管は主に中空の方形導波管が多い。.

新しい!!: LTIシステム理論と電気回路 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: LTIシステム理論とLp空間 · 続きを見る »

MIMO

SISO, SIMO, MISO, MIMO MIMO (multiple-input and multiple-output、マイモ)とは、無線通信において、送信機と受信機の双方で複数のアンテナを使い、通信品質を向上させることをいう。スマートアンテナ技術の一つ。なお、"input" および "output" との言い方はアンテナを装備した機器を基準とするのではなく、信号を伝送する無線伝送路を基準としている(伝送路から見て入力となる送信側が "input"、伝送路から見て出力となる受信側が "output" となる)。 帯域幅や送信出力を強化しなくともデータのスループットやリンクできる距離を劇的に改善するということで、無線通信業界で注目されているテクノロジーである。周波数帯域の利用効率が高く(帯域幅1ヘルツ当たりのビットレートが高くなる)、リンクの信頼性または多様性を高めている(フェージングを低減)。以上からMIMOは、IEEE 802.11n (Wifi)、4G、3GPP Long Term Evolution、WiMAX、HSPA+といった最近の無線通信規格の重要な一部となっている。.

新しい!!: LTIシステム理論とMIMO · 続きを見る »

RLC回路

RLC回路(RLC circuit)は、抵抗器 (R)、コイル (L)、コンデンサ (C) を直列または並列に接続した電気回路である。LCR回路、共振回路、同調回路とも呼ぶ。この構成によって調和振動子を形成する。 RLC回路はラジオや通信工学や発振回路で様々な応用がある。周波数の全スペクトルから特定の信号の狭い帯域幅を選択するのに使うこともできる。例えば、アナログ式のAMやFMラジオではRLC回路を選局に使っている。典型的な構成では、可変コンデンサが選局用ダイヤルに繋がっていて、Cの値を変化させることで同調する周波数を変化させる。 RLC回路の任意の箇所の電圧や電流は2階微分方程式で表せる。.

新しい!!: LTIシステム理論とRLC回路 · 続きを見る »

Sinc関数

正規化sinc(青) と非正規化sinc(赤)。−6π ≤ ''x'' ≤ 6π sinc 関数(ジンクかんすう、シンクかんすう)は、正弦関数をその変数で割って得られる初等関数である。sinc(x), Sinc(x), sinc x などで表される。.

新しい!!: LTIシステム理論とSinc関数 · 続きを見る »

Z変換

関数解析学において、Z変換(ゼッドへんかん、Z-transform)とは、離散群上で定義される、ローラン展開をベースにした関数空間の間の線形作用素。関数変換。 Z変換は離散群上でのラプラス変換とも説明される。なお、Z変換という呼び方は、ラプラス変換のことを「S変換」と呼んでいるようなものであり、定義式中の遅延要素であるzに由来する名前である。.

新しい!!: LTIシステム理論とZ変換 · 続きを見る »

折り返し雑音

正しく標本化されたレンガの壁の画像 空間折り返しひずみ(モアレ)が生じている例 折り返し雑音(おりかえしざつおん、Folding noise)またはエイリアシング(Aliasing)とは、統計学や信号処理やコンピュータグラフィックスなどの分野において、異なる連続信号が標本化によって区別できなくなることをいう。エイリアス(aliases)は、この文脈では「偽信号」と訳される。信号が標本化され再生されたとき、元の信号とエイリアスとが重なって生じる歪みのことを折り返しひずみ(aliasing distortion)という。折り返しひずみのことをエイリアシングまたは折り返し雑音ということもある。 デジタル写真を見たとき、ディスプレイやプリンタ機器、あるいは我々の眼や脳で再生(補間)が行われている。再生された画像が本来の画像と違っている場合、そこには折り返しひずみが生じている。空間折り返しひずみ(spatial aliasing)の例として、レンガの壁をピクセル数の少ない画像にしたときに生じるモアレがある。このようなピクセル化に際しての問題を防ぐ技法をアンチエイリアスと呼ぶ。 ストロボ効果(時間折り返し雑音)は、ビデオや音響信号の標本化での重大な問題である。例えば、音楽には高周波成分が含まれていることがあるが、人間の耳には聞こえない。それを低すぎるサンプリング周波数で標本化し、デジタル-アナログ変換回路を通して音楽を再生した場合、高周波がアンダーサンプリングされて低周波の折り返し雑音になったものが聞こえることがある。従って、標本化の前にフィルタ回路を使って高周波成分を取り除くのが一般的である。 (必要に応じて)低周波成分を排除したときにも似たような状況が発生し、高周波成分が意図的にアンダーサンプリングされて低周波として再生される。デジタルチャネライザには、計算を効率化するためにこのような折り返し雑音を利用するものもある。低周波成分を全く含まない信号は、バンドパスあるいは非ベースバンドと呼ばれる。 ビデオや映画撮影では、フレームレートが有限であるためにストロボ効果が生じ、例えば車輪のスポークがゆっくり回転しているように見えたり、逆回転しているように見える。すなわち、折り返し雑音が回転の周波数を変えているのである。逆回転は負の周波数で説明できる。 ビデオカメラも含めて、標本化は一般に周期的に行われ、サンプリング周波数と呼ばれる性質が(時間的または空間的に)存在する。デジタルカメラでは、画面の単位長当たりの標本(ピクセル)数が存在する。音響信号はアナログ-デジタル変換回路でデジタイズされ、毎秒一定数の標本を生成する。特に標本化対象となっている信号自体に周期性があるとき、折り返し雑音の影響が強く生じることが多い。.

新しい!!: LTIシステム理論と折り返し雑音 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

新しい!!: LTIシステム理論と抵抗器 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: LTIシステム理論と標本化 · 続きを見る »

標本化定理

標本化定理(ひょうほんかていり、sampling theorem: サンプリング定理とも)はアナログ信号をデジタル信号へと変換する際に、どの程度の間隔で標本化(サンプリング)すればよいかを定量的に示す定理。情報理論の分野において非常に重要な定理の一つである。 標本化定理は1928年にハリー・ナイキストによって予想され、1949年にクロード・E・シャノンと日本の染谷勲によってそれぞれ独立に証明された。そのためナイキスト定理、ナイキスト・シャノンの定理、シャノン・染谷の定理とも呼ばれる。.

新しい!!: LTIシステム理論と標本化定理 · 続きを見る »

正弦波

正弦波(赤色)と余弦波(青色)の関数グラフ 正弦波(せいげんは、sine wave、sinusoidal wave)は、正弦関数として観測可能な周期的変化を示す波動のことである。その波形は正弦曲線(せいげんきょくせん、sine curve)もしくはシヌソイド (Sinusoid) と呼ばれ、数学、信号処理、電気工学およびその他の分野において重要な働きをする。.

新しい!!: LTIシステム理論と正弦波 · 続きを見る »

振幅

振幅(しんぷく、英語:amplitude)とは、波動の振動の大きさを表す非負のスカラー量である。波の1周期間での媒質内における最大変位量の絶対値で表される。 時としてこの距離は「最大振幅」と呼ばれ、他の振幅の概念とは区別される。特に電気工学で使用される二乗平均平方根 (RMS) 振幅がそれにあたる。最大振幅は、正弦波、矩形波、三角波といった相対的、周期的なはっきりした波動に使用される。1方向への周期的なパルスといった非相対的な波動では、最大振幅は曖昧になる。 非対称な波(一方向への周期的パルスなど)の場合には最大振幅は多義的となる。なぜなら、最大値と平均値との差をとるか、平均値と最小値との差をとるか、最大値と最小値との差の半分をとるか、によって得られる値が変わるためである。 複雑な波、特にノイズのように繰り返しのない信号の場合には、RMS振幅が一般に用いられる。一意に求まり、物理的意味を持つ量だからである。例えば、音や電磁波や電気信号として伝えられる仕事率の平均は、RMS振幅の2乗に比例する(最大振幅の平方根には一般的には比例しない)。 振幅を形式化するいくつかの方法が存在する。 簡単な波動方程式の場合 この場合、Aが波動の振幅である。 振幅の構成単位は波動の種類によって異なる。 弦の振動 (en:vibrating string) による波や、水などの媒質を伝わる波の場合、振幅とは変位である。 音波や音響信号では、振幅は便宜上音圧を指す。ただし粒子の移動(空気やスピーカーの振動板の動き)の振幅を指すこともある。振幅の常用対数を取ったものはデシベル (dB) と呼ばれ、振幅0の場合には -∞ dB となる。:en:Loudnessは振幅に関連があり、通常の音はindependently of amplitudeとして認識されるものの強度は音に関する最も分かり易い量である。 電磁放射では、振幅は波動の電場と対応する。振幅の2乗は波動の強度に比例する。 振幅は、連続波 (en:continuous wave) の場合は一定であり、一般には時刻と位置によって変化する。振幅の変化の形はエンベロープ (en:Envelope (waves)) と呼ばれる。.

新しい!!: LTIシステム理論と振幅 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: LTIシステム理論と指数関数 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: LTIシステム理論と有理数 · 続きを見る »

有界入力有界出力安定性

有界入力有界出力安定性(ゆうかいにゅうりょくゆうかいしゅつりょくあんていせい、Bounded-Input Bounded-Output Stability)またはBIBO安定性(BIBO Stability)は、信号処理や制御理論における信号やシステムの安定性の一形態である。システムがBIBO安定であるとは、有限な入力を与えられたとき、常に有限な出力となることをいう。 ある有限値 B > 0 があり、信号の振幅が B を決して超えない場合、その信号は有限(有界)である。すなわち、.

新しい!!: LTIシステム理論と有界入力有界出力安定性 · 続きを見る »

有限インパルス応答

有限インパルス応答(ゆうげんインパルスおうとう、finite impulse response, FIR)は、デジタルフィルタの一種である。クロネッカーのデルタ入力に対するフィルタの応答特性であるインパルス応答が「有限」であるとは、有限個の標本でゼロに安定することを意味する。対照的に無限インパルス応答フィルタでは、内部フィードバックがあり、無制限に応答し続ける可能性がある。N次FIRフィルタは、インパルスに対して N+1 個の標本まで応答が持続する。.

新しい!!: LTIシステム理論と有限インパルス応答 · 続きを見る »

時不変系

時不変系(じふへんけい、time-invariant system)は、その出力が時間に明示的に依存していない系である。入力信号 x によって出力 y が生成されるとき、時間をシフトさせた入力 t \mapsto x(t + \delta) では出力も t \mapsto y(t + \delta) となり、同じだけ時間をシフトしたものとなる。 形式的には、S をシフト作用素としたとき(S_\delta x(t).

新しい!!: LTIシステム理論と時不変系 · 続きを見る »

時間領域

時間領域(じかんりょういき、Time domain)とは、数学的関数、物理的信号、経済学やのデータ等の時間についての解析を意味する用語である。 時間領域には、信号あるいは関数値が連続的な実数で表される連続時間と、ある間隔で値が示される離散時間がある。オシロスコープは、実世界の信号を時間領域で視覚化するツールである。 時間領域のグラフは、時間によって信号がどう変化するかを示し、周波数領域のグラフは、それぞれの周波数帯域にどれだけの信号が存在するかを示す。.

新しい!!: LTIシステム理論と時間領域 · 続きを見る »

ここにリダイレクトされます:

線形時不変システム線形時不変系

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »