ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アナログ-デジタル変換回路

索引 アナログ-デジタル変換回路

アナログ-デジタル変換回路(アナログ-デジタルへんかんかいろ、A/D変換回路)は、アナログ電気信号をデジタル電気信号に変換する電子回路である。A/Dコンバーター(ADC(エーディーシー)、)とも言う。 また、アナログ-デジタル変換(アナログ-デジタルへんかん、A/D変換)は、アナログ信号をデジタル信号に変換することをいう。 逆はデジタル-アナログ変換回路である。 変調方式の一種として見た場合は、A/D変換はパルス符号変調である。A/D変換のような操作をデジタイズということがある。 基本的なA/D変換の操作は、まずサンプリング周波数で入力を標本化し、それを量子化することでおこなう。標本化にともなう折り返し雑音は、重要な問題である。また、量子化にともなう量子化誤差による量子化雑音もある。.

30 関係: のこぎり波変調方式信号 (電気工学)ナイキスト周波数マルチバイブレータハイパスフィルタローパスフィルタパルス符号変調パイプライン処理ディザデジタルデジタル-アナログ変換回路デジタイズフィードバックアナログアンチエイリアスカウンタ (電子回路)コンパレータコンデンサジッターサンプリング周波数回路計矩形波積分回路量子化量子化誤差電子回路ΔΣ変調折り返し雑音標本化

のこぎり波

のこぎり波(鋸歯状波(きょしじょうは)、sawtooth wave)は、非正弦波的な基本的波形の一種で、波形の見た目が鋸の歯のように見えることからそのように呼ばれる。 簡単に説明すれば、のこぎり波の波形は時間と共に上がっていき、急降下するということを繰り返す。もちろん、逆に徐々に下がっていって急上昇することを繰り返すのこぎり波もある。後者を「逆のこぎり波(reverse sawtooth wave、inverse sawtooth wave)」と呼ぶ。どちらの波形であってもパラメータを調整すると同じ音に聞こえる。 次の時間 t についての床関数に基づいた区分線形関数は、周期が 1 ののこぎり波の例である。 より汎用的な形式として、次の式は振幅が -1 から 1 で、周期が a ののこぎり波を表している。 こののこぎり波関数は正弦関数と同じ位相である。 のこぎり波を音として聞いてみると、猛々しくハッキリしていて、周波数成分としては基本周波数の偶数倍音と奇数倍音の両方が含まれている。全ての整数倍音を含んでいるため、減算方式のシンセサイザーで、他の音を合成するベースとして使うのに便利である。 のこぎり波は正弦波を合成することで近似することができる。のこぎり波に収束するフーリエ級数を以下に示す。 デジタルシンセサイザーの場合、この級数の k について、ナイキスト周波数(サンプリング周波数の半分)未満の倍音までを考慮すればよい。この合成は高速フーリエ変換を使って計算するのが効率的である。波形をデジタル的にではなく帯域制限のない形で y.

新しい!!: アナログ-デジタル変換回路とのこぎり波 · 続きを見る »

変調方式

変調方式(へんちょうほうしき)の記事では、電気通信などにおいて「搬送」と呼ばれる通信方式、すなわち、搬送波を媒体としてその振幅や周波数や位相などを変動させる(変調する)ことによる方式における、各種の方式について解説する。 歴史的に先に現れた有線の電信や電話では、当初は、信号電力の断続や、音波をそのまま電気信号としたものを通信していた。 それに対し無線通信では、「搬送波」と呼ばれる基本信号(素朴には正弦波であることを理想とする)の電波を発生し、それを変調することにより「情報を乗せる」必要がある。これは20世紀の始め頃、三極管に始まる各種の増幅作用を持つ真空管の発明により始まった、エレクトロニクスにより実用的に可能になったものである。有線においても同じ頃に、多重化による設備(電話ケーブル)の有効利用などを目的とし、無線と同様にして搬送波を変調する方式の通信が始まった。現代の、媒体として光ケーブルを用いる光通信でも、搬送波が電気信号でなく光になる以外は同様である。 通信以外にも、磁気記録などのような物理メディアの特性が非線形な場合などにも、高周波の変調によって記録する、といった手法は使われる。例えばビデオテープでは5MHz前後のキャリアに周波数変調でNTSCを記録している。 以上のような伝送方式に対して、音声などを原信号のまま(ベースバンドで)伝送する方法をベースバンド伝送と呼んでいる。 またベースバンド伝送の一種として、ディジタル通信では、0と1の列を、どのようなLとHの列による電気信号とするか、という方式が目的などに応じて各種あり、それらを伝送路符号(line code)という。さらにそれをディジタル変調に乗せることもある。.

新しい!!: アナログ-デジタル変換回路と変調方式 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: アナログ-デジタル変換回路と信号 (電気工学) · 続きを見る »

ナイキスト周波数

ナイキスト周波数(ナイキストしゅうはすう、Nyquist frequency)とは、ある信号を標本化するとき、そのサンプリング周波数 fs の 1/2 の周波数を言う。ナイキスト周波数を超える周波数成分は標本化した際に折り返し (エイリアシングとも言う) という現象を生じ、再生時に元の信号として忠実には再現されない。ハリー・ナイキストにより1928年に予想されたこの再現限界の定理は、標本化定理と呼ばれる。.

新しい!!: アナログ-デジタル変換回路とナイキスト周波数 · 続きを見る »

マルチバイブレータ

マルチバイブレータ(multivibrator)は、発振回路、タイマー、ラッチ、フリップフロップなど様々な単純な2状態系を実装するのに使われる電子回路である。2つの増幅用部品(トランジスタ、真空管、その他)を抵抗とコンデンサでたすきがけ形に接続することを特徴とする。最も典型的な形式は無安定または発振型で、矩形波を生成する。矩形波には倍音が多く含まれているため、マルチバイブレータと呼ばれるようになった。最初のマルチバイブレータは真空管を使った回路で、William Eccles と F.W. Jordan が1919年に考案した。 マルチバイブレータ回路は3種類に分類される。; 非安定、無安定 (astable); 単安定 (monostable); 双安定 (bistable) 最も単純なマルチバイブレータ回路は、トランジスタを2個たすきがけに接続し、抵抗器やコンデンサの回路で不安定な状態となる時間を設定することで、様々な種類の安定性を実装できる。マルチバイブレータは、矩形波や一定時間のインターバルが必要とされる様々な用途に応用されている。回路が単純であるほど様々な要因に影響されやすくなり、タイミングが不正確になる傾向があるため、高精度が要求される用途では使われない。 集積回路が低価格化する以前は、複数のマルチバイブレータを接続して分周回路を構成するのに使われていた。基準周波数の1/2から1/10の周波数の非安定マルチバイブレータは、基準周波数と正確に同期する。この技法は初期の電子オルガンで、オクターブの異なる同じ音を正確に調整するのによく用いられた。また、初期のテレビでも、ビデオ信号などのライン周波数とフレーム周波数の同期をパルスで保つのに使われた。.

新しい!!: アナログ-デジタル変換回路とマルチバイブレータ · 続きを見る »

ハイパスフィルタ

想的なフィルタ回路の周波数特性(実際にはこのような周波数特性は取れない) alt.

新しい!!: アナログ-デジタル変換回路とハイパスフィルタ · 続きを見る »

ローパスフィルタ

想的なフィルタ回路の周波数特性(実際にはこのような周波数特性は取れない) ローパスフィルタ(、低域通過濾波器)とは、フィルタの一種で、なんらかの信号のうち、遮断周波数より低い周波数の成分はほとんど減衰させず、遮断周波数より高い周波数の成分を逓減させるフィルタである。ハイカットフィルタ等と呼ぶ場合もある。電気回路・電子回路では、フィルタ回路の一種である。 ローパスフィルタはハイパスフィルタと対称の関係にある。こういったフィルタには他にバンドパスフィルタとバンドストップフィルタがある。.

新しい!!: アナログ-デジタル変換回路とローパスフィルタ · 続きを見る »

パルス符号変調

4ビットPCMにおける信号の標本化と量子化(赤) パルス符号変調(パルスふごうへんちょう、PCM、pulse code modulation)とは音声などのアナログ信号をパルス列に変換するパルス変調の一つである。.

新しい!!: アナログ-デジタル変換回路とパルス符号変調 · 続きを見る »

パイプライン処理

パイプライン処理(パイプラインしょり)とは、コンピュータ等において、処理要素を直列に連結し、ある要素の出力が次の要素の入力となるようにして、並行(必ずしも並列とは限らない)に処理させるという利用技術である。要素間になんらかのバッファを置くことが多い。 コンピュータ関連のパイプラインには、次のようなものがある。; 命令パイプライン; グラフィックスパイプライン; ソフトウェアパイプライン; パイプ (コンピュータ).

新しい!!: アナログ-デジタル変換回路とパイプライン処理 · 続きを見る »

ディザ

ディザ(Dither)とは、量子化誤差(端数)を、単純に丸めるのではなく、全体の量子化誤差が最小化するよう確率を調整して切り捨てまたは切り上げのどちらかをランダムにおこなうためによるゆらぎのことである。そのような一種のノイズ的データを追加する作業および技法はディザリング(Dithering)またはディザ法と呼ばれる。誤差を周囲のデータに拡散する手法をも含めて言うこともある。ディザリングは、デジタル音響やデジタル動画のデータを処理する際に普通に行われ、CDの制作でも最終段階でよく行われている。.

新しい!!: アナログ-デジタル変換回路とディザ · 続きを見る »

デジタル

デジタル(digital, 。ディジタル)量とは、離散量(とびとびの値しかない量)のこと。連続量を表すアナログと反対の概念である。工業的には、状態を示す量を量子化・離散化して処理(取得、蓄積、加工、伝送など)を行う方式のことである。 計数(けいすう)という訳語もある。古い学術文献や通商産業省の文書などで使われている。digitalの語源はラテン語の「指 (digitus)」であり、数を指で数えるところから離散的な数を意味するようになった。.

新しい!!: アナログ-デジタル変換回路とデジタル · 続きを見る »

デジタル-アナログ変換回路

デジタル-アナログ変換回路(デジタル-アナログへんかんかいろ、D/A変換回路 digital to analog converter)は、デジタル電気信号をアナログ電気信号に変換する電子回路である。D/Aコンバーター(DAC(ダック))とも呼ばれる。 また、デジタル-アナログ変換(デジタル-アナログへんかん、D/A変換)は、デジタル信号をアナログ信号に変換することをいう。 逆はアナログ-デジタル変換回路である。集積回路化されている。.

新しい!!: アナログ-デジタル変換回路とデジタル-アナログ変換回路 · 続きを見る »

デジタイズ

デジタイズ(digitize)は連続的な値を離散的な値に変換すること。その手法全般を含めてデジタイゼーション (digitaization)ともいう。離散値をデジタル値(digital value)といい、コンピュータを用いた手法では2値のビット(bit)を使った量子化が主流となっている。発展した情報理論を応用して、既存のオブジェクト・画像・信号(通常アナログ信号)などの情報をデジタイズすることを電子化 、またはデジタル化(digitalize)という。デジタイズの結果で得られた情報は、元の情報との対比として「デジタル表現」あるいは「デジタル形式」、画像であれば「デジタル画像」などと呼ぶ。 デジタル化された情報はビット量子化された単なる数列であるため、人間が知覚や認識ができるようにデータを画像としてディスプレイで表示させたり、文字列を割り当てて印字したり、電気信号へ変換してスピーカーから発音させたりなどの加工を行う。これをレンダリング(rendering)といい、レンダリングを行う仕組みや装置をレンダラー(renderer)という。 近年では、非デジタルの情報をデジタイズするだけでなく、情報そのものが作成された時点ですでにデジタル化されている場合が増えた。このような情報やコンテンツをボーン・デジタル (born-digital)という。書籍や出版では文章をワープロ、図版をデジタイザ (digitaizer)などで入力し、紙媒体への印刷を後から行う(デジタルファースト - digital-first、ペーパーレイター - paper-later) ことも一般化してきている。 以下ではデジタイズ、電子化の両方について述べる。.

新しい!!: アナログ-デジタル変換回路とデジタイズ · 続きを見る »

フィードバック

フィードバック(feedback)とは、もともと「帰還」と訳され、ある系の出力(結果)を入力(原因)側に戻す操作のこと。古くは調速機(ガバナ)の仕組みが、意識的な利用は1927年のw:Harold Stephen Blackによる負帰還増幅回路の発明に始まり、サイバネティックスによって広められた。システムの振る舞いを説明する為の基本原理として、エレクトロニクスの分野で増幅器の特性の改善、発振・演算回路及び自動制御回路などに広く利用されているのみならず、制御システムのような機械分野や生物分野、経済分野などにも広く適用例がある。自己相似を作り出す過程であり、それゆえに予測不可能な結果をもたらす場合もある。.

新しい!!: アナログ-デジタル変換回路とフィードバック · 続きを見る »

アナログ

アナログ(analog、 アナローグ)は、連続した量(例えば時間)を他の連続した量(例えば角度)で表示すること。デジタルが連続量をとびとびな値(離散的な数値)として表現(標本化・量子化)することと対比される。時計や温度計などがその例である。エレクトロニクスの場合、情報を電圧・電流などの物理量で表すのがアナログ、数字で表すのがデジタルである。元の英語 analogy は、類似・相似を意味し、その元のギリシア語 αναλογία は「比例」を意味する。.

新しい!!: アナログ-デジタル変換回路とアナログ · 続きを見る »

アンチエイリアス

アンチエイリアス (anti-aliasing) は、サンプリングやダウンサンプリングでエイリアシングが起きないようにするための処理。画像に対して行なうと、ジャギー(ピクセルのギザギザ)が目立たなくなる。.

新しい!!: アナログ-デジタル変換回路とアンチエイリアス · 続きを見る »

カウンタ (電子回路)

ウンタ (counter)とは、クロックパルスを数えることにより数値の処理を行うための論理回路(デジタル回路)である。カウンタにより計数された2進数、あるいは2進化10進数を、デコーダを通して7セグメントLEDなどで表示される数字に変換することにより、人間が認識できる情報となる。また、情報をエンコーダにより2進数などに変換することで、カウンタによる計数処理を行うことができる。 水晶振動子を用いた発振回路によって発生された非常に高い周波数(例えば215.

新しい!!: アナログ-デジタル変換回路とカウンタ (電子回路) · 続きを見る »

コンパレータ

電子工学における コンパレータ (comparator) とは、二つの電圧または電流を比較し、どちらが大きいかで出力が切り替わる素子である。より一般に、二つのデータを比較する装置にも使われる用語である。 次の図のように、負帰還をかけていない標準的なオペアンプをコンパレータとして使うことができる。 非反転入力 (V+) の電圧が反転入力 (V&minus) よりも高ければ、(オペアンプは高利得なので)出力は正の最大電圧に達する。非反転入力 (V+) が反転入力 (V-) よりも低くなれば、出力は負の最大電圧に達する。出力電圧は供給電圧で制限されるので、バランスの取れている正負電源(±VS)がオペアンプに供給されている場合は、次のような動作になる。 ここで sgn(x) は符号関数である。一般的には、正負の供給電圧 VS の絶対値は異なっていることが多い。 入力値を同じにするのは、実際には非常に難しい。入力が変化してから出力が変化するまでの速度(オペアンプではスルー・レートと呼ばれる)は、通常は 10ns から 100ns 程度だが、数十μs まで遅くなることもある。 専用の電圧コンパレータチップ、たとえば LM393 は、TTL や CMOS のデジタルロジックに直接接続できるように設計されている。出力は2値で、現実世界の信号をデジタル回路に接続するのにも使われる(A/Dコンバータを参照)。LM393 ではオープンコレクタ出力で実現している。反転入力が高いとき、コンパレータの出力は負電源に接続される。非反転入力が高いときは、出力は浮いている(グランドからはハイ・インピーダンス)。電源に 0 と +5V を供給してプルアップ抵抗を使うと出力は 0 か +5V となり、TTL と接続できる。 専用の電圧コンパレータは、汎用オペアンプをコンパレータとして使ったものよりも一般に高速である。また、正確な内部基準電圧や調整可能なヒステリシスなどの機能が付加されていることもある。 現実のコンパレータの入力が絶縁されていないことからわかるように、コンパレータを「差動(バイポーラ)入力とロジック(0/Vcc)出力を持つ素子である」と考えるのは間違っている。これは、電圧の差が出力に影響するだけでなく、それぞれの電圧が電源電圧の範囲を超えてはならないことを意味している(VS− ≤ V+,V− ≤ VS+)。TTL/CMOS 論理出力のコンパレータの場合は、負電圧の入力は許されない(0 ≤ V+,V− ≤ Vcc)。 ノイズの多い信号をしきい値と比較する場合、信号がしきい値をまたぐ時にコンパレータの状態が激しく変化することもある。これが望ましくなければ、入出力にヒステリシスを持たせたヒステリシスコンパレータ(シュミットトリガとも呼ばれる)を構成することにより、きれいな出力信号を得られる。 ---- この記事は w:Federal Standard 1037C(en) に基づく。 こんはれた こんはれた こんはれた.

新しい!!: アナログ-デジタル変換回路とコンパレータ · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: アナログ-デジタル変換回路とコンデンサ · 続きを見る »

ジッター

ッター (Jitter) とは、電気通信などの分野において、時間軸方向での信号波形の揺らぎの事であり、その揺らぎによって生じる映像等の乱れのことも指す。「いらいらする」という意味の英語"Jitter"に由来する。.

新しい!!: アナログ-デジタル変換回路とジッター · 続きを見る »

サンプリング周波数

ンプリング周波数(サンプリングしゅうはすう)は、音声等のアナログ波形を、デジタルデータにするために必要な処理である標本化(サンプリング)で、単位時間あたりに標本を採る頻度。単位はHzが一般に使われるが、sps (sample per second) を使うこともある。 サンプリングレート、サンプルレートとも呼ばれる。.

新しい!!: アナログ-デジタル変換回路とサンプリング周波数 · 続きを見る »

回路計

回路計(かいろけい、英語:multimeter マルチメーター)とは、電圧・電流等々の量・値を、複数の機能を切り替えて測定・計測できる計測機器のこと。回路試験器(かいろしけんき)ともいう。.

新しい!!: アナログ-デジタル変換回路と回路計 · 続きを見る »

矩形波

三角波、のこぎり波の波形 矩形波(くけいは、Square wave)とは非正弦波形の基本的な一種であり、電子工学や信号処理の分野で広く使われている。理想的な矩形波は2レベルの間を規則的かつ瞬間的に変化するが、その2レベルにはゼロが含まれることも含まれないこともある。方形波とも呼ばれる。.

新しい!!: アナログ-デジタル変換回路と矩形波 · 続きを見る »

積分回路

積分回路は、電気回路の一種で、入力電圧の波形の時間積分に等しい波形の電圧を出力する回路である。コンデンサ両端の電圧は、流れ込んだ電流の積分(電荷の総量)に比例するという事実を利用している。.

新しい!!: アナログ-デジタル変換回路と積分回路 · 続きを見る »

量子化

量子化(りょうしか、quantization)とは、ある物理量が量子の整数倍になること、あるいは整数倍にする処理のこと。.

新しい!!: アナログ-デジタル変換回路と量子化 · 続きを見る »

量子化誤差

量子化誤差(りょうしかごさ、Quantization Error)または量子化歪み(りょうしかひずみ、Quantization Distortion)とは、信号をアナログからデジタルに変換する際に生じる誤差。 アナログ信号からデジタル信号への変換を行う際、誤差は避けられない。アナログ信号は連続的で無限の正確さを伴うが、デジタル信号の正確さは量子化の解像度やアナログ-デジタル変換回路のビット数に依存する。実際のアナログ値と変換時に「丸め」られた近似的デジタル値の差を量子化誤差と呼ぶ。また、誤差信号は確率過程のランダム信号を加えて量子化雑音(Quantization Noise)と呼ばれる。.

新しい!!: アナログ-デジタル変換回路と量子化誤差 · 続きを見る »

電子回路

I/Oが1つのチップに集積されている。 プリント基板を使った電子回路 電子回路(でんしかいろ、electronic circuit)は、電気回路の一種であるが、その対象が専ら電子工学的(弱電)であるものを特に指して言う。構成要素は良導体による配線の他、主として電子部品である。組み合わせにより、単純なものから複雑なものまで様々な動作が可能である。信号を増幅したり、計算したり、データを転送したりといったことができる。回路は個々の電子部品を電気伝導体のワイヤで相互接続することで構築できるが、近年では一般にプリント基板にフォトリソグラフィで配線を作り、そこにはんだで電子部品を固定することで回路を構築する。 集積回路では、ケイ素などの半導体でできた基板上に素子と配線を形成する。集積回路も電子回路の一種だが、この記事ではもっぱら集積回路は不可分な一個部品として扱う。集積回路の内部の電子回路については集積回路の記事を参照のこと。 プリント基板は試作には向いていないため、新規設計の評価にはブレッドボード、ユニバーサル基板などを一般に使用する。それらは開発途中で素早く回路に変更を加えることができる。 プリント基板が多用されるようになる以前は、ワイヤラッピング配線や、ラグ板などを利用した空中配線により、電子回路は作られていた。 大きくアナログ回路・デジタル回路(論理回路)・アナログとデジタルの混合信号回路(アナログ-デジタル変換回路、デジタル-アナログ変換回路など)に分けられる。取り扱う周波数により、低周波回路・高周波回路という分け方をする場合もある。.

新しい!!: アナログ-デジタル変換回路と電子回路 · 続きを見る »

ΔΣ変調

ΔΣ変調(デルタシグマへんちょう)とは、音声などの信号の、パルス変調の方式の一種である、パルス密度(PDM)ないし幅(PWM)による方式そのもの、ないしその実用的な構成法である、積分器とフィードバックとコンパレータといった要素から成る方式を指す。あるいは、PCMのAD/DA変換においてそのような方式によって、高速で標本化した量子化雑音のパワースペクトル密度(PSD)分布の形状を整形し、通過帯域のダイナミックレンジを向上させることによって、より小さな量子化語長数で符号化するシステム全体や、量子化雑音を整形する(ノイズシェーピング)部分を特に指す場合もある。古典制御工学におけるPI制御に分類される。 半導体技術の発達や精度の必要なアナログ的な部分が少ないなどの点からAD変換及びDA変換で多用されている。 1960年代初めに当時大学院生で、後に早稲田大学理工学部教授などを歴任する安田靖彦が、Δ変調(差分パルス符号変調)のオフセットの問題が回避された方式として考案・開発し、「Δ-Σ変調」と命名した。以上の経緯もあり日本ではほぼ「ΔΣ」の順で呼ばれるが、再生側の処理構成を数式的な順序で書くと「ΣΔ」の順になるためか、日本国外を中心にΣΔ変調と書かれることもある。.

新しい!!: アナログ-デジタル変換回路とΔΣ変調 · 続きを見る »

折り返し雑音

正しく標本化されたレンガの壁の画像 空間折り返しひずみ(モアレ)が生じている例 折り返し雑音(おりかえしざつおん、Folding noise)またはエイリアシング(Aliasing)とは、統計学や信号処理やコンピュータグラフィックスなどの分野において、異なる連続信号が標本化によって区別できなくなることをいう。エイリアス(aliases)は、この文脈では「偽信号」と訳される。信号が標本化され再生されたとき、元の信号とエイリアスとが重なって生じる歪みのことを折り返しひずみ(aliasing distortion)という。折り返しひずみのことをエイリアシングまたは折り返し雑音ということもある。 デジタル写真を見たとき、ディスプレイやプリンタ機器、あるいは我々の眼や脳で再生(補間)が行われている。再生された画像が本来の画像と違っている場合、そこには折り返しひずみが生じている。空間折り返しひずみ(spatial aliasing)の例として、レンガの壁をピクセル数の少ない画像にしたときに生じるモアレがある。このようなピクセル化に際しての問題を防ぐ技法をアンチエイリアスと呼ぶ。 ストロボ効果(時間折り返し雑音)は、ビデオや音響信号の標本化での重大な問題である。例えば、音楽には高周波成分が含まれていることがあるが、人間の耳には聞こえない。それを低すぎるサンプリング周波数で標本化し、デジタル-アナログ変換回路を通して音楽を再生した場合、高周波がアンダーサンプリングされて低周波の折り返し雑音になったものが聞こえることがある。従って、標本化の前にフィルタ回路を使って高周波成分を取り除くのが一般的である。 (必要に応じて)低周波成分を排除したときにも似たような状況が発生し、高周波成分が意図的にアンダーサンプリングされて低周波として再生される。デジタルチャネライザには、計算を効率化するためにこのような折り返し雑音を利用するものもある。低周波成分を全く含まない信号は、バンドパスあるいは非ベースバンドと呼ばれる。 ビデオや映画撮影では、フレームレートが有限であるためにストロボ効果が生じ、例えば車輪のスポークがゆっくり回転しているように見えたり、逆回転しているように見える。すなわち、折り返し雑音が回転の周波数を変えているのである。逆回転は負の周波数で説明できる。 ビデオカメラも含めて、標本化は一般に周期的に行われ、サンプリング周波数と呼ばれる性質が(時間的または空間的に)存在する。デジタルカメラでは、画面の単位長当たりの標本(ピクセル)数が存在する。音響信号はアナログ-デジタル変換回路でデジタイズされ、毎秒一定数の標本を生成する。特に標本化対象となっている信号自体に周期性があるとき、折り返し雑音の影響が強く生じることが多い。.

新しい!!: アナログ-デジタル変換回路と折り返し雑音 · 続きを見る »

標本化

標本化(ひょうほんか)または英語でサンプリング(sampling)とは、連続信号を一定の間隔をおいて測定することにより、離散信号として収集することである。アナログ信号をデジタルデータとして扱う(デジタイズ)場合には、標本化と量子化が必要になる。標本化によって得られたそれぞれの値を標本値という。 連続信号に周期 T のインパルス列を掛けることにより、標本値の列を得ることができる。 この場合において、周期の逆数 1/T をサンプリング周波数(標本化周波数)といい、一般に fs で表す。 周波数帯域幅が fs 未満に制限された信号は、fs の2倍以上の標本化周波数で標本化すれば、それで得られた標本値の列から元の信号が一意に復元ができる。これを標本化定理という。 数学的には、標本化されたデータは元信号の連続関数 f(t) とくし型関数 comb(fs t)の積になる(fs はサンプリング周波数)。 これをフーリエ変換すると、スペクトルは元信号のスペクトル F(ω) が周期 fs で繰り返したものになる。 このとき、間隔 fs が F(ω) の帯域幅より小さいと、ある山と隣りの山が重なり合い、スペクトルに誤差を生ずることになる(折り返し雑音)。.

新しい!!: アナログ-デジタル変換回路と標本化 · 続きを見る »

ここにリダイレクトされます:

A/DA/DコンバータA/DコンバーターA/D変換ADコンバータADコンバーターAD変換AD変換器アナログ-デジタル変換アナログ・ディジタル変換回路アナログ・デジタルアナログ・デジタル変換アナログ・デジタル変換回路

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »