ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

音響信号処理

索引 音響信号処理

音響信号処理(おんきょうしんごうしょり、Acoustic signal processing)または音声信号処理(おんせいしんごうしょり、Audio signal processing)は、音または音を表す信号を処理することを指す。その表現形態はアナログの場合とデジタルの場合がある。 音響信号や音声信号は最終的に音として人間の耳で聴くものである。従って音響信号処理で最も重視されるのは、信号の中のどの部分が可聴であるかを数学的に解析することである。例えば、信号に様々な変換を施すときも、可聴域の制御が重視される。 信号のどの部分が聞こえて、どの部分が聞こえないかは、人間の聴覚系の生理だけで決まるものではなく、心理学的属性も大きく影響する。そのような面を解析する学問分野を音響心理学と呼ぶ。.

30 関係: 反響中波人間二進法信号 (電気工学)心理学テレビデジタルデジタル信号処理フィルタ回路アナログアナログ信号処理イコライザー (音響機器)コンプレッサー (音響機器)短波生理学音の大きさ音声圧縮音響心理学音響機器音波聴覚高速フーリエ変換量子化電圧標本化残響波形消音スピーカー

反響

反響(はんきょう).

新しい!!: 音響信号処理と反響 · 続きを見る »

中波

中波(ちゅうは、MF(Medium Frequency)またはMW(Mediumwave, Medium Wave))とは、300kHz - 3MHzの周波数の電波をいう。波長は100m- 1km、ヘクトメートル波とも呼ばれる。.

新しい!!: 音響信号処理と中波 · 続きを見る »

人間

人間(にんげん、英: human beingジーニアス和英辞典「人間」)とは、以下の概念を指す。.

新しい!!: 音響信号処理と人間 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

新しい!!: 音響信号処理と二進法 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: 音響信号処理と信号 (電気工学) · 続きを見る »

心理学

心理学(しんりがく、psychology)とは、心と行動の学問であり、科学的な手法によって研究される。そのアプローチとしては、行動主義のように行動や認知を客観的に観察しようとするものと、一方で、主観的な内面的な経験を理論的な基礎におくものとがある。研究法を質的研究と量的研究とに大別した場合、後者を主に学ぶ大学では、理数系として心理学を位置付けている例がある。 起源は哲学をルーツに置かれるが、近代の心理学としては、ドイツのヴィルヘルム・ヴントが「実験心理学の父」と呼ばれ、アメリカのウィリアム・ジェームズも「心理学の父」と呼ばれることもある。心理学の主な流れは、実験心理学の創設、精神分析学、行動主義心理学、人間性心理学、認知心理学、社会心理学、発達心理学である。また差異心理学は人格や知能、性などを統計的に研究する。 20世紀初頭には、無意識と幼児期の発達に関心を向けた精神分析学、学習理論をもとに行動へと関心を向けた行動主義心理学とが大きな勢力であったが、1950年代には行動主義は批判され認知革命がおこり、21世紀初頭において、認知的な心的過程に関心を向けた認知心理学が支配的な位置を占める。.

新しい!!: 音響信号処理と心理学 · 続きを見る »

テレビ

テレビは、テレビジョン及び「テレビ受像機(テレビジョンセット、television set)」の略語。一般には次のような文脈で用いられる。.

新しい!!: 音響信号処理とテレビ · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: 音響信号処理とデジタル · 続きを見る »

デジタル信号処理

デジタル信号処理(デジタルしんごうしょり、Digital Signal Processing、DSPと略されることもある)とは、デジタル化された信号すなわちデジタル信号の信号処理のことである。分野としては、これとアナログ信号処理は信号処理の一部である。この分野の大きな研究・応用領域に音響信号処理、デジタル画像処理、音声処理の三つがある。 目的は実世界の連続的なアナログ信号を計測し、選別することである。その第一段階は一般にアナログ-デジタル変換回路を使って信号をアナログからデジタルに変換することである。また、最終的な出力は別のアナログ信号であることが多く、そこではデジタル-アナログ変換回路が使用される。 処理可能な信号のサンプリングレートを稼ぐ目的に特化したプロセッサを使うことが多い。デジタルシグナルプロセッサという特化型のマイクロプロセッサが使われ、よくDSPと略される。このプロセッサは、典型的な汎用プロセッサに見られる多種多様な機能の内の幾つかを除外し、新たに高速乗算器、積和演算器を搭載している。従って、同程度のトランジスタ個数の汎用プロセッサと比較した場合、条件分岐等の処理では効率が悪化するが、信号を構成するサンプルデータは高効率で処理する事が可能になる。.

新しい!!: 音響信号処理とデジタル信号処理 · 続きを見る »

フィルタ回路

フィルタ回路(フィルタかいろ)とは、入力された電気信号に帯域制限をかけたり、特定の周波数成分を取り出すための電気回路(または電子回路)、つまりフィルタの役割をする電気回路のことを言う。濾波器(ろはき)ともいう。.

新しい!!: 音響信号処理とフィルタ回路 · 続きを見る »

アナログ

アナログ(analog、 アナローグ)は、連続した量(例えば時間)を他の連続した量(例えば角度)で表示すること。デジタルが連続量をとびとびな値(離散的な数値)として表現(標本化・量子化)することと対比される。時計や温度計などがその例である。エレクトロニクスの場合、情報を電圧・電流などの物理量で表すのがアナログ、数字で表すのがデジタルである。元の英語 analogy は、類似・相似を意味し、その元のギリシア語 αναλογία は「比例」を意味する。.

新しい!!: 音響信号処理とアナログ · 続きを見る »

アナログ信号処理

アナログ信号処理(アナログしんごうしょり、英: Analog signal processing)とは、アナログ信号についてアナログ的手段で行う信号処理。「アナログ」とは、ここでは数学的に表された連続値の集合を意味する。一方「デジタル」は、信号を表すのに一連の離散的な量を使う。アナログ量は一般に電子機器の部品にかかる電圧、電流、電荷で表される。そのような物理量の誤差やノイズは、それら物理量で表されている信号の誤差を結果として生じる。 アナログ信号処理の例として、スピーカーのクロスオーバーフィルタによる音高の分解、ステレオでの音量調節、テレビでの色調調節がある。典型的なアナログ信号処理部品として、コンデンサ、抵抗器、コイル、トランジスタなどがある。.

新しい!!: 音響信号処理とアナログ信号処理 · 続きを見る »

イコライザー (音響機器)

音響機器のイコライザー (Equalizer) とは、音声信号の周波数特性を変更する音響機器である。イコライザーを使って、音声信号の特定の周波数帯域 (倍音成分や高調波成分あるいはノイズ成分)を強調したり、逆に減少させる事ができ、全体的な音質の補正(平均化)や改善(音像の明確化など)、あるいは積極的な音作りに使用される。 単語本来の意味は「均一化(equalize)するもの」で、具体例としてマイクロフォンやスピーカーやレコーダー(場合によっては録音環境やリスニング環境全体を含む)の周波数特性の補正や、マスタリングにおける曲毎の音質的差異の平均化 といった例を挙げる事ができる。ただし現在では後述のように、周波数特性の均一化だけでなく、より積極的な音作りにも活用されている。.

新しい!!: 音響信号処理とイコライザー (音響機器) · 続きを見る »

コンプレッサー (音響機器)

ンプレッサー (compressor) は、エフェクターの一種である。音の強弱の差を縮小する効果がある。略してコンプと呼ばれることもある。.

新しい!!: 音響信号処理とコンプレッサー (音響機器) · 続きを見る »

短波

短波(たんぱ、HF (High Frequency) またはSW (Shortwave, Short Wave))とは、3 - 30MHzの周波数の電波をいう。 波長は10 - 100m、デカメートル波とも呼ばれる。.

新しい!!: 音響信号処理と短波 · 続きを見る »

生理学

生理学(せいりがく、physiology)は、生命現象を機能の側面から研究する生物学の一分野。フランスの医師、生理学者であるによりこの用語が初めて導入された。.

新しい!!: 音響信号処理と生理学 · 続きを見る »

ここでは音(おと)について解説する。.

新しい!!: 音響信号処理と音 · 続きを見る »

音の大きさ

音の大きさ(ラウドネス:loudness)とはヒトの聴覚が感じる音の強さであり感覚量(心理量)のひとつである。 音の大きさ(ラウドネス)の単位はsone(ソーン)であり、音圧レベルが40dBの1,000Hzの純音の音の大きさを1soneと定義している。ヒトの感じる音の大きさが2倍になれば2sone、半分になれば0.5soneと表される 日本音響学会編、音響用語辞典。 1,000Hzの純音の場合、音圧レベルが10dB上昇することにより、音の大きさ(ラウドネス)は約2倍となる。なお、1,000Hzから離れた純音の場合、音圧レベルの増大に伴う音の大きさ(ラウドネス)の上昇はこれよりも大きくなる。 同じ周波数の音であれば音圧が増大するほどヒトは音を大きく感じる。しかしヒトの聴覚の感度は周波数によって異なるため、同じ音圧であっても周波数が異なればヒトの感じる音の大きさは異なる。音の大きさが一定となる純音の音圧レベルを結んで得られる周波数と音圧レベルの関係を図示したものが等ラウドネス曲線 ISO 226である。 等ラウドネス曲線には、音の大きさのレベル(ラウドネスレベル:loudness level)が記載されている。音の大きさのレベル(ラウドネスレベル)は、同じ大きさに聞こえる1,000Hzの純音の音圧レベルとして定義されており、単位はphon(フォン)である。かつて騒音計で計測される騒音レベルの単位として、ホンが用いられていたが、ホンとフォンとは異なる単位である。なお、騒音レベルの単位は、計量法の変更に伴い、単位はdB(デシベル)に変更されている。.

新しい!!: 音響信号処理と音の大きさ · 続きを見る »

音声圧縮

音声圧縮あるいはオーディオ圧縮(英語: audio compression)とは、音声ファイルのサイズを削減する目的で設計されたデータ圧縮の一種である。音声圧縮アルゴリズムは、「オーディオコーデック」として実装される。汎用データ圧縮アルゴリズムは音声データには適さず、オリジナルの87%以下に圧縮できることがほとんどなく、リアルタイムの再生にも適さない。そのため、音声向けの可逆圧縮アルゴリズムや非可逆圧縮アルゴリズムが生み出された。非可逆圧縮アルゴリズムは圧縮率が非常に高く、一般の音響機器によく使われている。 可逆でも非可逆でも、情報の冗長性を削減するために、符号化手法、パターン認識、線形予測などの手法を駆使して、圧縮を行う。音声品質は若干落ちるが、多くのユーザーはその違いに気づかず、必要なデータ量は大幅に削減される。例えば、1枚のコンパクトディスクで、高品質な音楽データなら1時間しか記録できないが、可逆圧縮すれば2時間ぶんを記録でき、MP3のような非可逆圧縮なら7時間ぶんの音楽を記録できる。.

新しい!!: 音響信号処理と音声圧縮 · 続きを見る »

音響心理学

音響心理学(おんきょうしんりがく、psychoacoustics)は、人間の聴覚に関する学問である。音響学の物理的パラメータに関連した心理学的学問でもある。聴覚心理学 (auditory psychology) とも。.

新しい!!: 音響信号処理と音響心理学 · 続きを見る »

音響機器

音響機器(おんきょうきき)とは、音を録音再生したり変換したりするための機器のことをいう。また、オーディオ機器、単にオーディオという場合もある。 この項目は、音響機器に関連する項目の一覧である。あわせて音響技術および音響機器メーカーについても収録する。.

新しい!!: 音響信号処理と音響機器 · 続きを見る »

音波

音波(おんぱ、acoustic wave)とは、狭義には人間や動物の可聴周波数である空中を伝播する弾性波をさす。広義では、気体、液体、固体を問わず、弾性体を伝播するあらゆる弾性波の総称を指す。狭義の音波をヒトなどの生物が聴覚器官によって捉えると音として認識する。 人間の可聴周波数より高い周波数の弾性波を超音波、低い周波数の弾性波を超低周波音と呼ぶ。 本項では主に物理学的な側面を説明する。.

新しい!!: 音響信号処理と音波 · 続きを見る »

聴覚

聴覚(ちょうかく)とは、一定範囲の周波数の音波を感じて生じる感覚のこと広辞苑 第5版 p.1738。.

新しい!!: 音響信号処理と聴覚 · 続きを見る »

高速フーリエ変換

速フーリエ変換(こうそくフーリエへんかん、fast Fourier transform, FFT)は、離散フーリエ変換(discrete Fourier transform, DFT)を計算機上で高速に計算するアルゴリズムである。高速フーリエ変換の逆変換を逆高速フーリエ変換(inverse fast Fourier transform, IFFT)と呼ぶ。.

新しい!!: 音響信号処理と高速フーリエ変換 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: 音響信号処理と量子化 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 音響信号処理と電圧 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: 音響信号処理と標本化 · 続きを見る »

残響

残響(ざんきょう、reverberation)は、音源が発音を停止した後も音が響いて聞こえる現象である。.

新しい!!: 音響信号処理と残響 · 続きを見る »

波形

波形(はけい、英語:waveform)とは、.

新しい!!: 音響信号処理と波形 · 続きを見る »

消音スピーカー

消音スピーカー(しょうおんスピーカー)とは騒音公害での対処法のひとつである。日本の放送機器メーカーTOAが、世界で初めて開発した。 騒音源の音を拾い、それと逆相になるような音を作りスピーカーから出力し空間で打ち消し合わせ「騒音レベルを下げる」ことを目的としたもの。理論自体はかなり昔から証明されてきたが、デジタルシグナルプロセッサの高速化により製品化が可能になった。.

新しい!!: 音響信号処理と消音スピーカー · 続きを見る »

ここにリダイレクトされます:

音声信号処理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »